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Abstract

This paper presents a novel approach to estimate local

homography of points belong to a given surface. While oth-

ers works attempt this by using iterative algorithms devel-

oped for template matching, our method introduces a direct

estimation of the transformation. It performs the follow-

ing steps. First, a training set of features captures appear-

ance and geometry information about keypoints taken from

multiple views of the surface. Then incoming keypoints are

matched against the training set in order to retrieve a clus-

ter of features representing their identity. Finally the re-

trieved clusters are used to estimate the local pose of the

regions around keypoints. Thanks to the high accuracy,

outliers and bad estimates are filtered out by multiscale

Summed Square Difference (SSD) test.

1. Introduction

The last years have seen the development of many affine

region detectors that derive an approximation of the local

image transformation around points of interest. Matching

is performed using a region descriptor which provides in-

variance by getting rid of most of the complexity due to the

image transformation. More recently, an approach based on

the learning instead of specific detectors has been proposed

[5, 4, 6]. This method appears to be faster and more reliable,

but relies on iterative refinements that makes it unqualified

for very large image database. In this paper, we propose a

new approach that performs the other way around by direct

estimation of the local homography around points of inter-

est. Given a reference image of the target surface and an

input image containing this surface, our method proceeds

in three steps. We first generate a training set of features

that compactly captures geometry and appearance informa-

tion about multiple views of the same keypoints. Then in-

put keypoints are associated with the correspondent sets of

features by a matching process and a geometry consistency

checking. Finally, the informations related to keypoints in

the sets are used to estimate the local perspective transfor-

mations. Outliers and bad estimates are filtered out using

a multiscale SSD validation. As shown in Fig. 1, our ap-

proach avoids specific estimation of the transformation and

gives us a more reliable estimate than affine region detec-

tors for both planar and non-rigid surfaces. The rest of the

paper is organized as follows. Sect. 2 outlines the state

of the art about local pose estimation. Sect. 3 contains an

overview of the approach with details about the training set

generation and the local homography estimation. In Sect. 4

experimental results are shown and discussed. Conclusions

are drawn in Sect. 5.

2. Related Works

Many computer vision applications rely on the recovery

of properties of interest points, or keypoints. For example,

retrieving the poses of keypoints in addition to matching

them is a fundamental task in vision-based robot localiza-

tion [3], object recognition [14] or image retrieval [13] to

transform unconstrained problems into geometrically con-

strained ones. The standard approach proceeds by first us-

ing some particular affine region detectors and by then us-

ing SIFT descriptors computed on the rectified regions to

match the points. Many different detectors have been pro-

posed in the recent years. Among them, the Hessian-Affine

detector of Mikolajczyk and Schmid [10] and the MSER

detector by Matas et al. [9] have been shown to be the most

reliable ones. However, they retrieve only an affine trans-

formation without estimating the full perspective pose and

often require handcrafting the descriptors to achieve insen-

sitive to specific kind of distortion. Recently, a novel class

of learning-based methods that attemps to compute local

homography of a planar patch around keypoint has been de-

veloped [5, 4, 6, 12]. In particular the approaches of [5, 4, 6]

mainly consist in two steps: the incoming point of interest

is matched against a database of keypoints, each of which

is associated to a coarse estimation of its pose (defined as

the homography between a reference patch and the patch

centered on the point); the coarse pose retrieved is hence

iteratively refined by applying the template matching tech-

niques in [7] and the result is successively refined with a
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Figure 1. Approach overview. (a): Given a training image, we

use SIFT keypoints to perform local patch pose estimation. The

results are very accurate and mostly free of outliers in the case of

non-rigid surfaces (b) and planar objects (c). To better appreciate

accuracy, surface normals are plotted according to internal camera

parameters

iterative template matching algorithm [2]. For the first step,

[5] uses the Ferns classifier [11] while [4, 6] relies on linear

classifiers.

In [12] keypoints are detected at 2D corners and matched

to a pre-defined set of corners. Differently from the pre-

vious approaches, an estimation by regression is inserted

here in the loop of the Ferns classifier for matching. In this

way, the homographic transformation is directly checked

during matching. Finer regression is only performed for

close matches.

3. The Approach

Given a point of interest extracted at run-time, we want

to match it against a training set of features and to accurately

estimate its local pose represented by a homography. Our

approach performs in three steps. The first builds a train-

ing set of features which captures geometry and appearance

information about keypoints taken from multiple views of

a given 3D object. The second step matches an incoming

point of interest against the database in order to retrieve a

cluster of features representing keypoint identity. In the last

step the retrieved cluster is used to estimate the local patch

pose. Thanks to the high accuracy, outliers and bad esti-

mates are then filtered out by multiscale Summed Square

Difference (SSD) test.

3.1. Training Set Generation

Let us consider a set of 3D points of interest

lying on the surface of a given object. The aim is

to build a large training set of features which captures ge-

ometry and appearance about different patches around these

points extracted by multiple views of the object. According

to this, an effective method to build the training set is to

generate random synthetic views of the object using sim-

ple geometrical technique and extract SIFT keypoints from

them. In this way, we can easily associate each keypoint

with information about patch around it and select keypoints

that are more stable under noise and perspective distortion.

We discuss below the construction of multiple views of the

object given a reference image and then the process of ex-

tracting and selecting keypoints.

3.1.1 Multiple views sampling.

Under the assumption of local smooth surface patches sur-

rounding points of interest can be considered as locally

planar and their distortion under prospective projection can

be represented by homographies. Therefore only one refer-

ence image of the target object could be enough to gen-

erate the set of multiple views . Considering that for

moderate foreshortening keypoints keep stable even under

some viewpoint changes distorted image views are created



from the reference image taking a rectangular window

of approximately one half the image area around each cor-

ner of the reference image, selecting one point at random in

each window, and assuming these points as the vertices of

the newly generated image where the original content is

warped. Instead, since for strong foreshortening keypoints

keep stable only for small variations of the viewing angle,

in order to provide a finer sampling, the same procedure

is applied to the vertices of already distorted images with

windows of approximately one tenth of the image area. Fig.

2 shows some views generated by this process. Generated

images are clipped to a given image resolution in order to

avoid processing very large images that can emerge in fore-

shortening condition.

3.1.2 Features extraction.

Once the multiple views are sampled, we can extract

SIFT keypoints from them in order to associate each feature

with geometry and appearance information: .

Geometry information is captured by the homography

between the reference image and the view from which

the keypoint is taken, while appearance information is rep-

resented by SIFT descriptor .

3.1.3 Features selection.

Because of noise and perspective distortion, the points lying

on the object surface don’t have the same probability

to be found in a target image in which they are visible

at runtime. In order to select the keypoints with highest

probability to be extracted, we proceed as follows. Let

the homography which transforms the reference image in

the image which contains the keypoint . By applying

to the found 2D point is back-projected in the co-

ordinate system of and feed a point accumulator which

allows to estimate the probability with which the cor-

responding 3D points can be detected in a new image. The

3D points accumulating most votes are retained as points of

interest, having a large probability to be detected by SIFT

in unknown target images.

3.2. Matching and Homography estimation

Given a set of SIFT extracted by an image at runtime,

we want to retrieve the identities of keypoints lying on the

surface of the target object and to obtain an estimation of

their local homography. The problem of retrieving identity

can be defined as a search for a function

that assigns to every either a cluster1 of features

or representing no matching. According to

this, since the training set contains multiple views of each

1The term cluster here refer to a group slightly different descriptors

obtained in correspondence of a keypoint of the target object.
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Figure 2. Training set generation. All views are synthesized us-

ing a frontal image of the Graffiti as reference image. (a) Views

synthesized using the first image of Graffiti sequence as reference

image. (b) Views synthesized using an expanded set of reference

image in order to take into account foreshortening perspective ef-

fect.

3D point of interest, each keypoint is matched

to its nearest neighbors. This can be done in logarith-

mic time by using a kd–tree to find the approximate nearest

neighbors [1]. We use , where is the number

views in the training set. Wrong matched clusters are dis-

carded by checking the likelihood ratio. In particular the

cluster is associated to a keypoint only if the de-

scriptor of the second-closest neighbor is far enough to

the descriptor of the closest neighbor [1]:

(1)



where

(2)

is the Euclidean nearest neighbour of (in our experi-

ments we used a distance ratio greater than as rejec-

tion criterion). Since each one of the retrieved keypoints in

has its homography associated, matching also permits to

obtain a number of coarse estimation of the keypoint local

pose. However checking the geometry consistency of key-

points of cluster is necessary to filter out wrong matches.

3.2.1 Geometry checking.

Because of visual repeated structure, each cluster is pro-

cessed in order to reject false matching with the correspond-

ing . Since the closest neighbor (i.e. 1-NN) corre-

sponds with high probability to a different view of , we

proceed as described in the following pseudo-code:

1. Back-project the location of in the coordinate sys-

tem of using .

2. Define a circle of radius 3 pixels centered on the

back-projection of .

3. For each feature apply steps 4 and 5.

4. Back-project in the coordinate system of using

.

5. Discard if its back-projection is outside the circle .

In practice each element of the cluster is validated by

checking with its associated homography. Fig. 3 shows an

example of that process in a difficult case of visual repeated

structure in small localized region (i.e. the concentric pat-

tern of eye) where appearance and the imaged location do

not discriminate the surface element identity.

The approach differs from [14] where under the assump-

tion of rigid objects the geometry checking is applied to

all the the pairs of keypoints (i.e. the existence of epipolar

constraint and/or planarity relationship between 3D surface

patches). Since only local information of the keypoint is

used with no assumption on object rigidity, the method can

be also applied to the case of non-rigid objects and compu-

tational requirements are drastically reduced.

3.2.2 Local pose estimation.

After discarding outliers, the local homography of the patch

around is directly estimated using informations associ-

ated to the remaining features. Let the set of de-

scriptors representing appearance information and

the set of homographies capturing geometry information

about these features. The estimate is performed by sim-

ply averaging the homographies. For better accuracy, the

(a)

(b)

Figure 3. Geometry checking process. (a) The back-projected fea-

tures outside the circle are discarded as outliers. (b)Multiple key-

points taken from the same cluster.

contribution of each homography is weighed according to

the NN-distance between the relative descriptor and the de-

scriptor :

(3)

where . Fig. 1 shows an application of

this estimation process.

3.2.3 Multiscale SSD-based validation

A final validation is needed to remove bad estimated key-

points. Thanks to the accuracy of the retrieved transfor-

mations, we are able to reject keypoints using the Summed



Square Difference between the estimated patch and the

warped patch in the reference image. We adopt a method

similar to the one described in [8] in order to decide at

which scale the reference patch should be warped to. In par-

ticular we apply warping using a matrix computed from

the Jacobian of the estimated homography evaluated at the

keypoint coordinate :

(4)

The determinant of matrix corresponds to the area (in

square pixel), that a single source pixel would occupy in

the full-resolution image of the reference view . While

is the corresponding area in pyramid level one,

and so on. The target pyramid level is chosen so that

is closest to unity, basically we attempt to match

the warped patch in the pyramid level which most closely

matches its scale in the reference view using normalized

SSD.

4. Experimental Results

Several experiments were performed in order to assess

the effectiveness of the method and compare it against spe-

cific affine region detectors. To this end, we generate syn-

thetic views with a factor of foreshortening ranging from

to . In this context, factor of foreshortening is a func-

tion of the homography which transforms the vertices of

the reference image in the new vertices: ,

where are the two singular values of . In particular

is much greater then as is a more slanted version

than the reference image under perspective transformation.

For each view , we apply our method to identify approxi-

mately keypoints and retrieve their pose. We repeat this

test times for each cost and report the accuracy results

in figure 4, in which our method is denoted by ’SIFTHo-

mography’. To create these graphs we proceed as follow.

In the case of affine region detectors, we fit a square tan-

gent to the normalized regions and warp this square back

with the inverse transformation to get a quadrangle. In the

case of our method, the quadrangle is simply taken to be

the patch borders after warping the square on the reference

image by the retrieved homography. In Fig. 4(a) we com-

pare the average overlap between the quadrangles obtained

using the ground truth homography and those obtained with

our method and with affine region detectors. This overlap

is very close to for our method, about better than

MSER and about than other affine region detectors.

Fig. 4(b) shows the comparison of the mean reprojection

error for the quadrangle corners. The error of the patch cor-

ner is less than four pixel in average and outperforms other

methods.

Our current implementation runs at about frame per

second using features in the database (organized

as a vocabulary tree) extracting about SIFT keypoints

in the input images, on a standard notebook with an Intel

Centrino Core Duo with 2.4GHz and 3Gb RAM.

5. Conclusion and Future Works

This paper introduced a novel method for estimating the

local homography of a given 3D object. The effectiveness

of our approach relies on two key ideas. First, the genera-

tion of a training set that captures geometry and appearance

information about multiple views of the same keypoints,

and second, the usage of the average operator for the es-

timate. We have shown that this process avoids specific es-

timation of the local transformation and gives better results

than standard affine region detectors. Since we used only

SIFT keypoints, our future work will investigate the use of

different detectors and descriptors.
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Figure 4. Comparing our method against affine region detectors. (a) Average overlapping area of all correctly matched regions. (b) Average

sum of the distances from the ground truth for the corner points.
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