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Abstract

In the first part of this thesis the problem of metric reconstruction and texture

acquisition from a single uncalibrated view of a surface of revolution (SOR)

is addressed. Geometric constraints induced in the image by the symmetry

properties of the SOR structure are exploited to perform self-calibration of

a natural camera, 3D metric reconstruction, texture acquisition & mosaicing

and automatic reconstruction. By exploiting the analogy with the geometry

of single axis motion, i demonstrate that the imaged apparent contour and

the visible segments of two imaged cross sections in a single SOR view provide

enough information for these tasks.

In the second part of this thesis the problem of scheduling an active

observer to visit as many1 targets in an area of surveillance as possible is

proposed. I show how it is possible to plan a sequence of decisions regarding

what target to look at through such a foveal-sensing action. I propose a

framework in which a pan/tilt/zoom camera executes saccades in order to

visit, and acquire high resolution images (at least one) of, as many moving

targets as possible before they leave the scene. The whole problem is casted

into a dynamic discrete optimization framework. In particular, we will show

that the problem can be solved by modeling the attentional gaze control as

a kinetic traveling salesperson problem whose solution is approximated by

iteratively solving time dependent orienteering problems

1An intelligent choice of the order of sensing the targets can significantly reduce the
total dead-time wasted by the active camera and, consequently, its cycle time.



Acknowledgement

I would like to acknowledge the efforts and input of my supervisor, Professor

Alberto Del Bimbo, and my colleagues of the VipLab, who were invaluable

in shaping the course of this research.



Preface

This thesis address two problems in Computer Vision in which the proposed

methods are related by the use of Projective Geometry. Projective Geometry

is the important tool which forms the basis for the formulation of the two

main frameworks here proposed. The geometry of single views is explored

and monocular vision is shown to be sufficient to obtain a partial/complete

three-dimensional reconstruction or measurements of a scene. To achieve

this the properties of planar homographies, planar homologies and conics are

extensively exploited.

The first part of this thesis regards about 3d reconstruction through cam-

era (auto) calibration. A camera is a remarkably useful measuring device -

it not only produces a realistic picture of a scene, but also provides informa-

tion from which geometric properties of the scene can be measured and so

reconstructed. Reconstructing scene geometry from images is one of the most

active areas in computer vision. This task has proved to be very challenging.

Still, with the almost exponential increase in computation resources that the

last decade has seen, and with the application of principled mathematical

methods, much progress has been made in the last decade especially in the

geometry of multiple images. In this part the author propose a new method

for the 3D reconstruction of surfaces of revolution from only a single uncali-

brated view. Uncalibrated means that nothing is known about the geometry
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of the camera taking the picture. In particular no knowledge of the camera

internal parameters (such as focal length and aspect ratio) or its pose (po-

sition and orientation) is required at any time. In this minimal setting i’ll

show mathematically how to recover the global 3D structure (up to an over-

all scaling factor) of a SOR and how to calibrate the camera from the solely

image content. The novel contributions of the thesis will be addressed more

precisely in the conclusion. In broad terms, however, the methods described

integrate constraints on calibration and reconstruction of surfaces of revo-

lution into a single framework extending previous approaches dealing with

piecewise planar scenes.

In the second part of the thesis a very novel problem is proposed in

which an active observer (i.e. an active zooming camera) plans a sequence

of decisions regarding what target to look at, through a foveal sensing action

aimed to obtain high resolution images of such targets. The motivation

is to collect images at some minimal ground resolution. This task might

be defined to support gait recognition, or the acquisition of an appearance

model that could be used to subsequently identify the person. I propose a

optimization framework in which Projective Geometry of monocular vision

is used for evaluating the cost in the optimization. This work is motivated

by the goal of reproducing the ability of humans to recognize a person in a

crowd of moving people for surveillance purposes.

The overall layout of subsequent chapters is as follows. Chapter 1 discuss

some background and the single view geometry of surfaces of revolution.

Chapter 2 propose a surface mosaicing algorithm for registering into a global

images single views of SOR. Chapter 3 address the problem of giving an

automatization to the whole process of SOR reconstruction from a single

image. In chapter 4 (the second part of this thesis) present an approach
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for planning an active zooming camera for the task of high resolution image

sensing. Chapter 5 draws the thesis to a close, summing up the contributions

made in the research and outlining areas of further investigation.
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Part I

Single view geometry

and Surfaces of Revolution



Chapter 1

Single view Reconstruction

Image analysis and computer vision can be effectively employed to recover

the three-dimensional structure of imaged objects, together with their surface

properties. In this chapter, we address the problem of metric reconstruction

and texture acquisition from a single uncalibrated view of a surface of revo-

lution (SOR). Geometric constraints induced in the image by the symmetry

properties of the SOR structure are exploited to perform self-calibration of

a natural camera, 3D metric reconstruction, and texture acquisition. By

exploiting the analogy with the geometry of single axis motion, we demon-

strate that the imaged apparent contour and the visible segments of two

imaged cross sections in a single SOR view provide enough information for

these tasks. Original contributions of this part of the thesis are: single view

self-calibration and reconstruction based on planar rectification, previously

developed for planar surfaces, has been extended to deal also with the SOR

class of curved surfaces; self-calibration is obtained by estimating both cam-

era focal length (one parameter) and principal point (two parameters) from

three independent linear constraints for the SOR fixed entities; the invariant-

based description of the SOR scaling function has been extended from affine
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to perspective projection. The solution proposed exploits both the geomet-

ric and topological properties of the transformation that relates the apparent

contour to the SOR scaling function. Therefore, with this method, a met-

ric localization of the SOR occluded parts can be made, so as to cope with

them correctly. For the reconstruction of textured SORs, texture acquisition

is performed without requiring the estimation of external camera calibra-

tion parameters, but only using internal camera parameters obtained from

self-calibration.

1.1 Introduction

In the last few years, the growing demand of realistic 3D object models for

graphic rendering, creation of non-conventional digital libraries, and popula-

tion of virtual environments has renewed the interest in the reconstruction of

3D objects and the acquisition of their surface properties from one or more

camera images. In fact, solutions based on image-analysis can be effectively

employed in all those cases in which the original object is not available and

only its photographic reproduction can be used (for example it no longer ex-

ists), or its material does not work with structured light methods, or its size

is too large for the other automatic acquisition methods. The knowledge of

internal camera parameters is essential for the purpose of metric reconstruc-

tion, of the 3D object shape and structure and its texture, from image data.

Self-calibration [1] is particularly important in that, although less accurate

than off-line calibration [2], [3], it is the only possible solution when no direct

measurements can be made in the scene, as for example in applications deal-

ing with archive photographs and recorded video sequences. In this thesis

we address the task of metric reconstruction and texture acquisition from
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a single uncalibrated image of a SOR. We follow a method which exploits

geometric constraints of the imaged object without requiring any knowledge

of both internal and external camera calibration parameters. We derive the

geometric constraints induced in the image by the symmetry properties of

SOR structure. The key idea is that, since a SOR is a non trivial repeated

structure generated by the rotation of a planar curve around the axis, in

principle it can be recovered by properly extending and combining together

single image planar scene reconstruction and single axis motion constraints.

A preliminary version of the approach described has been presented in [4] and

this is the first published paper dealing with uncalibrated single view SOR

metric reconstruction. In the following sections, we present the algorithms

and the principles of projective geometry exploited, for the three stages of:

camera calibration, 3d shape and structure metric reconstruction and tex-

ture acquisition. Metric reconstruction of the 3D shape and structure of the

SOR is reformulated as the problem of determining the shape of a meridian

curve. The inputs to the algorithms are two elliptical imaged SOR cross sec-

tions and the silhouette of the object apparent contour. Working with image

curves has two main advantages. On the one hand, curves are dominant

features that can be easily and reliably extracted from images; on the other

hand, using curves allows avoiding point correspondences and making recon-

struction possible also for textureless, translucent and transparent objects.

Constraints for camera calibration are obtained from the computation of the

projective geometry of the SOR from a single view. Actually, this removes the

1D projective reconstruction ambiguity due to underconstrained calibration

that has been discussed in the literature of turntable sequences (see e.g. [5]).

It also represents an improvement w.r.t. the approach presented in [6], that

requires the presence of two different SORs in the same view. The contri-
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bution of our reconstruction approach to the recent literature is three-fold.

First, it extends to the SORs the planar rectification framework originally

introduced in [7] for planar surfaces. Second, it develops the invariant-based

description of SORs discussed in [8] from affine to perspective projection, by

proving that also in this case, the reconstructed scaling function of the im-

aged SOR forms a ”canonical frame” in which invariants can be computed.

Finally, in the case of self occlusions, since the approach operates locally on

the apparent contour, occluded parts can be precisely identified and even-

tually recovered from multiple views. In this regard, it improves the SOR

reconstruction approach described in [9].

1.2 Related Work

3D shape and structure reconstruction approaches that have been reported

in the literature (see [10] for a recent survey) include classic triangulation

[11], [12], visual hulls [13]—typically enhanced by voxel coloring [14], dense

stereo [15] and level sets methods [16]. However, more effective reconstruc-

tion can be obtained by exploiting prior knowledge about the scene, encoded

in the form of constraints on either scene geometry or motion. Most of the

recent research contributions that used prior knowledge employ geometric

scene constraints. The presence of a “repeated structure” [17] is a classi-

cal example of geometric constraint frequently used. This happens because

the image of a repeated structure is equivalent to multiple views of a single

structure. In real applications this can regard planes, lines, etc. occurring

in particular (e.g., parallel, orthogonal) spatial arrangements. In a repeated

structure, the epipolar geometry induced in the image by multiple instances

of the same object can be expressed through projective homologies, which
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require less parameters and therefore are more robust to estimate [18]. A

further advantage of geometrically constrained reconstruction is that fewer

(and, in special cases, just one) images are required. In [19], an interactive

model-based stereo approach was proposed by Taylor et al., where the scene

is represented as a constrained hierarchical model of parametric polyhedral

primitives—such as boxes, prisms—called blocks. The user can constrain the

sizes and positions of any of the blocks in order to simplify the reconstruc-

tion problem. All these constraints are set in the 3D space, thus requiring a

complex non-linear optimization to estimate camera positions and model pa-

rameters. Liebowitz et al. perform calibration from scene constraints in order

to reconstruct textured piecewise planar architectural scenes [7]. Moreover,

they rectify the projective distortion in the imaged planar portions so as to

represent the original texture as a rectangular image. Single view piecewise

planar reconstruction is also addressed by Sturm and Maybank [20], [21].

The main difference w.r.t. [7] is that reconstruction does not include the rec-

tification step. This saves computation time but requires a larger memory

space to store textures. In [22], Cross and Zisserman use quadrics for 3D

modeling and image registration from two or more perspective views. They

also show that surfaces can be approximated piecewise by quadrics that are

obtained from a piecewise conic approximation of their outlines in the image

plane.

Useful constraints for calibration and/or reconstruction can also be de-

rived if the scene undergoes planar motion [23]. Recent works exploit single

axis motion to reconstruct objects of any shape that rotate on a turntable

[24], [25], [5] [26]. Apart from algorithmic differences in the reconstruction

phase, motion fixed entities like the imaged axis of rotation and the vanishing

line of the plane of rotation are first estimated from the image sequence, and
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then used to calibrate the camera. However, the turntable approaches above

do not succeed to perform a complete camera calibration. As a consequence

of this, reconstruction is affected by a 1D projective ambiguity along the

rotation axis.

On the other hand, for the creation of realistic 3D object models, tex-

ture acquisition must be combined with 3D shape and structure acquisition.

Furthermore image geometry/registration is only the first step for texture

reconstruction infact a correct blending is necessary to remove lighting from

the albedo and remove the redundant information by compacting the whole

pictorial surface. Standard approaches of texture acquisition generally re-

quire the knowledge of camera position and orientation (i.e., the external

calibration parameters) in order to backproject correctly image data onto

surface shape. There are basically two methods for estimating external cali-

bration from image data and a known 3D structure [27], [28], [29], [30]. The

first method exploits the correspondence between selected points on the 3D

object and their images. The second method works directly in the image

plane, and minimizes the mismatch between the original object silhouette

and the synthetic silhouette obtained by projecting the 3D object onto the

image. However, in general, if there are internal calibration or surface recon-

struction errors, texture acquisition introduces visual artifacts which do not

reflect the real object appearance.

Surfaces of Revolution (SORs) represent a class of surfaces very com-

mon in man-made objects and thus of great relevance for a large number

of applications. SORs are a subclass of Straight Homogeneous Generalized

Cylinders (SHGCs). SHGCs have been extensively studied under different

aspects: description, grouping, recognition, recovery, and qualitative surface

recostruction. Most of the existing techniques follow [31], for an extensive
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review, see [32]. Abdallah and Zisserman, in [8] have discussed the invariance

properties of SORs scaling function under affine viewing conditions — finding

the analogous invariants in the perspective view case is left to future work

— for the purpose of object recognition from a single view. Reconstruction

of a generic SHGC from a single view, either orthographic or perspective, is

known to be an underconstrained problem, except for the case of SORs [33].

However, with the noticeable exception of the work by Wong [9], virtually no

contributions exist addressing the problem of metric reconstruction of SORs

from a single perspective view. In that paper, the 3D structure of a SOR is

reconstructed from its silhouette from an uncalibrated image. The calibra-

tion is obtained with the method described in [34], [6]. However with this

method only the focal length can be estimated from a single view with the

assumptions of zero skew and principal point being at the image center.

The reconstruction is affected by a 1-parameter ambiguity: although this

can be fixed by localizing an imaged cross section of the surface, however, a

major problem is that in this approach the silhouette is related directly to

its generating contour on the surface, which is an incorrect assumption. In

fact, this makes it impossible to capture the correct object geometry in the

presence of self-occlusions, which is a very common situation. Very recently

two new papers were published: [35] [36] in which two imaged cross-section as

described in [4] were used to perform respectively a projective reconstruction

and a multi-view metric reconstruction. However in [36] the two imaged

cross-section were not fully exploited since the circular point constraint on

the IAC is not used.

Texture acquisition of straight uniform generalized cylinders (SUGCs),

which are a special subclass of SORs [37], was addressed by Puech et al..

In this approach, texture is obtained as a mosaic image gathering visual
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information from several images. Since texture is not metrically sampled, the

quality of the global visual appearance of the object is somewhat affected.

Another important aspect is that several paper exists for the automatic

segmentation (mainly devoted for recognition purposes) of SHCG and in

particular for SOR [38] [39] [40] [41] [32]. This gives a relevant interest to

our work since the possibilities to perform the reconstruction from images

complete automatically (albeit grouping for recognition is rather different

than for metric reconstruction since high accuracy in the estimated entity is

needed). Texture acquisition is also obtained by exploiting the special prop-

erties of SOR structure. In our approach, texture is sampled in the image

plane, and represented as a flat rectangular image through a cartographic

parametrization. The surface texture is acquired by a special 2D transfor-

mation applied to the imaged SOR region. This act as a simplification of

the geometry to image registration phase. This is different to the general

method in which the texture images acquired by a color camera need to be

registered with the reconstructed 3D points by means of camera external

calibration which establish the projective mapping of the texture image onto

the 3d points [42]. In our method external camera pose wasn’t not explicitly

computed: the image to geometry registration its computed entire in the

image space.

Our methods gives also a benefit in the acquisition of the whole texture

which involves the combination (blending) of all the texture maps acquired

for an SOR object into a single non-redundant map over the entire object with

adjusted color. The texture acquired with our methods can be combined with

a translation motion model by mean of image registration. Our methods in

general reduces the sensitivity to artifacts since a lower number of parameters

are involved in the estimation.
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Calibration information is exploited in the resampling phase. Fully metric

textures are obtained for developable surfaces. In that the method is not

limited to the class of SUGCs, it also extends the solution presented in [37].

The content of this chapter is organized as follows. Section 1.3 provides

background material on basic geometry and states the analogy between single

axis motion and surfaces of revolution. Section 1.4 describes the various parts

of the approach, and specifically computation of the fixed entities, camera

calibration, reconstruction of 3D structure and texture acquisition. In section

1.5 experimental results on both synthetic and real data are presented and

discussed. Finally, in section 1.6 conclusions are drawn and future work is

outlined. Mathematical proofs are reported in the Appendices.

1.3 Background

In this section we review the basic terminology and geometric properties

of SORs under perspective projection. We also discuss an important anal-

ogy between properties as derived from a single SOR image and those of a

sequence of images obtained from single axis motion: this analogy will be ex-

ploited in the calibration, reconstruction and texture acquisition algorithms,

discussed in section 1.4.

1.3.1 Basic terminology

Mathematically, a surface of revolution can be thought of as obtained by re-

volving a planar curve ρ(z), referred to as scaling function, around a straight

axis z. Therefore, SORs can be parametrized by

P(θ, z) = (ρ(z) cos(θ), ρ(z) sin(θ), z), with θ ∈ [0, 2π], z ∈ [0, 1]. In the

3D space, all parallels (i.e., cross sections with planes z = constant) are cir-
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0
C

C

Γ Χ
γ χ

s
l

Figure 1.1: Imaged SOR geometry. Γ and γ are respectively part of the contour
generator and of the apparent contour. The translucent surface is the visual hull
for the apparent contour. X and χ are respectively a meridian and its projection.
The ellipse C is the edge corresponding to the parallel Co.

cles. Meridians (i.e., the curves obtained by cutting the SOR with planes

θ = constant) all have the same shape, coinciding with the SOR scaling

function. Parallels and meridians are locally mutually orthogonal in space,

but not in a 2D view. Two kinds of curves can arise in the projection of a

SOR: limbs and edges [43]. A limb, also referred to as apparent contour, is

the image of the points at which the surface is smooth and projection rays

are tangent to the surface. The corresponding 3D curve is referred to as

contour generator. An edge is the image of the points at which the surface

is not smooth and has discontinuities in the surface normal. Fig. 1.1 depicts

a SOR and its projection. Under general viewing conditions, the contour

generator is not a planar curve, and is therefore different from a meridian

[44]. Depending on this, the apparent contour also differs from the imaged

meridian. Parallels always project onto the image as ellipses. Edges are el-
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liptical segments which are the projection of partially or completely visible

surface parallels.

1.3.2 Basic imaged SOR properties

v

2 2

3

2

2

3

1

1

⇒

S

1

x
y' y

x
x

x' x'

x'

yy'

l

l

v

∞

∞

11.

.

.

.

.

. .

.

. .

.

C
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∞

w

Figure 1.2: Basic projective properties for an imaged SOR. Property 1.3.1: Points
xi and x′i correspond under W; all lines x′i × xi meet at vW ∈ ls. Property 1.3.2:
Points yi and y′i correspond under H; all lines y′i×yi meet at v∞ ∈ l∞ (not shown
in the figure).

Most of the properties of imaged SORs can be expressed in terms of

projective transformations called homologies. These are special planar trans-

formations that have a line of fixed points (the homology axis) and a fixed

point (the vertex) that does not belong to the axis [45]. In homogeneous

coordinates, a planar homology is represented by a 3 × 3 matrix W trans-

forming points as x′ = Wx. This matrix has two equal and one distinct real

eigenvalues, with eigenspaces respectively of dimension two and one. It can
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be parametrized as

W = I + (µ− 1)
v lT

vT l
, (1.1)

where I is the 3 × 3 identity matrix, l is the axis, v is the vertex and µ is

the ratio of the distinct eigenvalue to the repeated one. A planar homology

has five degrees of freedom (dof); hence, it can be obtained from three point

correspondences. In the special case µ = −1, the dofs are reduced to four,

and the corresponding homology H is said to be harmonic.

An imaged SOR satisfies the following two fundamental properties, whose

geometric meaning is illustrated in Fig. 1.2.

Property 1.3.1. Any two imaged SOR cross sections are related to each

other by a planar homology W. The axis of this homology is the vanishing

line l∞ of the planes orthogonal to the SOR axis. The image of the revolution

axis ls contains the vertex vW of the homology [8][32].

Property 1.3.2. The apparent contour of an imaged SOR is transformed

onto itself by an harmonic homology H, whose axis ls is the imaged axis of

symmetry of the SOR. The vertex v∞ of the homology lies on the aforemen-

tioned vanishing line l∞ [46].

Denoting with C and C′ the 3 × 3 symmetric conic coefficient matrices

associated with two generic cross sections that correspond pointwise under

the planar homology W, it holds C′ = W−TCW−1. The harmonic homology

generalizes the usual concept of bilateral symmetry under perspective pro-

jection. In fact, the imaged axis of symmetry splits the imaged SOR into two

parts, which correspond pointwise through H. This is true, in particular, for

imaged cross sections, that are fixed as a set under the harmonic homology:

C = H−TCH−1 (or C = HTCH, being H−1 = H). The two elliptical cross-section

C and C′ of Fig. 1.2 are therefore related by a planar homology W with axis
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l∞ and vertex vw. The vertex vw is always on the imaged axis of revolution

ls. Cross-section points x1, x2, x3 correspond to x′1, x′2, x′3 under W. Cross-

section points x1, x′1, x2, x′2 also correspond to x3, x′3, x2, x′2 under H. The

points on the apparent contour y′1, y′2 also correspond to y1, y2 under H.

Lines through points y′1, y1 and y′2, y2 meet at v∞.

1.3.3 The analogy between SOR geometry and single

axis motion

Given a static camera, and a generic object rotating on a turntable, single

axis motion (SAM) provides a sequence of different images of the object.

This sequence can be imagined as produced by a camera that undergoes a

virtual motion of pure rotation about the turntable axis while viewing a fixed

object. Single axis motion can be described in terms of its fixed entities—

i.e., those geometric objects in space or in the image that remain invariant

throughout the sequence [23]. In particular, the imaged fixed entities can

be used to express orthogonality relations of geometric objects in the scene

by means of the image of the absolute conic ω—an imaginary point conic

directly related to the camera matrix K as ω = K−TK−1 [11].

Important fixed entities for the SAM are the imaged circular points iπ

and jπ of the pencil of planes π orthogonal to the axis of rotation, and the

horizon lπ = iπ × jπ of this pencil. The imaged circular points form a pair of

complex conjugate points which lie on ω:

iTπ ω iπ = 0, jTπ ω jπ = 0 . (1.2)

In practice, as iπ and jπ contain the same information, the two equations

above can be written in terms of the real and imaginary parts of either

points. Other relevant fixed entities are the imaged axis of rotation la, and



Chapter 1. Single view Reconstruction 15

the vanishing point vn of the normal direction to the plane passing through

la and the camera center. These are in pole-polar relationship with respect

to ω:

la = ωvn . (1.3)

Eqs. 1.2 and 1.3 were used separately in the context of approaches to 3D

reconstruction from turntable sequences. In particular, Eq. 1.2 was used in

[24] and in [5] to recover metric properties for the pencil of parallel planes π

given an uncalibrated turntable sequence. In both cases, reconstruction was

obtained up to a 1D projective ambiguity, since the two linear constraints on

ω provided by Eq. 1.2 were not enough to calibrate the camera. On the other

hand, Eq. 1.3 was used in [26] to characterize the epipolar geometry of SAM

in terms of la and vn given a calibrated turntable sequence. Clearly, in this

case, the a priori knowledge of intrinsic camera parameters allows to obtain

an unambiguous reconstruction. In the case of a SOR object, assuming

that its axis of revolution is coincident with the turntable axis, the apparent

contour remains unchanged in every frame of the sequence. Therefore, for

a SOR object, the fixed entities of the motion can be computed from any

single frame of the sequence. According to this consideration, a SOR image

and a single axis motion sequence share the same projective geometry: the

fixed entities of SOR geometry correspond to the fixed entities of single axis

motion. In particular: la corresponds to ls; vn corresponds to v∞; (iπ, jπ)

correspond to (i, j); lπ corresponds to l∞ = i × j where i and j denote the

imaged circular points of the SOR cross sections.

The analogy between SOR and SAM imaged geometry was implicitly

exploited in [6] to calibrate the camera from two SOR views under the as-

sumption of zero camera skew. In that paper, the pole-polar relationship

of ls and v∞ w.r.t. the image of the absolute conic was used to derive two
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constraints on ω. Also in [26] a similar exploitation is used to locate the

rotation axis and the vanishing point. In section 1.4.2 we will exploit the

analogy one step forward, and show that it is possible to apply both Eqs. 1.2

and 1.3 to SORs for camera calibration and 3D reconstruction given a single

SOR view.

1.4 The Approach

In this section we demonstrate that, given a single SOR view and assuming

a zero skew known aspect ratio camera, the problems of camera calibration,

metric 3D reconstruction and texture acquisition are solved if the apparent

contour γ and two distinct imaged cross sections C1 and C2 are extracted

from the original image. Preliminary to this, we demonstrate that the fixed

entities ls, v∞, l∞, i and j—that are required for all the later processing—can

be derived from the two imaged cross sections.

1.4.1 Derivation of the fixed entities

The non linear system 



xTC1x = 0

xTC2x = 0
(1.4)

that algebraically expresses the intersection between C1 and C2 has four so-

lutions xk, k = 1 . . . 4—of which no three are collinear [45]—that can be

computed as the roots of a quartic polynomial [47]. In the case that C1 and

C2 are two imaged SOR cross sections, at least two solutions (say x1 and

x2) are complex conjugate. In fact, since any imaged cross section intersects

the vanishing line l∞ at the imaged circular points i and j, these complex

conjugate points must belong to the solution set of Eq. 1.4. According to
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this, the remaining two solutions (say x3 and x4) are either real or complex

conjugate.

Fig. 1.3(a) shows the geometric construction for the derivation of the

fixed entities v∞ and ls. The four solutions xk’s form a so called “complete

quadrangle” and are represented in the figure as filled circles. In the figure

it is assumed, with no loss of generality, that x1 and x2 are the two imaged

circular points i and j. The xk’s may be joined in pairs in three ways through

the six lines lij = xi×xj, i = 1, . . . 3, j = i + 1, . . . 4. Each pair of lines has a

point of intersection, and the three new points (hollow circles in the figure)

form the vertices of the so called “diagonal triangle” associated with the

complete quadrangle. The vertex of the harmonic homology v∞ is the vertex

of the diagonal triangle which lies on the line l12 connecting the two complex

conjugate points x1 and x2. The imaged axis of symmetry ls is the line

connecting the remaining two vertices of the diagonal triangle. In particular,

the vertex of the harmonic homology and the imaged axis of symmetry can

be computed respectively as

v∞ = l12 × l34 (1.5)

and

ls = (l13 × l24)× (l14 × l23) . (1.6)

The proof of this result is given in Appendix A.1. The computation of the

vanishing line l∞ is straighforward when x3 and x4 are real. In this case,

x1 and x2 are the imaged circular points and, by consequence, l∞ = l12.

On the other hand, when x3 and x4 are complex conjugate, an ambiguity

arises in the computation of l∞, since both l12 and l34 are physically plausible

vanishing lines. In fact, a pair of imaged cross sections C1 and C2 with no real

points of intersection are visually compatible with two distinct views of the
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(a)

(b)

Figure 1.3: (a): Geometric properties of the four intersection points of C1 and C2

with the hypotesis l∞ = l12. (b): Ambiguity and visibility issues in determining
the vanishing line. This symbolic view can be interpreted as two different view of
two coaxial parallel 3d world circle represented with the two shown vanishing line.
If these circles comes from a SOR three possible interpretation can be exist with
the same appearence.
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planar cross sections, where each view corresponds to a different vanishing

line. Fig. 1.3(b)(I) shows an example of two imaged cross sections and the

two possible solutions for the vanishing line; Fig. 1.3(b)(II) shows the correct

solution for the vanishing line when the camera center is at any location in

between the two planes of the cross sections; Figs. 1.3(b)(III) and (IV) show

the correct solution for the vanishing line when the camera center is at any

location above the two planes of the cross sections. The example shows that,

unless the two imaged cross sections are one inside the other—which is indeed

not relevant for the purpose of our research, since in this case no apparent

contour could be extracted—, at least one of them is not completely visible.

This suggests a simple heuristics to resolve the ambiguity based on visibility

considerations. When both C1 and C2 are both not completely visible, the

correct vanishing line l∞ is the one whose intersection with ls belongs to

h1 ∩ h2, where hi is the half-plane generated by the major axis of Ci that

contains the majority of the hidden points. In the case in which one of the

two ellipses, say C1, is completely visible, then the correct l∞ leaves both C1

and C2 on the same side. Once l∞ is associated to the correct lij = xi×xj, the

imaged circular points are simply obtained as the points i = xi and j = xj.

In other words the correct i and j are simply two out of the four intersection

of the two conic. The above result demonstrates that the visible segments of

two ellipses are in any case sufficient to extract unambiguously the vanishing

line and the imaged circular points. This relaxes the conditions claimed by

Jiang et al. in [5], where three ellipses are requested to compute the imaged

circular points.
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Figure 1.4: A symbolic representation of the geometry of camera calibration. The
IAC is shown dashed to remind that it is a pure imaginary conic.

1.4.2 Camera calibration

In order to perform camera calibration from a single image of a SOR, we

exploit the analogy between a single SOR image and single axis motion dis-

cussed in section 1.3.3. According to this, we can rewrite Eqs. 1.2 and 1.3 in

terms of the SOR fixed entities i, j, ls and v∞. The resulting system




iT ω i = 0

jT ω j = 0

ls = ωv∞

(1.7)

provides four linear constraints on the image of the absolute conic ω. How-

ever, it can be demonstrated (see AppendixA.2) that the system has only

three independent linear constraints. Therefore, the available constraints are

sufficient to calibrate a natural camera (zero skew and known aspect ratio: 3

dofs) from a single image. By rewriting the third of Eqs. 1.7 as ls×ωv∞ = 0,

the system can be transformed into a homogeneous system and solved by

singular value decomposition (see appendix A.4). Once ω is computed, the
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camera matrix K can be obtained by the Cholesky factorization.

Different conditions can also be considered: (i) a single image with n SOR

objects provides—except than in special configurations—3n constraints that

can be used to perform a full pinhole camera calibration (5 dofs); (ii) m

distinct images of a SOR—obtained without varying the internal camera

parameters—provide 3m linear constraints for full camera calibration.

Fig. 1.4 shows the geometrical relationships between the fixed entities

and the image of the absolute conic, as mathematically expressed by the

system of Eq. 1.7. The three points v∞, vs = l∞ × ls and v⊥ ∈ ls are the

vanishing points of three mutually orthogonal directions in the 3D space. In

particular, v⊥ is the vanishing point of the directions parallel to the SOR

symmetry axis; since this point cannot be measured from a single SOR view,

its associated constraint l∞ = ωv⊥ cannot be used for calibration purposes.

If v∞ is a finite point, there exists only one IAC such that l∞ intersects ω at

the fixed points i and j, and the tangent lines to ω from v∞ have the tangent

points on ls. In the case in which the optical axis of the camera pierces the

revolution axis of the SOR, the principal point is on ls and as a consequence

v∞ becomes an ideal point. The effect of this is a 1-dof ambiguity in the

position of the principal point, which can be anywhere on the imaged axis of

symmetry. A practical solution to this problem is to choose as the principal

point the point on ls nearest to the image center [48].

When the principal point is close to ls, although not exactly on it, a

near degenerate condition occurs. In this case, the accuracy of calibration

strongly depends on the accuracy of the estimation of the fixed entities, and

particularly of v∞.
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1.4.3 3D Metric Reconstruction

Given the IAC, it is possible to remove the projective distortion of any imaged

plane for which the vanishing line is known—a technique known as planar

rectification [11]. According to this, if the image χ of any SOR meridian,

the corresponding vanishing line m∞ and the imaged axis of symmetry ls are

available, it is possible to guarantee a solution for the problem of 3D metric

SOR reconstruction.

As a first step, we compute χ and m∞ from one imaged cross section C

and the apparent contour γ under full perspective conditions.

The imaged meridian χ and ls—the latter obtained as shown in the pre-

vious section—will then be rectified in order to compute the SOR scaling

function ρ(z).

Computation of the imaged meridian

The following properties for the apparent contour and the imaged cross sec-

tions of a SOR extend the basic imaged SOR properties discussed in sec-

tion 1.3.2, and provide the theoretical foundation for computing the imaged

meridian χ.

Property 1.4.1. The apparent contour is tangent to an imaged cross section

at any point of contact [32].

Property 1.4.2. The lines tangent to two distinct imaged cross sections

C and C′ at any two points x and x′ related by the planar homology W as

x′ = Wx have the same vanishing point u∞, which lies on l∞.

Property 1.4.3. The 3D points whose images x ∈ C and x′ ∈ C′ are related

as x′ = Wx belong to the same SOR meridian.
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With reference to fig.1.5 the properties are illustrated. The cross-section

C′ is tangent to the apparent contour γ and the point x′γ is the contact point

showing the property 1.4.1. The line l′ tangent at x′γ meet l∞ at u∞. The

line l passing by u∞ and tangent to C gives the point x. The point x and x′γ

are the two corresponding point under W of property 1.4.3 while l′ and l are

the tangent lines of property 1.4.2.

Always with reference to Fig. 1.5, given the apparent contour γ, there

exists a unique imaged cross section C′ that includes the generic point x′γ ∈ γ.

Correspondingly, once the vanishing line l∞ is given, there exists a unique

planar homology W that maps a reference imaged cross section C onto C′. As

x′γ varies on γ, the vertex vW and the characteristic invariant µW of W also

vary, while l∞ remains fixed. Therefore, as x′γ ∈ C′ is moved along γ, it gives

rise to a family of planar homologies W : C −→ C′.

Practically the above properties can be translated in a algorithm for com-

puting an imaged meridian whose rectification will furnish the scaling func-

tion of the SOR. We now show how to compute the planar homology W at a

given x′γ. According to property 1.4.1, there exists an imaged cross section

C′ such that γ and C′ share the same tangent line l′ at x′γ. The tangent line l′

intersects the vanishing line l∞ at the point u∞: according to property 1.4.2,

this is the vanishing point of all the lines which are tangent to the SOR along

the same meridian. Therefore, the tangent line l to C from u∞ meets C at the

point x such that x′γ = Wx, and the planar homology vertex vW is the point

where the line through x and x′γ intercepts the imaged axis of symmetry ls:

vW = (x× x′γ)× ls . (1.8)

This fixes two of the three degrees of freedom left for W. The remaining degree
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Figure 1.5: The geometry of imaged meridian reconstruction and rectification.

of freedom is fixed by computing the characteristic invariant µW as

µW = {vW,w∞,x,x′γ} , (1.9)

where w∞ = (x × x′γ) × l∞ is the point where the line through x and x′γ

intercepts the vanishing line l∞, and {} denotes the usual cross ratio of four

points [45].

For each W that is obtained from the steps above, by exploiting the prop-

erty 1.4.3, a point x′χ on the imaged meridian χ that passes through the point

xχ ∈ C is computed as x′χ = Wxχ. The imaged meridian χ is then recovered

as the set of all the points x′χ obtained for different points x′γ sampled on the

apparent contour (see Fig. 1.6, (a)).
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Figure 1.6: Recovery (a) and rectification (b) of an imaged meridian.

Rectification of the imaged meridian

The rectification of χ requires the availability of both the image of the ab-

solute conic ω and the vanishing line m∞ of the plane πχ through the meridian

and the SOR symmetry axis. As the SOR symmetry axis lies by construction

on πχ, once the rectifying homography Mr for this plane is known, we are able

to rectify both the imaged meridian χ and the imaged axis of symmetry ls

according to 



xρ = Mrx
′
χ

lz = M-Tr ls
. (1.10)

By computing the distance between any point xρ and the line lz, it is then

possible to obtain the values of z and ρ(z) for each x′χ given the reference

SOR axis ls (see Fig. 1.6(b)).

The vanishing line m∞ can be obtained as m∞ = x∞×v⊥, where x∞ and
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v⊥ are respectively the vanishing point of the direction of all lines in πχ that

are orthogonal to the symmetry axis, and the vanishing point of the direction

of the symmetry axis (see Fig. 1.5). The vanishing point x∞ is computed as

x∞ = (xχ × o)× l∞ =
(
xχ × C−1l∞

)× l∞ , (1.11)

where o = C−1l∞ is the image of the center of the cross section that projects

onto C; this point is in pole-polar relationship with l∞ with respect to C.

Since ω is known, the vanishing point v⊥ is computed as v⊥ = ω−1l∞.

The vanishing line m∞ can now be intersected with ω in order to obtain

the imaged circular points iχ and jχ. This intersection can be algebraically

computed by solving for λ the quadratic equation (x∞ + λv⊥)T ω (x∞ +

λv⊥) = 0, where x∞ + λv⊥ denotes the generic point on m∞. The imaged

circular points are obtained from the two complex conjugate solutions λ1 and

λ2 respectively as iχ = (x∞ + λ1v⊥) and jχ = (x∞ + λ2v⊥). According to

[49], the rectifying homography for the plane πχ is

Mr =




β−1 −α β−1 0

0 1 0

m1 m2 1


 , (1.12)

where m∞ = (m1,m2, 1) and iχ = conj(jχ) is expressed as M−1
r (1, i, 0) =

(α− iβ, 1,−m2 −m1α + im1β).

Discussion

The above two-step method for 3D metric reconstruction is equivalent to

the computation of the set of pairs {(z, ρ(z))}, where z is the point of the

SOR symmetry axis that corresponds to a point x′γ sampled on the apparent

contour γ. This correspondence can be expressed in terms of a function
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ζ : γ → [0, 1] such that

z = ζ(x′γ) . (1.13)

The function ζ is defined only at points x′γ at which γ is smooth and has a

unique tangent line. These points belong to a unique imaged cross section C′,

whose corresponding pair (z, ρ(z)) can then be correctly recovered with the

method above. In the presence of self-occlusions, the apparent contour can

have singular points at which γ is not smooth and has two distinct tangent

lines. The values z− and z+ corresponding to the two tangent lines at a

singular point delimit the portion of the z axis at which no ρ(z) can be

computed with the method above. In this case, the method still guarantees

that the scaling function be correctly recovered piecewise as a non connected

curve.

If a uniform sampling strategy for γ is used, a non uniform sampling of

z is obtained. If, instead, a uniform sampling on the z axis is required, then

the inverse of ζ should be used.

However, according to the definition of γ used so far, the function ζ is

not invertible. In fact, the apparent contour is split by the imaged axis

of symmetry into two halves, whose points correspond in pairs under the

harmonic homology. The two points of a pair carry the same reconstruction

information, since both of them are mapped by ζ onto the same z. Without

loss of generality we can restrict the domain of ζ to one of two halves of γ,

say γ′, so as to ensure that the function ζ−1 : [0, 1] → γ′ exists. This maps

any point z at which the value ρ(z) can be recovered with the method above

onto a single point x′γ′ of the apparent contour.

We adopt an algorithm for the evaluation of x′γ′ = ζ−1(z) at the generic

z similar to those described in [50]. The algorithm is reported in detail in

Tab.2.2.
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1.4.4 Texture acquisition

As shown in Fig. 2.3(a), the SOR texture is the rectangular image T (θ, z) =

I(x(θ, z)), where I is the image function and x(θ, z) is the image projection

of the 3D point P(θ, z) parametrized as in section 1.3.1.

Texture acquisition following the canonical parameterization θ, z can be

solved using the well known cartographic method of normal cylindrical pro-

jection [51]. However, if parallels and meridians of the imaged object are

sampled at regular (θ, z) in the euclidean space, a non-uniform sampling of

the texture is created. In order to avoid this, we follow the inverse method

(from a regular grid of (θ, z) on the texture plane to points on the image

plane) that assures that a uniformly sampled texture is created.

To obtain a metric texture, θ and z are therefore sampled at regular intervals.

The resulting texture image has M rows and N columns. The unknown

image point x(θ, z) is the intersection between the imaged meridian χ(θ)

corresponding to the SOR meridian at θ and the visible portion of the imaged

parallel C(z) corresponding to the SOR parallel at z. Therefore, the rows of

the texture image are composed of image pixels sampled from C(z) at regular

intervals of θ.

A method to sample the visible portion of an imaged parallel C(z) at

a given value of the Euclidean angle θ is described in Appendix A.3. The

method permits the Laguerre’s formula [12]

θ =
1

2i
log({vθ,vs, i, j}) (1.14)

to be inverted so as to compute the vanishing point vθ and to obtain, from

this, the sampled point x(θ, z)—see Fig. 2.3(b). This inversion is necessary

to obtain the inverse image trasformation which avoid holes or overlapping

while resampling the original image [52].
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The algorithm for the computation of a generic texture row {T (θ, z), θ =

θ1, . . . θN} is:

0. Choose a reference imaged parallel C.

1. Compute x′γ′ = ζ−1(z) as shown in section 1.4.3.

2. Use the planar homology W associated to x′γ′ (see section 1.4.3) to com-

pute the imaged parallel C′ = W−TCW−1.

3. Sample C′ at all values θ = θ1, . . . θN as described in Appendix A.3.

4. For each of the N points x′χ(θ) = x(θ, z) thus obtained, set T (θ, z) =

I(x′χ(θ)).

Texture acquisition is achieved by repeating the steps 1 through 4 for all the

M rows of the texture image, sampled at regular intervals of z.

It is worth noting that not all the texture image pixels can be computed by

the algorithm above. In particular, singular points on the apparent contour

γ′ due to self-occlusions give rise to row intervals [z−, z+] for which the inverse

function ζ−1(z) cannot be computed (see section 1.4.3). A similar situation

occurs for the range of θ values for which the surface is not visible. In this

case, for each imaged parallel C(z), the Laguerre’s formula—with the value

u∞ of section 1.4.3 used in Eq. 1.14 in the place of vθ—can be used to

determine the interval [θmin(z), θmax(z)] for which the parallel is visible.

The method for texture acquisition described above has some advantages

with respect to other solutions presented in the literature. It compute the

geometry to image registration avoiding the external calibration, thus re-

quiring only the knowledge of internal camera parameters. This mean that

no explicit external calibration and projection of 3D point are computed so
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keeping all the computations in image space. It computes a image to im-

age transformation which permits to use the standard parameterization of

the SOR to index in the transformed image texture the surface texture. To

transform and correctly resample the original image inverse texture mapping

is used; with this method it is possible to avoids “holes” in the resulting

transformed image [52]. To perform this, the inverse image transformation

is needed and as shown is computed by an analytical inversion of the angle

with the Laguerre formula and by a recursive subdivision scheme similar to

[50] for the z.

Moreover the surface texture in this new coordinate system is defined

invariantly once that two imaged cross-section are identified in more views

of the same SOR. This permits to obtain the full texture by simply register

the transformed overlapping texture with a simple translation motion model

(see chapter 2).

1.5 Experimental Results

1.5.1 Accuracy evaluation

Several experiments were performed in order to test the accuracy of the

approach. In particular we assessed the accuracy of the vanishing point

estimation, of camera self-calibration and the error in the reconstruction of

the SOR scaling function. Two view are chosen as the more representative

to evaluate our presented method. These two views are synthetically created

by initially positioning a SOR (with scaling function: ρ(z) = 1
10

(cos(π
2
(19

3
z +

1))+2) with z ∈ [0, 1]) such that the imaged axis of revolution coincides with

the y-axis passing by the principal point (this is a degenerate view). From

this position the camera it is panned respectively by 13.932◦ and 3.548◦. In
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this sense these two view can be termed respectively: non degeneracy view

and near degeneracy. Internal parameters of the camera are set as: f = 750,

uo = 400, vo = 300. The top and bottom cross sections of the 3D SOR were

projected onto the image so as to generate the two corresponding ellipses (this

can be done analitically). The ellipses were then resampled with a resolution

similar to the image size (800x600) and the resulting points were perturbed

with zero mean isotropic Gaussian noise with standard deviation between 0

and 1.5 pixel. These points were successively used to estimate the ellipses

with the algorithm described in [53]. Ellipse intersection problem used for the

computation of the fixed entities is solved analitically by means of Gröbner

basis [47] by finding the roots (numerically) of a quartic polynomial. The

system of eq.1.7 is solved using SVD. The influence of this noise was tested

by running a Monte Carlo simulation with 10000 trials using different seeds

to generate the noise.

In particular we study two scenarios in the two views already mentioned:

in the first the imaged elliptical cross-section are partially visible (i.e. only

the visible points are resampled from the imaged cross-sections) and in the

second the ellipses are fully visible (i.e. all the points from the imaged cross-

section are resampled). The former scenario reflects a SOR scene viewed

with the camera center in between the two 3d planes containing the cross-

section while the latter could reflects two non coplanar 3D points rotating

on a turntable. The SOR view with two partially visible cross-section can be

regarded as the worst case in terms of camera calibration, since both ellipses

are partially visible giving lower point measurements for the ellipse estimation

algorithm. A better viewing condition would be obtained by viewing one

of the ends of the object; in this condition an entire cross section gives a

far better estimated ellipse. We start by showing in fig. 1.7 the accuracy
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Figure 1.7: Vanishing point estimation accuracy. This figure shows the means
and the relative rms of the estimation error in the computation of the vanishing
point for different noise level in: (a) non degenerate view condition (ground truth:
v∞ = [3421.978 209.049 1]T), (b) degeneracy view condition (ground truth: v∞ =
[12493.024 206.432 1]T). The error bars shows the relative upper and lower values
of rms error. This gives the reliability of the estimation. The two curves on each
graph shows the effect of using only the visible points of the imaged cross-section
(light curve) or the fully cross-section (bold curve).

of vanishing point estimation—the most critical among the fixed entities

with respect to increased level of noise. In particular Fig. 1.7(a) shows the

analysis conducted on the imaged SOR of 1.8(b) and Fig. 1.7(b) shows the
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analysis conducted on the imaged SOR of 1.9(b). These are respectively

synthetic images of the non degeneracy view and near degeneracy view. The

two curves on each graph of fig.1.7 shows the means and the relative RMS

of the estimation error (Euclidean distance w.r.t. the ground truth vector

in near degenerate v∞ = [3421.978 209.049 1]T and non degenerate v∞ =

[12493.024 206.432 1]T) in the computation of the vanishing point by using

the visible cross-section point measurements (light curve) and by using all the

cross-section point measurements (bold curve). The vertical bars represent

the upper and lower values of the RMS error which gives the reliability of

the estimation. Albeit the graphs looks similar the error scale differ of one

order of magnitude. The error appear to be larger when using only the

visible cross-section point measurements. While the responses to increasing

noise are almost linear if all the points can be measured. The noticeable

bias is mainly due to the known bias present in using the algebraic distance

in estimating the ellipses which in turn affect the computed fixed entities.

Also the estimation of the absolute conic from the fixed entities is estimated

using the algebraic distance. This affect substantially the estimation of the

internal camera parameter as shown if comparing the two graphs of fig.1.8(a)

and of fig.1.9(a). In particular Fig.1.8(a) shows the means and the relative

RMS error in the computation of the focal length and principal point for

different noise level for the non degenerate view shown in Fig.1.8(b). The two

curves on each graph shows the computed estimation error using the visible

cross-section point measurements (light curve) and by using all the cross-

section point measurements (bold curve). Once more results are represented

as error bars showing the mean and the relative RMS error. The lower graphs

is the focal length mean error while the upper one is principal point mean

distance error. In Fig.1.8(b) it is further shown the view under testing with
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the three standard deviation ellipses of the principal point computed from

Monte Carlo simulation at increasing noise values by using only the visible

ellipse segment. The ground truth principal point position [400 300]T is

indicated as a cross. To appreciate better the uncertainty in the principal

point estimation of fig.1.8(b), a zoomed figure is shown in fig.1.10(a) and

fig.1.10(c) respectively using the visible cross-section and the entire one. Here

are reported the three standard deviation ellipses at increasing values of 0.2

for the noise level starting from σ = 0.1 and ending at σ = 1.5. It is

evident how using all the feature points of the imaged cross-section gives

a substantial accuracy in location of the principal point. This is useful for

example in calibrating turntable video sequences from two always visible

rotating points. The same analysis were conducted for the near degenerate

case and results are represented in fig.1.9. If compared with those shown in

fig.1.8 regarding the non degenerated view the error is more than doubled.

The effect of the increased estimation error is due to the fact that the pole

polar constraint becomes irrelevant since the vanishing point is approaching

the infinity in the image. This is also verified by the uncertainty analysis

shown in fig. 1.10(b) and (d). Fig. 1.10 gives a good description in what

happen to the principal point as the SOR position in the image gets closer

to the image center, the uncertainty ellipses become increasingly larger, and

with the major axis more and more parallel to the imaged symmetry axis.

This is motivated by the fact that, in pure degeneracy conditions, an infinite

uncertainty affects the principal point coordinate along the imaged symmetry

axis.

The average and standard deviation of the error in the reconstruction

of the scaling function can be defined respectively as
∫ 1

0
|ρe(x) − ρgt(x)|dx

and
√∫ 1

0
[ρe(x)− ρgt(x)]2 dx where ρe(x) and ρgt(x) are respectively the es-
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timated and the ground truth scaling functions.

In order to obtain a corrupted smooth curve and to keep tractable the

Montecarlo simulation the points of the generating contour were projected

in the image plane and a interpolating cubic spline curve passing to 50 equi-

spaced of these points is used as input to our reconstruction algorithm. These

points are perturbed with increasing isotropic gaussian noise with zero mean

and standard deviation σ measured in pixels. The mean and relative rms er-

ror as define before were obtained after running the experiment 10000 times

using different seeds to generate the noise. Fig. 1.11 shows the extent to

which the presence of noise affects the reconstruction error for the apparent

contour and the imaged cross-sections. We choose as test case the near de-

generate synthetic SOR views of fig.1.9(b). This can be regarded as a worst

case in terms of camera calibration furthermore from this position it can be

avoided (at least for non high values of error) the self-occlusion phenomenon

which by its nature gives non measurable reconstruction. In particular in

Fig. 1.11(a) the light curve shows the error for noisy apparent contour and

noisy ellipses (the latter are used to calibrate the camera), while the bold

curve show the error when only both cross-sections are noisy. It is evident

that the apparent contour is the major responsible for the reconstruction

error. Fig. 1.11(b) show the reconstruction error when the light curve of the

previous figure (here dashed) is compared with the curve of the reconstruc-

tion error with noise only on the apparent contour (continuous curve). It can

be observed that the noise on the apparent contour is a predominant source

of error for reconstruction. This can be explained by the fact that recon-

struction involves the computation of lines tangent to the apparent contour,

that are very sensitive to noise. The camera calibration errors are in practi-

cal absorbed in the overall error of the reconstruction. This reflect the good
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perceptual result obtained in the reconstruction examples giving a chance of

existence to the minimalist calibration such as that presented in this chapter.

To further investigate the error in the camera parameters obtained from

the imaged cross-section in Fig. 1.11(c) the light curve show the error with

visible ellipse segment while keeping a perfect apparent contour. The the

bold curve is the same of that in Fig. 1.11(a) here represented at different

scales to better appreciate the differences. The jitter-linear behavior is due to

the ellipse fitting algorithm which is quite sensible to error in measurement

especially if the are not uniform distributed over the curve. We conclude this

section showing Fig. 1.11(d) shows the comparison of the reconstruction error

when apparent contour and ellipses are corrupted with noise. I particular the

the light curve represent the error when only visible segment are used, while

the bold curve shows the error when full ellipses are used. The more jagged

behaviour of the curves is due mainly to the isotropic noise present at the

high curvature segment of ellipses which due the known bias present at those

points.

1.5.2 3D SOR reconstruction

Fig. 1.12 shows examples of 3D shape and structure reconstruction from a

single uncalibrated view of SOR objects. For each object the original image

and the 3D solid obtained after the application of the algorithm are shown.

All the images have been obtained with moderate perspective distortion.

The apparent contour and cross sections that are needed as an input of

the algorithm have been manually extracted following precisely the imaged

object boundary; the results shown can therefore be regarded as close to those

obtainable in the absence of noise. Fig. 1.12(a) and Fig. 1.12(c)(d) show the

reconstruction of a can and of two archaeological vase with differently shaped
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profiles. It can be observed that both in the case of curvilinear and linear

profiles the SOR structures are correctly reconstructed. Fig. 1.12(b) show

the reconstruction of a transparent glass in this case reconstruction with a

laser scanner would be difficult to obtain due to the physical properties of

the media. Instead, the apparent contour and cross-sections can be easily

extracted and measured. Fig. 1.12(e) shows the original (First row) and the

reconstructed 3D model (Second Row) of the first “wireframe” drawing in

history, made by the Renaissance florentine artist Paolo Uccello (1397–1475).

Also in this case the apparent contour and cross-sections were extracted

manually. The wireframe drawing has provided information also for parts of

the apparent contour that would have been occluded in a photograph. This

has permitted a more complete 3D reconstruction of the object model as

can be appreciated in the view of the 3D SOR in Fig. 1.12(e) (Second Row).

Fig. 1.14(a) present the case of reconstruction of a 3D SOR from a single

view with large perspective distortion. Looking at Fig. 1.14(a) (middle) it

can be noticed that the scaling function is recovered correctly also in this case

(the part of the scaling function that corresponds to the cylindrical body of

the bottle, is reconstructed as almost perpendicular to the reference plane).

Fig. 1.14(a) (Right) show the 3D rendered surface obtained from the scaling

function. Fig. 1.14(b) Left show an example of SOR scene in which severe self-

occlusion is present. Self-occlusion can be described in terms aspect graph;

this representation was extensively studied in [43] for the class of solids of

revolution under perspective view condition. In practical what it can be

stated in general is that the relation between the apparent and the scaling

function is not only geometric. Self-occlusion can produce visual-events i.e.

a particular alignment of features that changes the topology of the view. So

in general the apparent contour cannot be ’globally’ related to its scaling



Chapter 1. Single view Reconstruction 38

function. Fig. 1.14(b) Right show that a 3D metric reconstruction is hovewer

still possible (albeit partially) if a piece-wise apparent contour is specified.

For each apparent contour in the figure γ1, γ2, γ3, γ4 the corresponding piece-

wise scaling functions ρ1, ρ2, ρ3, ρ4 can be obtained and maintain the global

metric structure of the reconstructed SOR scene.

1.5.3 Texture acquisition

Acquisition of the flattened texture permits both the complete three-dimensional

reconstruction of the visible part of the SOR object as well as a separate

analysis of the true texture properties, regardless of the perspective distor-

tion. Texture flattening makes image details more evident than in the original

picture, and also gives the same importance to central and peripheral figures.

Fig. 1.15(a) shows the flattened texture from the image of the Greek vase of

fig.1.12(c). In this case the original texture is applied to a quasi-spherical

surface. While areas are locally preserved, in making the texture a flattened

surface, distortions are introduced in those parts of the object surface that

either are farthest from the cylindrical surface built around the SOR object

or have high curvature. Fig. 1.15(b) shows the case of texture of a cylindrical

surface (the can in Fig.1.12(a)). In this case the flattened texture preserves

the global geometry of the original surface. This allows to recover the ’AL’

mark in the texture, removing the deformation that is present in the original

photo. The texture portions closest to the apparent contour have not been

considered, in that their re-sampling is typically affected by aliasing due to

the strong foreshortening (see Fig. 1.15(c) for the vase of 1.12(d)).

Flattened textures can be easily superimposed on the reconstructed 3D

model, so as to obtain photorealistic three-dimensional reconstructions from

image data. Fig.1.16 shows the flattened texture of Fig. 1.15(b) and Fig. 1.15(c)
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superimposed to the reconstructed 3D can and vase model of Fig.1.12(a) and

Fig.1.12(d) respectively.

1.6 Summary

In this chapter we discussed a novel method to recover the original 3D struc-

ture of a generic SOR object and its (eventually) superimposed texture from

a single uncalibrated view. The solution proposed exploits geometric prop-

erties of perspective projection, namely the planar and harmonic homologies

and their relationships with internal camera parameters, and the basic prop-

erties of SOR objects. Camera calibration is directly obtained from the

analysis of imaged SOR features. It has proved to be sufficiently accurate,

although sensitive to noise. The 3D structure of the SOR object is derived

from the application of the homology constraints to image data - the SOR

apparent contour and the elliptic segments of two SOR cross sections - and

therefore from calculations in the 2D domain.

Since the homology constraints are of general applicability, the solution

can be applied under full perspective conditions to any type of surface of rev-

olution with at least two partly visible cross-sections. In that, the method

provides a significant advancement with respect to close research contribu-

tions that used homology constraints for 3D recongition/reconstruction, but

restricted to the affine projection case [32] or to full perspective of planar

surfaces [54] [20].

The method can be used reliably, in all those cases in which only a photo-

graph or a drawing of the SOR object is available and structured light acqui-

sition methods cannot be employed for the acquisition of the solid structure.

Particularly, in the case of cultural heritage objects that are no more available
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as original, or that cannot be moved from their site. It can also be applied

in those cases where the nature of the object material makes it impossible

or cumbersome acquisition with laser-based techniques. The possibility of

recovering the texture superimposed on the SOR as a flattened image allows

a complete reconstruction (albeit limited to the imaged part of the object)

of the SOR 3D structure and appearance. Descriptions of the 3D shape and

textural properties can be used in image database applications to retrieve

from large collections, objects that are similar to each other according to

their true structural and superficial aspect.

Extraction of the apparent contour and cross section segments, although

done manually in the experiments reported in the paper, can be also per-

formed automatically (see for example [55]), with relatively low complexity

and good reliability, provided that the object has a dominant size with re-

spect to other objects and non-symmetric textures, and that the background

is almost uniform . A research activity on this problem is presently ongo-

ing, aimed at the development of a fully-automated system that creates a

3D model of a SOR from a single uncalibrated view. Finally, as a natural

extension of the present work, a complete reconstruction of the 3D textured

SOR object can be easily obtained by mosaicing multiple views of the same

object, taken from the same camera under the same illumination conditions.
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Figure 1.8: The figure (a) shows the means and the relative RMS error in the
computation of the principal point (upper) and focal length (lower) for different
noise level of the synthetic non degenerate view shown in (b). The two curves on
each graph shows the effect of using only the visible points of the imaged cross-
section (light curve) or the fully cross-section (bold curve). In particular in (b) are
shown the three standard deviation ellipses of the principal point computed from
Monte Carlo simulation at increasing noise values. The ground truth [400 300]T

is plotted as a a cross.



Chapter 1. Single view Reconstruction 42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

noise standard deviation (pixel)

E
rr

or
 in

 p
rin

ci
pa

l p
oi

nt
 (

di
st

an
ce

 in
 p

ix
el

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

10

12

14

noise standard deviation (pixel)

E
rr

or
 in

 fo
ca

l l
en

gt
h 

(p
ix

el
)

(a)

(b)

Figure 1.9: The figure (a) shows the means and the relative RMS error in the
computation of the principal point (upper) and focal length (lower) for different
noise level of the synthetic near degeneracy view shown in (b). The two curves on
each graph shows the effect of using only the visible points of the imaged cross-
section (light curve) or the fully cross-section (bold curve). In particular in (b) are
shown the three standard deviation ellipses of the principal point computed from
Monte Carlo simulation at increasing noise values. The ground truth [400 300]T

is plotted as a a cross. If compared with 1.8 the error is more than doubled.
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Figure 1.10: The figures shows three standard deviation ellipses at increasing
values of increment 0.2 for the noise level starting from σ = 0.1 and ending at 1.5
for the estimation of the principal point. In particular in fig.(a) and fig.(b) are
shown the results respectively for the non degenerate and near degenerate views
using all point measurements. While in fig.(c) and fig.(d) are shown the results
respectively for the non degenerate and near degenerate views using instead only
the visible point measurements.
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Figure 1.11: Residual reconstruction error. (a): The light curve shows the mean
and the RMS for noisy apparent contour and noisy ellipses (the latter are used to
calibrate the camera), the bold curve show the error when only both cross-sections
are noisy. (b): comparison between the reconstruction with noisy ellipses (dashed
curve) and with noise only in the apparent contour (continuous curve). (c): The
same bold curve in (a) is shown here with the reconstruction error when noisy
visible segment of ellipses are tested (light curve). (d): comparison between noisy
visible ellipses and noisy apparent contour (light curve) and noisy ellipses and
apparent contour (bold curve).
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(a) (b) (c) (d)

Figure 1.12: Typical SOR objects and their reconstructed models. (Top) Single un-
calibrated views of three SORs. Bottom: Corresponding 3D models reconstructed.
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Figure 1.13: Left:Paolo Uccello’s wireframe drawing of a chalice. Middle and Right:
two views of the reconstructed model with evidence of self-occluded parts.
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Figure 1.14: (a) Left: A SOR view taken under strong perspective conditions
with indications of the two cross section C1 and C2, the apparent contour γ and
the projection of the SOR meridian χ. (a) Middle: The SOR scaling function
rectified. (a) Right: The 3D reconstructed model. (b) Left: A SOR view with
severe self-occlusion with specified piece-wise unoccluded apparent contour. (b)
Right: The partial reconstructed metric scaling function.

.
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(a)

(b) (c)

Figure 1.15: (a): Flattened texture from the image of the archaeological vase from
Fig.1.12(c). Surface region with the largest distortion are indicated with circles.
(a) The flattened textures for the can and the Chinese vase of Fig.1.12(a) and
Fig.1.12(d) respectively.
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Figure 1.16: The textured 3D reconstruction for the can and the Chinese vase of
Fig.1.12(a) and Fig.1.12(d) respectively.



Chapter 2

Mosaicing

We present a novel approach to obtain a mosaic image for the surface texture

content of a surface of revolution (SOR) from a collection of uncalibrated

views. The SOR scene constraint is used to calibrate each view and align the

corresponding pictorial content into a global representation. Metric surface

properties are extracted from each view by exploiting special properties of the

imaged SOR geometry expressed in terms of homologies. Image alignment

is achieved by projecting imaged surface elements onto a reference plane,

and then registering them according to a translational motion model. This

work extends previous research on calibrated scenes of right circular cylinders

to the more general case of uncalibrated SOR scenes. Experimental results

with images taken from the web demonstrate the effectiveness and the general

applicability of the approach.

2.1 Introduction and Related Work

Image mosaicing consists in merging collections of images having a partially

overlapping content. The process can be decomposed into three main steps.

First, the transformations relating each image coordinate system with a ref-
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erence one are computed; the images are then warped according to the asso-

ciated transformations, and finally aligned to each other to compose a single

mosaic image.

Several approaches were proposed in the literature, mainly differing in

the alignment methods adopted and in the class of warping transformations

considered [56], [57]. The most common warping transformations fall into

the class of projective and affine planar parametric models, related to special

camera motions (e.g., rotations only) and/or scene geometry (e.g., planar

scenes) [58], [11]. A typical example is that of panoramic mosaics, which are

obtained either with a pan-only or with a pan/tilt camera, and are further

warped onto a cylindrical or a spherical manifold, respectively, to obtain a

360◦ panorama [59], [60], [61]. A general technique for projecting an image

mosaic onto a curved manifold according to camera motion is developed in

[62].

If camera motion is unconstrained but the scene is planar, standard para-

metric models (i.e., planar homographies) can still be used for mosaicing

purposes. This is not the case for general curved scenes, that require im-

age transformation models which are more complex than homographies and

are typically—even if not always [63]—non parametric. Due to its intrin-

sic difficulties, the problem of curved scene mosaicing under general motion

has been largely neglected by the research community. As an exception, a

method for mosaicing the pictorial content painted on right circular cylinders

was presented in [37]. That method requires that internal camera parame-

ters are known in advance. The external orientation parameters and the

imaged symmetry axis are obtained from two imaged circular cross sections.

As the method does not fully exploit prior knowledge about scene geometry,

pictorial surface elements cannot be metrically sampled in the warping step,
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Figure 2.1: Mosaicing from two SOR images.

and geometric distortions are introduced. This may affect significantly the

subsequent alignment step and the visual quality of the obtained mosaic.

In this chapter, a novel approach is presented for the creation of mosaics

from collections of uncalibrated perspective views of a Surface of Revolu-

tion (SOR). A projective model of SOR scene geometry based on homologies

is used both to calibrate each single view and to align metrically the corre-

sponding surface pictorial content from each view according to a translational

motion model. The original contribution of this work is two-fold. First, the

approach extends previous literature on curved surfaces to the broad class of

SOR objects. Second, calibration information need not be known in advance,

but can be obtained directly from SOR scene geometry. Experimental re-

sults with images taken from the web demonstrate the effectiveness and the

general applicability of the approach. In particular, the visual quality of the

results is comparable with the one obtained with expensive 3D laser scanning

technologies (see e.g. [64]) typically used for cultural heritage applications.
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2.2 The Approach

Fig. 2.1 shows an example of mosaic creation from two SOR views. The

imaged SOR surface regions visible from each view (Fig. 2.1, left) are first

individually mapped onto a reference plane (Fig. 2.1, middle), whereon they

can be aligned together and merged into a single mosaic image (Fig. 2.1,

right).

The mosaicing approach consists of three main steps. In the first step, the

imaged SOR geometry of each view is estimated from the visible segments

of two imaged cross sections, and used to compute the internal camera pa-

rameters. The imaged SOR geometry is then exploited together with the

calibration information and the imaged SOR silhouette to obtain, for each

view, a SOR parameterization common to all the views up to a translation

(second step). This removes the projective distortion due to the image for-

mation process, and allows the imaged SOR regions visible from each view to

be warped onto a common reference plane. In the final step (alignment and

compositing), the unknown translation for each warped image is estimated

by region-based image registration, and used to create the mosaic image. In

the following sections, each of the steps above will be described in detail.

2.2.1 Imaged SOR Geometry and Camera Calibration

A SOR can be parameterized as P(θ, z) = (ρ(z) cos(θ), ρ(z) sin(θ), z) , where

θ ∈ [0, 2π] and z ∈ [0, 1]. The scaling function ρ(z) controls the 3D shape

of the SOR. (In the special case of constant ρ(z), the SOR reduces to the

right circular cylinder addressed in [37].) The perspective projection of a

SOR gives rise to two different kinds of image curves, namely the apparent

contour and the imaged cross sections. The former is the image of the points
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at which the surface is smooth and the projection rays are tangent to the

surface; the shape of this curve is view dependent. On the other hand,

imaged cross sections are view independent elliptical curves, that correspond

to parallel coaxial circles in 3D and arise from surface normal discontinuities

or surface texture content. Both the apparent contour and the imaged cross

sections of a SOR are transformed onto themselves by a 4-dof harmonic

homology H = I− 2v∞ lTs
vT∞ ls

, where ls and v∞ are respectively the imaged axis

of revolution and the vanishing point of the normal direction of the plane

passing through ls and the camera center [17]. These geometric entities are

strictly related to the calibration matrix K, which embeds information about

the internal camera parameters. In particular it holds ls = ωv∞, where

ω = K−TK−1 is the image of the absolute conic [11]. Moreover, since cross

sections are parallel circles in 3D, they intersect at the circular points of the

families of planes orthogonal to the SOR symmetry axis. Their projection

in the image, i and j, are also related to the image of the absolute conic as

iT ω i = 0 and jT ω j = 0. The resulting system of eq.1.7 here reported for

convenience 



iT ω i = 0

jT ω j = 0

ls = ωv∞

(2.1)

provides four linear constraints on ω, whose coefficients can be computed

from two imaged ellipses as shown in [4] [65]. A symbolic representation of

the geometrical relationships involved in Eq. 1.7 is shown in Fig. 1.4. It can be

demonstrated that only three out of the four constraints above are actually

independent. Therefore, the system of Eq. 1.7 can be used to calibrate a

natural camera (zero skew and known aspect ratio: 3 dofs) from a single

image.
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Figure 2.2: The geometry of imaged SOR parametrization.

2.2.2 Imaged SOR Parameterization

The image of any SOR point can be backprojected uniquely onto the coaxial

right cylinder (cos(θ), sin(θ), z); this, in turn, can be unrolled onto the plane

(θ, z) used as reference plane for mosaicing. The imaged SOR parametriza-

tion just described is nothing but the (unknown) warping transformation

connecting the image and the mosaicing planes. This section shows how to

evaluate the imaged SOR parametrization from the imaged SOR geometry

introduced in the previous section and the apparent contour.

The three properties 1.4.1 1.4.2 1.4.3 hold; with reference to Fig.2.2, the

cross section C′ is tangent to the apparent contour γ and the point x′γ is

the contact point of property 1.4.1. The line l′ tangent at x′γ meets l∞ at

u∞. The line l passing by u∞ and tangent to C gives the point x. The

points x and x′γ correspond under the homology W of property 1.4.3, while

l′ and l are the tangent lines of property 1.4.2. The properties above are
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Objective:

• Given C, l∞, ls, v∞ and x′γ ∈ γ. Compute the imaged cross

section C′ tangent at x′γ .

Algorithm:

1. Compute the tangent line l′ at x′γ ∈ γ.

2. u∞ = l′ × l∞

3. Compute x ∈ C at which the tangent line l is incident with u∞

4. vW = (x× x′γ)× ls

5. w∞ = (x× x′γ)× l∞

6. µW = {vW,w∞,x,x′γ}
7. W = I + (µW − 1)vW lT∞

vW l∞

8. C′ = W−TCW−1.

Table 2.1: Computation of the imaged cross section C′ tangent to an assigned point
x′γ on the apparent contour γ. (see Fig.2.2)

used in the algorithms shown in Tables 2.1, 2.2(a), 2.2(b) and 2.3 to solve

the imaged SOR parametrization problem. The algorithms in Tab. 2.3 is the

top-most algorithm performing image transformation by using the algorithms

in Tabs. 2.1, 2.2(a) , 2.2(b). The algorithm in Tab. 2.1 computes the imaged

cross section C′ tangent at γ at its generic point x′γ ∈ γ by transforming

a visible cross section C. The inputs l∞, ls, v∞ are computed from two

visible cross section as described in [4]. This algorithm allows one to “move”

projectively along imaged cross sections. In particular Tab. 2.2(a) and 2.2(b)

show how to index a generic imaged surface element with a unique value of

θ and z respectively.

Solving for the Euclidean θ. The angle between two lines in a world

plane π can be computed in the image in terms of the vanishing points of

the lines and the imaged circular points of the plane as shown in Fig. 2.3(a).
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In the figure, the Euclidean (world angle) θ between the two imaged lines lθ

and ls can be calculated by the Laguerre’s formula [12]

θ =
1

2i
log({vθ,vs, i, j}) , (2.2)

where {} denotes the usual cross ratio of four points [45]. In order to obtain

an imaged point at a given θ in a generic imaged cross section C, the Eq. A.10

is inverted. By expressing the generic point on the vanishing line l∞ of π as

v(λ) = i + λ(i− j), Eq. A.10 can be rewritten as

ei2θ = {λθ, λs, λi, λj} , (2.3)

where λθ, λs, λi = 0 and λj = −1 are the values of the complex parameter λ

respectively for the points vθ, vs, i and j. Given the imaged axis of revolution

ls = (l1, l2, l3) and the imaged circular points i = conj(j) = (a + ib, c + id, 1),

by solving for λs the equation lTs v(λs) = 0 we get λs = −1
2

[1 + i tan φs],

where

φs = arctan

(
− l1a + l2c + l3

l1b + l2d

)
. (2.4)

By replacing the above value of λs into Eq. A.12, the value of λθ can be

computed as

λθ = −1

2
[1 + i tan(φs + θ)] , (2.5)

which yields the vanishing point as vθ = i + λθ(i − j). The image line

lθ = vθ × o—where o = C−1(z)l∞ is the image of the cross section center—

intercepts the imaged parallel C at two points, of which the required point

x(θ, z) on the visible imaged meridian χ(θ) is the farthest one from vθ along

the line lθ. Tab. 2.2(a) summarizes the described algorithm.

Solving for the metric z. For any given θ, the algorithms of Tab. 2.1

and Tab. 2.2(a) can be used to obtain the whole imaged meridian χ(θ).

The z value associated to each of the points of this imaged meridian can be
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Figure 2.3: (a) Sampling an imaged cross section C(z) at a given Euclidean angle
θ. (b) The texture transformation.
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obtained by rectification of the plane πχ through the meridian. The rectifying

homography [7] can be computed from the image of the absolute conic ω and

the vanishing line m∞ of the plane πχ as 1.12, here reported for convenience:

Mr =




β−1 −α β−1 0

0 1 0

m1 m2 1


 ,

where m∞ = (m1,m2, 1) and iχ = conj(jχ) is expressed as M−1
r (1, i, 0) =

(α− iβ, 1,−m2−m1α+ im1β). The vanishing line m∞ is obtained as m∞ =

x∞×v⊥ (see Fig. 2.2), where x∞ and v⊥ are respectively the vanishing point

of the θ-direction of all lines in πχ that are orthogonal to the symmetry axis,

and the vanishing point of the direction of the symmetry axis. The imaged

circular points are computed as the intersection of m∞ with ω. As the SOR

symmetry axis lies by construction on πχ, once the rectifying homography Mr

for this plane is known, we are able to rectify both the imaged meridian χ

and the imaged axis of symmetry ls, thus obtaining the required value of z.

The correspondence between a point of the apparent contour x′γ ∈ γ

at which the imaged cross section is tangent-contact and the (normalized)

metric z where the 3D cross-section resides can be expressed in terms of a

function ζ : γ → [0, 1] such that

z = ζ(x′γ) .

An algorithm for the computation of x′γ = ζ−1(z) at the generic z by suc-

cessive approximations is outlined in Tab. 2.2(b). This algorithm is essential

for image warping by inverse texture sampling. The unknown x′γ is denoted

as γ(t), where t ∈ [0, 1] is any curve parameter on γ such that ζ(γ(0)) = 0.

Hence, the problem can be reformulated as to find the value of t which satis-

fies ζ(γ(t)) = z. The algorithm exploits the fact that the function (ζ ◦ γ)(t)

is monotonic.
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(a)

Objective: Given an angle θ in the world

space, the fixed entities l∞, ls, v∞ i, j and

the conic C. Compute the imaged point x ∈
C subtending an angle θ with respect to the

plane through the camera center and the 3D

axis of revolution.

Algorithm:

1. Compute λθ as in Eq. 2.5

2. vθ = i + λθ(i− j).

3. vs = ls × l∞

4. lθ = vθ × (C−1l∞)

6. Intersect C with lθ an choose from the

two solution the farthest from vθ.

(b)

Objective: Given z compute its

corresponding point x′γ ∈ γ at

which the cross section at z is tan-

gent contact to x′γ

Algorithm:

0. Set t− = 0 and t+ = 1.

1. Choose t as the midpoint of

[t−, t+] and set x′γ = γ(t).

2. Compute ẑ = ζ(x′γ).

3. If |z − ẑ| < ∆z stop.

4. If z > ẑ set t− = t; else set

t+ = t; go to 1.

Table 2.2: (a) Imaged cross section sampling at a given θ. (b) Iterative evaluation
of the point on the apparent contour γ that lies at a given z.
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Objective:

• Compute the flattened imaged SOR region T

Algorithm:

1. Choose a reference imaged parallel C.

2. Compute x′γ = ζ−1(z) and the relative imaged cross section C(z)′ with the

algorithm of Tab. 2.2(b).

3. Sample C(z)′ at θ = θ1, . . . θN with the algorithm of Tab. 2.2(a).

4. For each of the N points x′χ(θ) = x(θ, z) thus obtained, set T (θ, z) = I(x′χ(θ)).

5. Texture acquisition is achieved by repeating the steps 1 through 4 for all the

rows of the texture image T , sampled at regular intervals of z.

Table 2.3: Texture transformation algorithm.

We are now finally in the position to perform image warping according to

the algorithm of Tab. 2.3. The algorithm performs flattened texture acqui-

sition by resampling the original image starting from an orthogonal grid of

θ and z values in the reference plane. The image to reference plane transfor-

mation maps imaged SOR meridians and parallels onto mutually orthogonal

straight lines (see also Fig. 2.3(b)). It is worth noticing that, to guarantee

that texture details have the same size in all the warped images, a unique

scaling factor for z must be specified for all the views. In order to achieve

this, the portions of apparent contour used to warp each image must be cho-

sen so that they are delimited by two imaged cross sections corresponding to

the same 3D SOR parallels in all views. If the SOR has a top and a bottom,

these two extremities can be conveniently selected to delimit the apparent

contour in each view.
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2.2.3 Texture Alignment

Thanks to the characteristics of the image warping algorithm just described,

the subsequent image alignment phase is greatly simplified, and reduced to

the problem of estimating rigid translations in the reference plane. The

alignment procedure is very similar to that used for cylindrical panoramic

mosaics [61]. Both a horizontal translation δθ and a vertical translation δz

are estimated for each input image. Translations along z must be taken into

account to compensate for misalignments due to slight uncertainties in the

scaling factor.

Direct registration is employed to align at subpixel accuracy the warped

images and recover the translation δ = (δθ, δz). The intensity error E(δ) =
∑

xi
[I1(xi + δ)− I2(xi)]

2 between the two images I1 and I2 is minimized

using the iterative method described in [66]. The algorithm starts from an

initial guess lying close to the minimum.

2.3 Experimental Results

Fig. 2.4(a) shows an uncalibrated view of a vase taken from the web. In

the figure, two ellipses were manually fitted by following two boundaries cor-

responding to imaged cross sections. The apparent contour was manually

drawn and modeled by an interpolating cubic spline curve. The same fig-

ure shows six imaged meridians computed with the described algorithm at

increasing angles of 10◦ measured from the imaged axis of revolution. The

imaged meridians shown are part of the resampling grid. The imaged axis of

revolution is also the image of a meridian, and specifically the one contained

in the plane through the camera center and the 3D axis of revolution. It

is worth noticing how the meridian gives the perception of the depth while
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(a) (b)

(c)

Figure 2.4: (a) shows the computed imaged meridians at θ=10◦, 20◦, 30◦, 40◦, 50◦,
60◦ measured from the imaged axis of revolution. (b) shows the flattened texture
obtained with the described algorithms. Here imaged cross sections and meridians
are warped as mutually orthogonal straight lines. (c) Four complementary views
of a japanese vase and the warped flattened textures obtained.
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approaching the apparent contour. The regular sampling of the spline para-

meter clearly does not induce a regular sampling for the imaged meridians.

The flattened texture of Fig.2.4(b) is obtained by resampling the curves

of the imaged SOR parameterization and warping them onto mutually or-

thogonal straight lines in the reference texture image (row and column). The

largest amount of warping is required by the imaged surface regions close to

the apparent contour and by high curvature surface parts. Fig. 2.4(c) shows

four views of the vase of Fig. 2.4(a) having a common overlapping imaged

surface pictorial content. Fig. 2.4(c) shows also the warped imaged surface

in overlapping order. The resolution of the original images is 400 × 600. We

chose a similar resolution for the warped texture images. Fig. 2.5(a) shows

the manual initialization of the alignment step with three of the four warped

images of Fig. 2.4. Notice how length ratios are maintained in all images,

while the lighting is remarkably different from image to image. Fig. 2.5(b)

shows the mosaic image resulting after image alignment and compositing.

The mosaic represents a full 360◦ “vase panorama” obtained using five warped

images, of which the leftmost image of Fig. 2.4(c) was used twice in order to

close the visual texture loop. The effect of image compositing is to reduce

the lighting gradient inside the mosaic. The registration fails when the SOR

deviates from its ideal geometry. Fig. 2.6(a) shows a vase cover in which the

axis of revolution is not straight. Since the top cross section is not perfectly

coplanar with the bottom one, the generated imaged parameterization is not

perfectly registered. The subsequent image alignment cannot be performed

under this condition, since the common overlapping regions are different.

The transformations relating the different coordinate system of each im-

aged SOR region depends on camera calibration. Bad estimates of internal

camera parameters can prevent the alignment with the translational motion
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(a)

(b)

Figure 2.5: (a) Initial guess for the direct registration. (b) The complete mosaic
obtained by image registration and compositing.
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∞l

(a)

Figure 2.6: (a): A vase cover slightly deviating from an ideal SOR. The top cross
section is not coplanar with respect to the bottom one. As indicated by the arrow
the superimposed parameterization is not perfectly registered.

model. One of the main limitations of this approach is that the quality of the

boundary fitting of the ellipses (imaged visible cross sections) strongly affects

the accuracy of calibration results. Fig. 1.8, 1.9 and 1.10 shows the mean and

the relative RMS errors in the computation of the principal point (upper)

and focal length (lower) for different noise levels corrupting the imaged cross

sections of a synthetic SOR view.

2.4 Summary

In this chapter we have discussed a novel method for mosaicing several un-

calibrated views of a SOR. The proposed solution exploits the projective

properties of SORs class and their relationships with camera geometry. The

method uses as inputs two at least partially visible imaged cross sections and
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the apparent contour (see [67] for an automatic method to extract simulta-

neously such curves and the imaged geometry).

The method gives good results especially with smooth SORs, and can be

used reliably in all those cases in which uncalibrated photographs are avail-

able and structured light or other hardware solutions cannot be employed.

In particular, the method can be applied for cultural heritage or archaeo-

logical objects that are either no more available as original, or cannot be

moved from their site. It can also be applied in those cases where the nature

of the object material makes it impossible or expensive the acquisition with

laser-based techniques [64]. The flattened (rolled-out) representation can be

regarded as a virtual painting drawn by the artist onto a curved support.

Rolling out this kind of images facilitates the study and comparison of sim-

ilar images. Specifically, existing image retrieval techniques can be applied

for indexing databases of 3D objects by their pictorial surface content.

The main limitations of the method are related to self-occlusions and non

smooth SORs, as only the texture portions corresponding to a differentialble

apparent contour can be warped. Currently, images are warped separately,

and then registered together: this means that calibration errors in one view

can affect the final mosaic quality. To reduce the effect of calibration errors,

future research will address performing the warping and alignment steps si-

multaneously. Further improvements will be the use of multiview calibration

and the detection and removal of specular highlights.
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Automatic Reconstruction

In this chapter, we address the problem of the automatic metric reconstruc-

tion Surface of Revolution (SOR) from a single uncalibrated view. The ap-

parent contour and the visible portions of the imaged SOR cross sections

are extracted and classified. The harmonic homology that models the image

projection of the SOR is also estimated. The special care devoted to accu-

racy and robustness with respect to outliers makes the approach suitable for

automatic camera calibration and metric reconstruction from single uncali-

brated views of a SOR. Robustness and accuracy are obtained by embedding

a graph-based grouping strategy (Euclidean Minimum Spanning Tree) into an

Iterative Closest Point framework for projective curve alignment at multiple

scales. Classification of SOR curves is achieved through a 2-dof voting scheme

based on a pencil of conics novel parametrization. The main contribution of

this work is to extend the domain of automatic single view reconstruction

from piecewise planar scenes to scenes including curved surfaces, thus al-

lowing to create automatically realistic image models of man-made objects.

Experimental results with real images taken from the internet are reported,
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and the effectiveness and limitations of the approach are discussed1.

3.1 Introduction and Related Work

The confluence of projective geometry and computer vision has produced

recently impressive results in image based modeling. In particular, self-

calibration methods have been developed to support metric 3D reconstruc-

tion even from single uncalibrated views. However, single view reconstruction

is typically performed in a semi-automatic way, due to the difficulties arising

in automatic image segmentation [20] [68] [7]. Automatic segmentation for

reconstruction is even more challenging than for recognition, since accurate

estimates of geometric features and their relationships are needed in order to

get reasonable calibration results. The use of geometric models of the scene

can ease the automatic segmentation task, by reducing the hypothesis search

space during the process. In [69] [70] [71] [72], a piecewise planar scene model

was used to support segmentation for reconstruction.

Models of non planar surfaces such as the Straight Homogeneous Gen-

eralized Cylinder (SHGC) were extensively used in the past for the specific

problem of segmentation for recognition under affine view conditions (for a

review, see [32]). Recent work on this problem is described in [41], where

a bottom-up strategy is used to recognize SHGC models from B-spline in-

terpolated image curves. Similar time consuming bottom-up strategies are

also exploited in other approaches performing curve segmentation without a

specific 3D model [73] [74] [53].

The most recent research in the domain of single view camera calibration

and reconstruction has focused on Surfaces Of Revolution (SOR’s), which are

1For this chapter i would like to acknowledge in particular Dario Comanducci.
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a subclass of SHGC’s. In [6] it is shown that a single SOR view can provide

two constraints to partially calibrate a pinhole camera. Semi-automatic ap-

proaches extending single view planar scene reconstruction to the SOR case

were presented in [9] and [4]. In particular, the latter approach also shows

how to perform texture acquisition from a single SOR view.

In this chapter, a method for the automatic segmentation of SOR models

from a single uncalibrated perspective view is presented. The method is

aimed at supporting single view reconstruction, and make it fully automatic.

A top-down segmentation strategy is devised, in which a global projective

model and the image curves consistent with it are estimated at multiple

scales. The estimation interleaves robust curve alignment and graph-based

curve grouping. The segmented image curves are then classified into apparent

contour and imaged SOR cross sections by means of a voting scheme based

on the projective properties of imaged SOR’s. The chapter is organized as

follows. In the following section, the segmentation problem is stated, and

an outline of its solution is provided. In Sect. 3.3, model estimation and

curve grouping is described. Curve classification is addressed in Sect. 3.4. In

Sect. 3.5 experimental results are discussed; finally, conclusions and directions

for further research are presented in Sect. 3.6.

3.2 Problem Statement and Overview of the

Approach

The perspective projection of a SOR like the bell of Fig. 3.1(a) gives rise

to two different kinds of image curves, namely the apparent contour and the

imaged cross sections. The apparent contour is the image of the points at

which the surface is smooth and the projection rays are tangent to the surface.
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(a)

(b)

Figure 3.1: (a): original SOR image. (b): the edge image of (a), several cross-
section fragments are visible (indicated with arrows); yet, these measurements are
practically useless for classic ellipse detection and estimation algorithms.
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The shape of this curve is view dependent. On the other hand, imaged cross

sections are view independent elliptical curves, which correspond to parallel

coaxial circles in 3D and arise from surface normal discontinuities or surface

texture content. Both the apparent contour and the imaged cross sections of

a SOR are transformed onto themselves by a 4-dof harmonic homology 2.2.1:

H = I− 2
v∞ lTs
vT∞ ls

,

where v∞ and ls are respectively the vanishing point and the imaged axis

of revolution of the normal direction of the plane passing through ls and the

camera center [17].

The problem addressed here is how to estimate automatically from a SOR

image the harmonic homology of Eq. 2.2.1 together with the apparent con-

tour and the visible imaged cross sections consistent with it. This geometric

information is useful to perform both camera calibration and metric recon-

struction of a SOR object based on a single uncalibrated view. This problem

could hardly be solved without embedding the full geometric knowledge of

the scene into the estimation process. For instance, as shown in Fig. 3.1(b),

the visible segments of the imaged cross sections typically correspond to al-

most straight edgel chains, thus making their extraction highly inaccurate

or even impossible with standard ellipse detectors. The approach followed

in this work, sketched hereafter, attempts to exploit as much as possible

the prior knowledge of the scene in order to tightly constrain the estimation

process.

The overall approach can be divided into two phases: (1) estimation of

the harmonic homology of Eq. 2.2.1 and of all image curves consistent with

it (see Sect. 3.3); (2) classification of the image curves (see Sect. 3.4). The

first phase uses an Iterative Closest Point (ICP) strategy [75][76] to align
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sets of edgels related by the harmonic homology as the result of a nonlinear

optimation problem. (Edgels are obtained by Canny edge detection.) The

main advantage of using ICP is that it allows to represent curves globally

as noisy point sets, thus avoiding any intermediate representation by local

descriptors, which are typically cumbersome to extract and unreliable. In

order to cope with a large fraction of outliers – i.e., edgels not belonging to the

SOR –, the approach makes an extensive use of robust regression methods,

such as the Least Median of Squares (LMedS) [77]. Outlier rejection also

benefits from the use of a general curve grouping scheme based on continuity

properties. Moreover, in order to avoid to get stuck in local minima during

the nonlinear minimization, ICP is run at multiple scales and applied to

subsequent levels of a Gaussian pyramid. ICP algorithms generally need an

initial alignment in order to converge. At the beginning of the first phase,

the RANdom SAmple Consensus (RANSAC) algorithm is run at the coarsest

pyramid level so as to provide ICP with a reliable first guess solution. The

second phase is devoted to classifying the image curves obtained in the first

phase respectively into (a) apparent contour, (b) imaged cross sections and

(c) clutter. To this end, ellipses are searched for over the image as particular

instances of a conic pencils spanning the apparent contour.

3.3 Homology Estimation and Curve Group-

ing

3.3.1 RANSAC-based initialization.

To compute a weak estimate of the harmonic homology and use it as a first

guess for the whole estimation process, bitangents to imaged SOR curves
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could be used as shown in [46] [6]. However, bitangent estimation generally

requires that the Canny edgels be interpolated by polynomials. To avoid this

heavy computational step, an alternative way is to estimate the homology

directly from the edgels. This is achieved by running RANSAC at the coars-

est level of the pyramid. RANSAC is a random sampling procedure which

is known to be slow in the presence of a large number of outliers and/or

model parameters. In fact, the number N of RANSAC trials which guar-

antees the statistical convergence depends on the percentage of outlier to

tolerate: N = log(1−p)
log(1−(1−ε)s)

, where ε is the fraction of outliers present in the

data and s is the number of points of the sample set (p is a probability value

generally set to 0.99). If the sample set and the outlier percentage are low,

a fast convergence is obtained. This is what happens at the coarsest level of

the pyramid, since (i) due to low pass filtering, the number of edgels – and

therefore, of possible outliers – is small; (ii) the harmonic homology reduces

to Euclidean axial symmetry, which can be described by the 2-dof axis ls

only – the vanishing point v∞ being the point at infinity in the direction

orthogonal to the axis. Fig. 3.2(a) shows the estimated axial symmetry for

the bell of Fig. 3.1.

3.3.2 Robust homology estimation.

At each level of the pyramid, the harmonic homology is estimated starting

from the results obtained at the immediately coarser level by directly mini-

mizing the registration error

F(ls,v∞) =
∑

i

‖x′i − H(ls,v∞)xi‖2 +
∑

i

‖xi − H−1(ls,v∞)x′i‖2

using nonlinear optimization. In Eq. 3.1, xi and x′i are edgel points corre-

sponding under H. In particular, since H−1 = H, F is a symmetric transfer
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error – a distance measure with a remarkable geometric meaning. To reject

outliers and also to improve convergence, the LMedS is used. Its effect is to

reduce, by selecting them, the points involved in Eq. 3.1. Once the histogram

of symmetric transfer distances is computed, only the points inside six times

the standard deviation from the mode are retained.

Figs. 3.2(b) and 3.2(c) show the estimation results obtained at the first

and second pyramid levels, respectively. In particular, the result of Fig. 3.2(b)

is an improvement of the RANSAC result shown in Fig. 3.2(a), and represents

the initial guess for the result of Fig. 3.2(c). Note that although new edgels

arise at each finer resolution level, the homology estimate (whose axis is

shown in the figures) remains locked to the dominant SOR.

3.3.3 Curve Grouping.

Despite the fact that the multiresolution approach together with LMedS

heavily contributes to regularize the error surface, the non linear minimiza-

tion strategy above can get stuck in local minima in the presence of a huge

number of outliers. This is typically the case when the background clutter

and/or the SOR texture accidentally exhibit symmetric patterns which act

as distractors. In order to cope with this situation, further prior knowledge

about the geometric characteristics of imaged SOR curves is exploited. In-

deed, only those image curves which (1) are long and dense, and (2) have

tangents which also correspond under the homology should contribute to the

minimization. To check the above criteria, curves have to be constructed

from edgels. An efficient way to do this is to compute the Euclidean Min-

imum Spanning Tree (EMST) for the whole set of edgels. This is obtained

by running the Kruskal algorithm on the Delaunay triangulation graph com-

puted over the whole edgel set [78]. The assumption that the edgels lie on
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(a) (b)

(c)

Figure 3.2: ICP homology RANSAC initialization (a) and estimation at the end
of the 1st (b) and 2nd (c) levels of the pyramid. Each level uses as initial guess
the results of the previous one.
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regular curves allows for the removal of inconsistent arcs from the EMST,

whose remaining connected components are the required image curves. Arc

removal is achieved by performing simple topological testing. Indeed, since

each curve is regular, multiple branching from an edgel is not allowed. There-

fore, all arcs but two at any branching point of the EMST must be removed.

In particular, to meet the denseness requirement, the longest arcs are re-

moved. The gradient direction information associated to each edgel is also

exploited to check the local tangency requirement. In particular, given the

point transformation H, tangent lines must correspond under H−T. Edgels

whose tangent lines do not correspond are not put into correspondence in

the ICP procedure.

Fig. 3.3(a) shows the EMST for the last level of the pyramid (bell image).

Fig. 3.3(b) shows the result of arc removal at branching points. Fig. 3.4(a)

shows the remaining connected components, i.e. the resulting image curves.

The figures show the results for one of the two half planes generated by ls.

Indeed, due to symmetry under the homology, the edgel set belonging to any

half plane is sufficient for curve grouping purposes.

After arc removal, the obtained image curves Ck, k = 1, . . . K are scored

by means of the following saliency measure:

S(Ck) =
M

1
M−1

∑M−1
j=1 d(xi,xi+1)

, (3.1)

where M is the number of edgels of the curve and d(xi,xi+1) is the Euclidean

distance between subsequent edgels. This measure assigns high scores to

dense, long curves and low scores to short, fragmented ones. This allows

for using LMedS again to keep only the curves which lie outside the mode.

Fig. 3.4(b) shows the curves of Fig. 3.4(a) after saliency thresholding.



Chapter 3. Automatic Reconstruction 78

0 100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

550

(a)

0 100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

550

(b)

0 100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

550
(c)

0 100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

550
(d)

Figure 3.3: (a): the EMST of the original image (finer pyramid level). (b): arc
removal from branching points. (c)(d) A zoomed view of the previous figures.
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(a) (b)

Figure 3.4: (a): (a): the curves resulting from arc removal. (b): the curves
resulting after saliency thresholding.

3.3.4 The algorithm

The homology estimation and curve grouping algorithm is summarized as:

0. Compute the Gaussian pyramid {Gl}, l = 0 . . . L− 1 and extract the edgels

at all levels.

1. Set l = 0 (coarsest level). Compute H(l) from the edgels of G0 with RANSAC.

2. Repeat until convergence:

– Transform each edgel xi with H(l) and compute the edgel closest to

H(l)xi.

– Discard all edgel pairs whose tangent lines do not correspond under

[H(l)]−T.

– Compute the inlier set {xi} from the histogram of distances with

LMedS.

– Compute the EMST from the points of {xi}.
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– Remove all but two arcs from the EMST branching points and obtain

the set of curves {Ck}.

– Compute the histogram of the saliency and the inliers from {Ck} with

LMedS.

– Update the homology as H(l) ← arg minH(l) F(ls,v∞) by nonlinear op-

timization.

3. If l < L, set l ← l + 1 and go to 2.

3.4 Curve Classification

In this section a novel method is presented to classify curves extracted from

a SOR image into three classes: apparent contour, imaged cross section (el-

lipse), clutter. The third class includes all the curves that are not part of the

dominant SOR object in the scene. The classification strategy is based on

the following result (see also Fig. 3.5):

Given two curves γ and γ′ and two points on them, x ∈ γ and x′ ∈ γ′, which

correspond under H, then all the possible imaged SOR cross sections through

x and x′ are described by the 1-dof pencil of conics

C(λ) = mmT + λ(ll′T + l′lT) , (3.2)

where mmT is the (rank 1) degenerate conic composed by the line m = x′×x

through x′ and x, and ll′T + l′lT is the (rank 2) degenerate conic composed

by the line pair l and l′ tangent to γ and γ′ (the two symmetric side of the

apparent contour) respectively at x and x′.

To prove this result, it is sufficient to recall that the apparent contour is

tangent to an imaged SOR cross section at any point of contact [32]. This

means that, at the point of contact, the apparent contour and the ellipse
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Figure 3.5: The pencil of conics at the tangent contact points x and x′ of the
apparent contour of a SOR. Three members of the pencil are reported for three
distinct values of λ.

have the same tangent line. Fig. 3.5 shows two symmetric portions γ and γ′

of the apparent contour, corresponding under the harmonic homology with

axis ls. If the tangent lines x ∈ γ and x′ ∈ γ′ are l and l′ respectively, then

all the possible imaged cross sections C must include x and x′ and have there

as tangent lines l and l′ respectively. From the point inclusion constraints

xTCx = 0 and x′TCx′ = 0 and the tangency constraints Cx′ × l′ = 0 and

Cx× l = 0 the result follows immediately.

It is also straightforward to show that there exists a closed form solution

for the member of the pencil passing through any assigned point p, i.e. such

that pTC(λp)p = 0:

λp = − pT(mmT)p

pT(ll′T + l′lT)p
. (3.3)

This last result can be used to formulate the curve classification algorithm

as a voting procedure similar to the Hough transform. The algorithm is as
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follows.

0. Repeat steps 1–3 for all the ordered pairs (Ci,Cj).

1. Consider Ci from the curve set {Ck}, assume that it belongs to the

apparent contour, and parametrize it as xm, with m an integer spanning

all the edgels of Ci. For each value of m, a pencil Cm(λ) is obtained.

2. Consider a second curve Cj, and parametrize it as xn. For all values of

n, use Eq. 3.3 to find the value λn such that xT
nCm(λn)xn = 0.

3. Let v(m,n) be the fraction of points of Cj whose distance from Cm(λn)

is below a predefined threshold δ (we use 1 pixel). If the peak value

v(m?, n?) of the matrix {v(m,n), ∀m∀n} is above 0.9, then classify Ci

as a portion of the apparent contour, and Cj as a portion of the imaged

cross section Cm?(λn?).

(a) (b)

Figure 3.6: (a): Two ellipses fitted with the algorithm described in [79]. (b): The
results of the proposed ellipse classification algorithm.
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3.5 Experimental Results

In order to test the algorithm for SOR detection and homology estimation

discussed in Sect. 3.3, a set of 37 SOR images was considered. In order to have

a ground truth for experiments, for each image of the set the dominant SOR

was identified, and the associated harmonic homology was computed from

hand drawn apparent contours. The dominant SOR was correctly detected

with the proposed algorithm in the 93% of the cases. Moreover, the average

departure of the harmonic homology axis computed automatically from the

ground truth axis is 0.6 degrees. The main source of error for the SOR

detection algorithm is the presence of planar scene structures exhibiting a

high degree of symmetry, giving rise to harmonic homologies which do not

actually correspond to a SOR.

Concerning curve classification, results show that the algorithm of Sect. 3.4

is always correct in finding the SOR apparent contour, and also provides

ellipse estimates which are far more reliable than the ones obtained with

classical ellipse estimation algorithms. Fig. 3.6 shows the results of ellipse

estimation obtained respectively with the algorithm described in [79] on two

manually selected curves (Fig. 3.6(a)), and with the algorithm proposed in

this chapter (Fig. 3.6(b)).

Curve classification takes about two minutes per image on a 1.5Ghz com-

puter. Generally, most of the computation is spent on the last pyramid level

(the original image), where a huge number of edgels is extracted. Timings

are measured with images of medium size (640 × 480 or 800 × 600) and 4

or 5 pyramid levels.

The algorithms proposed here were used to support the method for cam-

era calibration and metric reconstruction from single uncalibrated SOR im-

ages described in [4]. All images were taken from the internet. Results are
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shown in Figs. 3.7, 3.8 and 3.9. Fig. 3.7(a) and 3.7(b) show the effective-

ness of results for the metric reconstruction of the bell of Fig. 3.1. Estimation

results are good enough to calibrate the camera and perform both metric re-

construction and texture acquisition as described in [4]. Fig. 3.7(c) shows

the acquired texture, in which imaged cross sections and SOR meridians be-

come orthogonal straight lines. Fig. 3.7(d) shows the image rectification of

the plane the bell is laid. The detected ellipses furnish also the homography

which reports to metric the planar geometry of the SOR ground plane. An

example with a vase image is also presented. Fig. 3.8(c) shows the original

image with the superimposed interpolated curves. Figs. 3.8(a) and (b) show

the non interpolated curves before and after saliency thresholding. Finally,

Fig. 3.8(d) reports the reconstructed 3D model. Fig. 3.9(a) is an image show-

ing the Taj Mahal. Fig. 3.9(b) shows a synthetic view of the reconstructed

dome of the Taj Mahal.

The algorithm may fail when the shadows is present nearly the apparent

contour as shown in Fig.3.10(a). This problem arise since the detected edges

of the two curves (the apparent contour and the shadow boundary) are very

close to each other. This produce a slightly deviating symmetry which can be

erroneously detected by the RANSAC initialization as shown in Fig.3.10(b).

This also prevent the convergence of the nonlinear minimization to a global

minimum (Fig.3.10(c)).

3.6 Summary

An original approach to automatically grouping and estimation of the pro-

jective geometry of single SOR views was presented. The approach is mainly

devoted to camera autocalibration from a single SOR view and single view



Chapter 3. Automatic Reconstruction 85

(a) (b)

(c)

(d)

Figure 3.7: Applications. (a),(b): two synthetic views of the reconstructed bell of
Fig. 3.1. (c): metric flattened texture of the bell surface (the imaged cross-section
looks straight). (d): metric rectification of the floor inferred from the SOR.
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(a) (b)

(c) (d)

Figure 3.8: (a), (b): Curve grouping before and after saliency thresholding for
the vase shown in (c). (c): the original vase with superimposed the spline curve
and the ellipses used for metric reconstruction. (d): A view for the reconstructed
vase.
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(a) (b)

Figure 3.9: (a): The Taj Mahal. (b): The reconstructed dome.

(a) (b) (c)

Figure 3.10: (a): A SOR view in which the algorithm may fail. (b): The RANSAC
initialization at the coarsest level. The shadow boundary edges are erroneously
classified as symmetric. The dotted lines indicates corresponding points. (c): The
final result. The nonlinear minimization remain trapped in a local minima.
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metric reconstruction of SOR objects.

The main limitation of the approach is related to the possibility of mis-

detections due to symmetric line patterns acting as distractors. To overcome

this limitation, further research will be devoted to combining in a single gen-

eral framework the SOR and planar cases. Another limitation is that curve

differentiability is required in order to use Eq. 3.2 for the purpose of ellipse

detection. This requirement prevents from estimating all ellipses correspond-

ing to surface normal discontinuities.
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Chapter 4

Saccade planning with PTZ

camera

This chapter considers the problem of designing an active observer to plan

a sequence of decisions regarding what target to look at, through a foveal-

sensing action. We propose a framework in which a pan/tilt/zoom (PTZ)

camera schedules saccades in order to acquire high resolution images (at least

one) of as many moving targets as possible before they leave the scene. An

intelligent choice of the order of sensing the targets can significantly reduce

the total dead-time wasted by the active camera and, consequently, its cy-

cle time. The grabbed images provide meaningful identification imagery of

distant targets which are not recognizable in a wide angle view. We cast

the whole problem as a particular kind of dynamic discrete optimization. In

particular, we will show that the problem can be solved by modelling the at-

tentional gaze control as a novel on-line Dynamic Vehicle Routing Problem

(DVRP) with deadlines. Moreover we also show how multi-view geometry

can be used for evaluating the cost of high resolution image sensing with a

PTZ camera.
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Congestion analysis experiments are reported proving the effectiveness of the

solution in acquiring high resolution images of a large number of moving tar-

gets in a wide area. The evaluation was conducted with a simulation using

a dual camera system in a master-slave configuration. Camera performances

are also empirically tested in order to validate how the manufacturer’s spec-

ification deviates from our model using an off-the-shelf PTZ camera.

4.1 Introduction

Equipping machines with even a limited version of our own visual abilities is

proving a remarkable task. The image formation process of the eye alone can

be emulated using a lens and CCD array; it is argued as a result of the 3D to

2D mapping of the real world to the visual retina that the major challenge

for for machine vision is perception.

Making the biological comparison, it is widely reported that the human visual

faculty is not a single comprehensive processing unit, but a series of small

task-specific processors whose output can be combined. Image stabilization

(fixation) occurs at a level below the brains main visual processors, having

direct connections from the ear and retina to the eye muscles. Eye and head

movements interact with the visual process, allowing maximum resolution

to be focused on specific areas of the scene. In humans this is achieved by

either repeated saccade-fixate cycles or by smooth motion tracking. So in

reality, we do not scan a scene in raster fashion, our visual attention tends

to jump from one point to another. These jumps are called saccade. Yarbus

[80] demonstrated that the saccadic patterns depend on the visual scene as

well as the cognitive task to be performed. The conclusion is that we do not

see, we look [81]. In this chapter the focus is visual attention according to
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task at hand and the scene content.

The lack of works addressing task-driven visual processing is mainly moti-

vated by the fact that its studying seems, as a first sight, too specialized, non-

generic, or bordering on hackery. But active vision demands such processes;

it is founded in the idea of specialized processing for specialized tasks. Most

of the active vision literature is limited to studying low-level subconscious

reflexes. One wonders whether truly active and purposeful vision systems

will be realized. In other words, while active tracking and visual attention

was researched in the past years, purposeful zooming is (and probably will

remain) a largely unexplored area in active vision [82]. Basically sensing was

not a major issue for computer vision as for example was perception. How-

ever despite this for the particular task of object recognition notably works

are reported in the literature [83] [84].

dire qui che active recognition is particular Our work is motivated by the goal

of reproducing the ability of humans to recognize a person in a crowd of mov-

ing people for surveillance purposes. In humans, the process of recognizing

a person and that of moving the eyes are served by almost two distinct sub-

cortical brain areas: one specialized for recognizing faces and one specialized

for making decisions on whom look at next. The eye acts as a foveal sensor

that allows high resolution only at the point of interest, avoiding the cost

of uniform high resolution. Indeed during a scan-path in a moving crowd

of walking people it is normal to backtrack to a previous observed person

thinking ”oh that’s my friend”. This because the gaze planning task does

not directly depend on the face recognition task. Visual attention in this

particular task is more affected by the target position, the predicted time

in exiting the scene and the effort made in moving the head and the eyes

from one direction to another. In fact during a saccade, the redirection is so
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rapid that the gaze lasts only a tenth of a millisecond. During that time the

few images obtained are typically blurred because of the fast camera motion.

As far as the deployment in sophistication in visual analysis is concerned,

saccades are dead times. So our brain avoids doing large redirection of the

gaze while undertaking this task, trying to minimize that dead time.

A direct application of that behavior of the human visual system can be

applied in Visual Surveillance. Automated surveillance can be a powerful

tool in deterrence of crime, but most of the solutions and implementations

proposed so far are unnecessarily poor in evidential quality. In this sense,

remote identification of targets is and will be an important mandatory capa-

bility for modern automated surveillance systems. In particular, recognizing

a person or a car license plate requires that high resolution views must be

taken before they leave the scene. Using a large number of static or active

cameras that operate cooperatively is an expensive and impractical solution.

One way to cope with this problem is to make better use of the capabilities

of the sensor.

We argue that one active pan/tilt/zoom (i.e. a foveal sensor) camera (the

slave camera) together with a wide angle camera (the master camera) and a

good strategy for visiting the targets can be used instead. The fixed camera

is used to monitor the scene estimating where targets are in the surveilled

area. The active camera then follows each target to produce high resolution

images. In this configuration, we show that the visual signal from the master

camera provides the necessary information to plan the saccades sequence.

Moreover, the introduction of an appropriate scheduling policy allows to

maximize the number of targets that can be identified from the high reso-

lution images collected. Indeed, this is achieved by continuously gazing at

the most appropriate targets, where the appropriateness strongly depends
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on the task considered. In fact, tasks may have conflicting requirements, as

in the case where different tasks would direct the fovea to a different point

in the scene. For systems with multiple behaviors, this scheduling problem

becomes increasingly paramount.

The key contributions of this part of the thesis are: (1) We propose a novel

formulation for the remote target identification problem in terms of saccadic

gaze planning. (2) We give a general framework in which an active camera

can be modelled. (3) The use of uncalibrated methods makes the proposed

framework function in any planar scene. (4) We extend previous approaches

on PTZ greedy scheduling proving through simulation that our framework

yields better system performance.

4.2 Related Work

Recent years (especially after 9/11) have seen a continued increase in the

need for and use of automatic video surveillance for remote identification

problems. The few works addressing this subject do not address the plan-

ning problem or do not fully exploit all the information intrinsically present

in the structure of the problem. In [85] the problem of deciding which cam-

era should be assigned to which person was addressed and some general

approaches are given. It should also be noted that there is no work except

[86] on objectively evaluating the performance of multi-camera systems for

acquiring high resolution imagery of people. Most results are presented in

the form of video examples or a series of screen captures without explicit sys-

tem performance evaluations. Very little attention is given to the problem

of what to do when there are more people in the scene than active cameras

available.

Many works in literature uses a master/slave camera system configura-
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tion with two [87][86][88][89][90] or more cameras [91][92][93][85][94]. The

remote target identification problem is also termed as distant human iden-

tification (DHID). In [87], a single person is tracked by the active camera.

If multiple people are present in the scene, the person who is closest to the

position of the previous tracked individual is chosen. In [86] the authors

use greedy scheduling policies taken from the network packet scheduling lit-

erature. They are the first to describe the problem formally and propose

a solution. In particular, in this work the authors, albeit mentioning that

there is a transition cost measured in time to be paid whenever the camera

switches from person to person, do not explicitly model this cost in their

problem formulation. The consequence is that their analysis wrongly moti-

vates an empirically determined watching time instead of at least a single

video frame. Moreover the work uses greedy policies instead of policies with

a time horizon. Also in [91] the authors propose a form of collective cam-

era scheduling to solve surveillance tasks such as acquisition of multi-scale

images of a moving target. They take into account the camera latency and

model the problem as a graph weighted matching. In the paper there are no

experimental results and no performance evaluation for the task of acquiring

as many multi-scale images of many targets as possible in real time. In [89]

another similar approach with a dual camera system was recently proposed in

indoor scenes with walking people. No target scheduling was performed, tar-

gets are repeatedly zoomed to acquire facial images by a supervised learning

approach driven by skin, motion and foreground features detection. In [95] a

ceiling mounted panoramic camera provides wide-field plan-view sensing and

a narrow-field pan/tilt/zoom camera at head height provides high-resolution

facial images. The works in [96][88] concentrate on active tracking. In both

works the respective authors propose a simple behavior (a policy) with a
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finite state machine in order to give some form of continuity when the cur-

rently tracked target is changed. In [92] two calibration methods to steer a

PTZ camera to follow targets tracked by another camera are proposed. The

authors give some criteria of optimization leaving the formal optimization

as future research. Though performing coarse registration the methods [92]

and [87], generally suffice to bring the target object within a narrow zoomed

field of view.

Another body of literature, concerning the mathematical optimization

framework, comes from the motion planning literature and in particular from

the context of rapid deployment automation. Specifically, those problems

related to rearranging parts by a robot in an industrial assembly line setting.

A representative work in this context is [97]. In that work the problem

is: given n identical parts initially located on a conveyer belt, and a robot

arm of capacity k parts, compute the shortest route for the robot arm to

grasp and deliver the parts, handling at most at k a time. A PTZ-camera

can be interpreted as a robot arm, we will use such analogy in our problem

formulation.

The other important work related to our problem is [98], in which the

authors study the problem in which a vehicle moves from point to point

(customers) in a metric space with constant speed, and at any moment a

request for service can arrive at a point in the space. The objective is to

maximize the number of served customers. They analyze several policies

showing that in such a problem lower bounds on system performance can

be obtained analytically. This work is reminiscent of our problem, the main

differences are that our customers (targets) are moving and have deadlines.

A further important difference is that the nature of our particular vehicle (a

PTZ-camera) does not allow us to model the cost of moving from target to
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target in the euclidean space.

4.3 Problem Formulation

In this section we formulate and discuss the three main features that char-

acterize this problem: targets motion, arrivals as a continuous process, and

deadlines. Once a subset of moving target is selected the correct camera

tour can be optimized as a Kinetic Travelling Salesperson Problem (KTSP).

The problem of how choosing the best permutation subset from the currently

tracked targets is an instance of the Time Dependent Orienteering (TDO)

with deadlines.

4.3.1 Kinetic Travelling Salesperson Problem

As cameras can be calibrated with automatic or manual methods such as

in [92] it is possible to associate to each point in the plane where targets

are moving a vector of PTZ-camera parameters. According to this, at each

point in the world plane it is possible to issue camera commands in order

to bring a moving target in a close up view by giving to the camera the

3D vector (p, t, z), specifying pan, tilt and zoom values to be applied. In

our formulation we model the PTZ-camera as an intercepter with restricted

resources (e.g., limited speed in setting its parameter). The dynamics of the

targets are assumed known or predictable (i.e., for each target one can specify

its location at any time instant). The problem is expressed as that of finding

a policy for the PTZ-camera which allows to ”visually hit” (with a saccade

sequence) as many targets as possible in accordance with the device speed.

This allows to cast the problem as a Kinetic Travelling Salesperson problem

(KTSP) [99]. In fig.4.1 are shown four targets A, B, C, D moving on a plane.

The shortest-time tour is shown with the respective interception points. At
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Figure 4.1: An instance of Kinetic-TSP with four targets. The shortest-time tour
(light line).
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each interception point is also shown the time instants of the sequence when

the intercepter visually hits the targets. Formally this problem is formulated

as follow:

KTSP : Given a set S = {s1, s2, ..., sn} of moving targets, each si mov-

ing with known or predictable motion xi(t), and given an active camera in-

tercepter starting at a given position and having maximum speed Vptz ≥ Vi ∀i
, find the shortest-time tour starting (and ending) at the origin, which inter-

cepts all targets. Vi indicates the imaged speed of target i and Vptz indicates

the maximum speeds of the pan-tilt-zoom device. The solution is defined as

the permutation of the discrete set S that has the shortest travel time.

It is necessary that the intercepter run faster than the targets. This is

not generally a problem even for slower PTZ-cameras. By imagining the

PTZ-camera as a robot manipulator with two revolute (pan-tilt) and one

prismatic (zoom) joint, it is possible to view the principal axis of the camera

as a robot arm which rotates and move forward to reach a point in the space.

In such settings, due to the typically high distance at which PTZ-cameras

are mounted, the speeds of the virtual end-effector are generally higher than

common moving targets such as cars or humans.

4.3.2 Time Dependent Orienteering (TDO)

In a typical surveillance application, targets arrive as a continuous process,

so that we must collect ”demands to observe”, plan tours to observe targets,

and finally dispatch the PTZ camera. In a such dynamic-stochastic setting

there is a lot of interdependency between the state variables describing the

system. Moreover, tours must be planned while existing targets move or

leave the scene, and/or new targets arrive. Basically the whole problem

can be viewed as a global dynamic optimization. Since for such a problem
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no a-priori solution can be found, an effective approach is to determine a

strategy to specify the actions to be taken as a function of the state of the

system. In practice, we consider the whole stochastic-dynamic problem as a

series of deterministic-static subproblems, with the overall goal of tracking

the time progression of the objective function as close as possible. In our

problem, targets are assumed to enter the scene at any time from a finite set

of locations. The camera must steer its foveal sensor to observe any target

before it leaves the scene. Assuming with no loss of generality that the paths

of the targets are straight lines and that targets move at constant speeds, the

time by which a target must be observed by the camera can be estimated.

Moreover, real-time constraints may impose bounds on the total amount of

time needed to plan the target observation tour. According to this, given

a fixed reference time, KTSP can be reformulated as a Time Dependent

Orienteering (TDO) problem [100]. In the classical formulation of the static

orienteering problem there is a resource constraint on the length of the tour;

the problem solution is the one that maximizes the number of sites visited.

The time dependent orienteering problem for a single PTZ-camera can be

formulated as follows:

TDO : Given a set S = {s1, s2, ..., sn} of moving targets, each si mov-

ing with a known or predictable motion xi(t) , the deadline t, and a time-

travel function l : S × S × N 7−→ IR+ ∪ {0} the salesperson’s tour to in-

tercept a subset T = {s1, s2, ..., sm} of m targets is a sequence of triples:

(s1, t
+
1 , t−1 ), (s2, t

+
2 , t−2 ), ...(sm, t+m, t−m), such that: for i ∈ {1, 2, ..., m}, t+i , t−i ∈

N ∪ {0} with 0 = t+1 ≤ t−1 ≤ t+2 ≤ ... ≤ t+m ≤ t−m ≤ t . The subset T is

composed by the maximum number of targets interceptable within the time t,

imposed by the real-time constraint.

Orienteering problems are classified as path-orienteering or cycle-orienteering
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problems depending on whether the network to be induced by the set of pairs

of consecutive targets visited is supposed take the form of a path or of a cycle,

respectively. The deadline t breaks the dynamic problem into a sequence of

static problems. Such a formulation has a great advantage which is compu-

tationally helpful. Since there is no polynomial time algorithms to solve the

KTSP, it is impossible to solve an instance of the KTSP problem with more

than eight or nine targets in a fraction of a second, by the exhaustive search.

However even if such an algorithm did exist the time needed to switch to

all the targets would be so large that novel targets would not be observed

due to the time needed to complete the tour. So, the brute force approach

enumerating and evaluating all the subsets permutations perfectly fits with

the nature of our dynamic incremental formulation.

4.3.3 Deadlines

Based on the tracking predictions targets are put in a queue, according to

their residual time to exit the scene. TDO is instantiated for the first k

targets in the queue. If Ak is the set of the permutations of the subsets of k

targets then it can be shown that:

|Ak| =
k∑

i=0

k!

(k − i)!
(4.1)

where |Ak| is the cardinality of the set Ak. So for example with a queue of

k = 7 targets we have |A7| = 13700. In this case the exhaustive enumeration

requires 13700 solutions evaluations. As remarked in the previous section,

solutions with a large number of scheduled targets would not be practical for

an incremental solution, since the time needed to switch to all the targets

would be so large that novel targets would not be observed due to the time

needed to complete the tour.
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Figure 4.2: A symbolic scheme representing a saccade from the target A to the
target B. The φi,i+1, ψi,i+1 are respectively the pan and tilt angles as seen from
the slave camera when the camera leaves target A at time t−i and intercepts B at
time t+i+1.
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The framework is fairly general and more elaborated policies can be es-

timated by changing optimization cost and/or the sorting used in the queue

(priority in the queue can be specified according to some combined quality

measure of the imagery of the targets, for example preferring targets mov-

ing in certain specified directions). Here we want to maximize the number

of targets taken at high resolution. With the deadlines the TDO becomes a

constrained combinatorial optimization, where the feasible set can be defined

as follow (see the TDO definition in the previous section):

t−i < tdi , ∀i = 1..|T | (4.2)

Where T ∈ Ak is an instance of the permutations of the subsets, and tdi is

the deadline for the target at position i in T . That means the the camera

must leaves the target i in T at time t−i before the target leaves the scene at

time tdi .

The TDO solution is calculated by assuming a constant speed for the

pan-tilt-zoom camera motors as specified by the manufacturer. There is no

need for an exact specification of these speeds, in that they are used only

for the prediction of the cost of the saccadic sequences. In order to keep

the computation tractable the number of target in the queue k should not

be greater than 8 (9 with optimized code). For example on a Pentium IV

2.0 GHz running Matlab, computing and evaluating the permutations of the

subsets of 8 targets takes a fraction of a second.

4.4 Saccades Planning Geometry

In order to show the advantages of adopting this framework for our research

objective, we consider the classic camera system in a master/slave configura-

tion [87][86]. In this configuration a static, wide field of view master camera
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is used to monitor a wide area and track the moving targets providing the

position information to the foveal camera. The foveal camera is used to

observe the targets at high resolution. We estimate the interception times

of a target for each of the three foveal camera control signals (respectively

tφ, tψ, tz for pan, tilt, zoom). Since the effects of the three control signals

are independent from each other (i.e. the pan motor operates independently

from the tilt motor) the time needed to conclude a saccade is dominated by

the largest one. The largest time is taken as the time spent by the foveal

camera to observe the target and is taken into account to derive the overall

time needed to complete the tour in the TDO formulation.

With reference to fig.4.2 the estimated tφ, tψ, tz are assumed as the times

needed to make the foveal camera gaze at the target at position i+1, leaving

the target at position i in the sequence S = {s1, ..., si, si+1, ..., sm} (in fig.4.2

the targets at position i and i + 1 are respectively indicated as A and B).

In other words they represent the times needed for changing the pan and tilt

angles and zoom respectively by φi,i+1, ψi,i+1 and zi,i+1 (not shown in the

figure) in order to intercept the new target at time t+i+1 while leaving the old

target at time t−i . The time t? = max{tφi,i+1
, tψi,i+1

, tzi,i+1
} is the travel time

needed to change the gaze.

By assuming targets moving on a calibrated plane, these times can be

computed, at least in principle, by solving for t from each of the following

equations:

φ(t) = ωφt + φt−i
ψ(t) = ωψt + ψt−i

(4.3)

Where φ(t) and ψ(t) are time varying functions, representing the angles

between rays from the image points corresponding to the target trajectory

w.r.t to a reference ray in the foveal camera. The ωφ and ωψ are, respectively,

the pan and tilt angular speeds and the angles φt−i
and ψt−i

represent the
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Figure 4.3: The geometry of a PTZ camera viewing a world plane in which the
pan axis coincides with the normal of the plane. Also shown are the angles φ and
ψ travelled by the pan-tilt device gazing from the target P1 to the target P2.

angle positions at time t−i . By separately solving the two equations in t

we estimate the interception times tφ and tψ, needed to intercept the target

through pan and tilt camera motion. Each of the above equations is non-

linear due to the image formation process. In order to make the TDO problem

solvable, a closed form solution is obtained by assuming that during the

camera interception process, the target motion is negligible. Now the TDO

can be solved by exhaustive enumeration without an iterative root finder

for the eq.4.3. With this assumption eq.4.3 becomes time independent and

simplifies:

φt+i+1
= ωφt + φt−i

ψt+i+1
= ωψt + ψt−i

(4.4)

defining the values for

tφi,i+1
=

φt+i+1
− φt−i

ωφ

tψi,i+1
=

ψt+i+1
− ψt−i

ωψ

(4.5)

In order to keep tractable the estimate of the angles of the targets as seen
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by the slave camera we assume that the PTZ-camera is not mounted oblique

w.r.t. the world plane. The camera pan axis it is approximately aligned

with the normal of the world plane. This is generally the case when PTZ-

cameras are mounted on top of a pole (see fig.4.3). This means that during

continuous panning while keeping a fixed angle for the tilt, the intersection

of the optical axis with the 3D plane approximately describes a circle. The

principal axis sweeps a cone surface so its intersection with the 3D world

plane is in general an ellipse with an eccentricity close to one. In the same

sense during continuous tilting while keeping a fixed angle for the pan, the

intersection of the optical axis with the 3D plane describes approximately

a line. The swept surface is a plane (see fig.4.3). In such conditions the

tilt angle between a reference ray and the ray emanating from the image

point corresponding to a target trajectory can be measured once the intrinsic

internal camera parameters for the slave camera are known as [101]:

cos(ψ) =
x′1

T ωx′0√
x′1

T ωx′1

√
x′0

T ωx′0

(4.6)

where ω = K−TK−1 is the image of the absolute conic an imaginary point

conic directly related to the internal camera matrix K. While x′1 and x′0

(as also shown in fig.4.4) are, respectively, the projection of the world point

X1 as seen by the master camera and transformed through H′ to the slave

camera, and the projection of the point C′
0.

C′
0 is the orthogonal projection of the camera center of the slave camera

C′ onto the world plane. By choosing as reference ray to represent tilt angles

of the ray passing through C′
0 and C0 as shown in fig.4.4, the value of x′0 can

be computed directly using the pole-polar relationship as:

x′0 = ω−1l′∞ (4.7)
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Figure 4.4: (a) The geometry used for computing the pan φ and tilt ψ angles of
a target X1 as seen from the slave camera C′ in its home position between. (b)
Pole-polar relationship between vanishing point v∞ of the plane normal and its
the vanishing line l′∞ used to compute the tilt angle ψ. The IAC is shown dashed
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Figure 4.5: The slave camera is internally calibrated and the inter-image homog-
raphy H′ between the master camera C and the slave camera C′ is computed in its
home position (image plane ΠH). We can consider the slave camera as an angle
measurement device using the extended image plane composed of the planar image
mosaic having ΠH . as a reference plane.

Where l′∞ is the vanishing line of the plane Π as seen from the slave

camera and it can be computed by transferring the vanishing line l∞ in the

master camera to the slave camera as l′∞ = H′−Tl∞. The above formula can

be applied because x′0 coincides with the vanishing point of the directions

normal to the plane Π (see [65]). Summarizing, in this configuration the

slave camera, in addition to its foveal capability also uses calibration (in its

home position) as angle measurement device. Internal camera parameters

necessary for the PTZ-camera can be computed very accurately as recently

shown in [102] using the method originally described in [103].

The pan angle of a world point in the plane can be computed directly

from the master camera once the world to image homography H is known

and the point C′
0 is measured from the master camera. If that point cannot

be measured because it is not visible from the master camera, it can also

be computed using the inter-image homography H′. In fact since the slave
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camera is internally calibrated at its home position, it is possible to obtain

its pose and so its camera center w.r.t. the world reference once the world to

image homography H′0 is known from the slave camera. This can be computed

as: H′0 = H′H (see fig.4.4).

The same approach of eq.4.4 is followed to obtain the zoom control, once

the amount of zoom needed to obtain the desired close-up is calibrated for

each point in the world plane. A look-up table using an equispaced grid

of points can be used to perform this calibration manually or automatically

as shown in [92]. The equation for the estimation of the time needed for

changing the zoom to intercept the new target can be written similarly as

for pan and tilt:

zt+i+1
= vzt + zt−i

(4.8)

where vz is the zooming speed and zt−i
is the zooming value at time t−i , when

the target is left and zt+i+1
is the zooming value at time t+i+1 when the next

target is intercepted.

4.5 Simulation Results

4.5.1 Estimating Camera Speeds

We ran several experiments to empirically estimate the pan/tilt/zoom speeds

of our cameras in order to validate the constant velocity kinematic models

used in the eq.4.4 and eq.4.8. The results of these experiments are shown

figure 4.6. In particular we have conducted several trials and then we have

averaged the results in fig.4.6(a) are shown the pan and tilt speeds while in

fig.4.6(b) are reported the zoom speeds. Worthy of note is the fact that,

contrary to manufacturer specification, the cameras do not move at a con-

stant speed. Indeed, there are situations in which either panning or tilting
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might be the slowest of motions, as indicated by the crossover point of the

two curves in figure. When moving such short distances, camera motion is

nearly instantaneous and we found that assuming a constant camera velocity

when planning a saccade sequence worked just as well as the more complex

camera performance model.

4.5.2 Congestion Analysis

Evaluating different planning strategies using a video surveillance system in-

stalled in a real context is a very complicated task. In fact, while we can

easily collect video from a static camera, and use it for target tracking, it

is almost impossible to collect all the information needed to plan tours in

a master-slave camera configuration with a foveal slave camera. To address

these difficulties, we have created a Monte Carlo simulation for evaluating

scheduling policies using randomly generated data. But there is also another

main reason for using randomly generated data. The use of randomly gen-

erated data often enables more in-depth analysis, since the datasets can be

constructed in such a way that other issues could be addressed. For example

the arrival rate parameter, generally denoted λ, describes the ”congestion”

of the system. This is basically the only important parameter which is worth

of testing in a similar scenario. We stress the importance of this kind of

testing: real data testing cannot evaluate the algorithm performance in this

context.

We performed a Monte Carlo simulation that permits evaluating the ef-

fects of different scheduling policies in a congestion analysis setting. We used

in our simulator a particular scene in which our framework could be of in-

valuable benefit. A large area of approximatively 50x60 meters (half of a

soccer field) is monitored with the slave camera placed as shown in fig.4.7
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Figure 4: Policy performance versus arrival rate λ. (a) Our methods and simple earliest deadline first policy.
(b) Three different PTZ-cameras under with various pan-tilt-zoom speeds. (b) Performance variation by
varying service time ts (the specified time to watch a target).

Figure 5: Test area with some suspicious individuals.

are very different in performance, such differences are less
evident for the observing task under examination. This is
mostly caused by the camera position w.r.t. the scene plane;
the performance in tilt speed was practically never employed
because of the latency of the other controls w.r.t. the im-
aged motion pattern of targets. The control which delayed
most of the saccades, employing the largest setup time, was
the zoom control (mostly caused by the scene depth). This
explains why the two fastest cameras exhibit similar perfor-
mances. This type of analysis can be useful for determining
the type of cameras and ultimately the cost needed to mon-
itor an area with a multi-camera system.

Figure 4(c) shows the performance degradation w.r.t. the
service time (or the watching time) ts. This time is directly
related to the quality of the acquired images and can po-
tentially affect recognition results. The figure also shows
that varying ts does not affects the performances in direct
proportion.

5.2 Preliminary Experiments on Live Video
In order to assess the potential of the type of predictive
saccades planning proposed, we have created a small-scale
experimental testing environment. We use two Sony SNC-
RZ30 network cameras positioned with a very short baseline.

A frame from the master camera view of our experimental
area of surveillance is shown in figure 5. The scene consists of
a small courtyard viewed from the third floor window of our
laboratory. The experiments described here are not intended
to fully evaluate the performance of the saccades planning
framework described above. The examples given here merely
describe the challenges encountered when implementing the
framework on live cameras.
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We do not fully calibrate the two cameras, but rather sim-
ply estimate the master image to slave image homography
using four point correspondences on the ground plane. This
allows us to associate points in the master view, where the
tracker will be running, with points in the original calibra-
tion position of the slave camera. In calibration position,
at a zoom factor of zero, a single pixel in the slave camera
image subtends approximately 1

14

◦

in both the pan and tilt
directions, making it possible to compute the relative pan
and tilt offsets required to center any pixel on the ground
plane in the slave camera view. This number was derived
by empirical experiments and analysis of the manufacturer
specifications. It is related to the internal camera param-
eters, specifically the focal length and CCD element size.
Zoom factors for points on the ground plane were computed
manually with respect to a human figure for several points.
Linear interpolation is used to compute the zoom factor to
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Figure 4.6: Empirically estimated pan-tilt (a) and zoom (b) times for the Sony
SNC-RZ30, averaged over thirty trials.
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at position (30, 0, 10). The master camera views the monitored area at a

wide angle from above (more suitable for tracking due low occlusion between

target). Arrivals of targets are modelled as a Poisson process. The scene

is composed of two target sources situated at opposite positions in the area.

Targets originate from these two sources S1 and S2 from initial positions that

are uniformly distributed in given ranges of length 10 meters positioned as

shown in fig.4.7. The starting angles for targets are also distributed uni-

formly with the range [−40, 40] degrees. Target speeds are generated from

a truncated Gaussian with a mean of 3.8 meter/sec and standard deviation

of 0.5 meter/sec. (typical of a running person) and are kept constant for

the duration of target motion. Targets follow a linear trajectory. This is

not a restrictive assumption since each TDO has in this simulation a dead-

line of t = 5 seconds, and the probability of maneuvering for targets with

a running-human dynamic in an interval of five seconds is very low. So the

overall performance of the system is not generally affected. The deadline t

has a role similar to a sampling time for traffic behavior and can be generally

tuned depending on the speeds of the targets. In our simulated scene it is

quite improbable that a target enters and exits the scene before five seconds

are elapsed.

The used scene can represent a continuous flow of people, in a crisis

situation. An example is people exiting from a stadium or from the subway

stairs. It can be interesting, for crime detection purposes, to acquire as many

high resolution images of such running people as possible before they leave

the scene.

We assume that all targets have the same size in the scene (average hu-

mans height) and a specific size is fixed at which the target must be observed

by the foveal camera. For pinhole cameras, as the focal length of the cam-
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Pan Speed Tilt Speed Zoom Speed

deg/sec deg/sec #mag/sec

Sony EVI-D30 80 50 0.6

Sony SNC-RZ30 170 76.6 8.3

Directed Perception 300 300 11.3

Table 4.1: Off the shelf PTZ-cameras performance. The #mag means magnifica-
tion factor per second and is calculated dividing the maximum optical zoom (for
example 25X) by the zoom movement time from wide to tele (for example 2.2
seconds).

era changes, the pinhole model predicts that the images will scale in direct

proportion to the focal length [104]. By assuming a constant speed for the

zooming motor and a linear mapping of focal length to zoom it is possible

to build a look-up table in the simulator as: Zoom[x, y] = M · dist(C′,X)

where x and y are the imaged coordinates of the world plane point X as seen

by the master camera, C′ is the camera center of the slave camera and M is

the constant factor which depends on the size at which targets are imaged

and on the target size in the scene. We want to collect human imagery with

an imaged height of approximatively 350 pixels using an image resolution of

720× 576. In fig.4.8, plots indicate the number of targets that are observed

by the foveal camera (ordinates) as a function of the arrival rate λ (abscissa)

for three different situations. Since there are two sources with the same ar-

rival rate, λ actually refers to half the number of arrivals per second. The

size of the queue is six elements which guarantees that the enumeration of

all the subsets with their permutations is generated in a fraction of a second

(basically a negligible time). Performance is measured by running a scenario

in which 500 targets are repeatedly generated one hundred times and the

performance metric was estimated by taking the mean. The metric corre-
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Figure 4.8: Policy performance versus arrival rate λ. (a) Our methods and simple
earliest deadline first policy. (b) Three different PTZ-camera under test with
different pan-tilt-zoom speed. (b) Performance variation at varying service time
ts (the specified time to watch a target).
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sponds to the fraction of people observed in the scene. In particular we take

the mean (over the experiments) of the number of observed target divided

by number of all the targets.

Fig.4.8(a) shows a comparison of our methods with the earliest dead-

line first policy studied in [86]; it evident that our policy, using long term

planning plus the cost of moving the sensor, outperforms a simple greedy

strategy. While there is no need for planning in very modest traffic scenes,

traffic monitoring, in large, wide areas would receive an invaluable great ad-

vantage of more than 40% by adopting the proposed techniques. Fig.4.8(b)

shows experiments conducted using different speeds for PTZ motors typical

of off-the-shelf active cameras. Three cameras were selected using their re-

spective performance as indicated by the technical specification (see tab.4.1).

Using this performance values in the simulator produce the plots of fig.4.8(b).

Although the three models are very different in performance, such differences

are less evident for the observing task under test. This is mostly caused by

the camera position w.r.t. the scene plane; the performance in tilt speed

was practically never employed because of the latency of the other controls

w.r.t. the imaged motion pattern of targets. The control which delayed

most of the saccades, employing the largest setup time, was the zoom con-

trol (mostly caused by the scene depth). This explains why the two fastest

cameras exhibit similar performances. This type of analysis can be useful for

determining the type of cameras and ultimately the cost needed to monitor

an area with a multi-camera system.

Fig.4.8(c) shows the performance degradation w.r.t. the service time

(or the watching time) ts. This time is directly related to the quality of the

acquired images and can potentially affect recognition results. The figure also

shows that varying ts does not affects the performances in direct proportion.
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4.6 Summary

Automated high resolution imaging of targets using PTZ cameras is an im-

portant and mandatory capability for modern automated surveillance. In

such systems, and especially in the case of wide area surveillance applica-

tions, to view multiple moving targets each camera must share observation

time. We have presented a solution for planning saccade sequences using

a single foveal camera in a master-slave camera system configuration. The

system models the attentional gaze planning, with a novel approach combin-

ing ideas from Dynamic Vehicle Routing Problem (DVRP) and multiview

geometry. Results are presented using a simulator that indicates how many

targets are missed as a function of the arrival rate, camera speed parameters

and watching time. Results have been derived under realistic assumptions in

a challenging scene. We proved that our framework gives good performance

in monitoring wide areas with little extra effort with respect to other cum-

bersome approaches coordinating a large number of cameras doing the same

task.

The same principles presented here can also be applied to camera-networks

to build large surveillance systems; the framework is open and may be

extended easily in several different ways; e.g. a real-time face recogni-

tion/detection can be incorporated in the optimization.

One main limitation of the presented method is that it does not take

advantage of persistent motion patterns generally present in common scenes,

for example an intersection with moving cars. Such knowledge would be

of invaluable benefit in cases where targets are following pre-defined paths.

Ongoing research will address on-line learning algorithms capable of finding
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more long-term policies. Moreover, further research can apply supervised

machine learning methods to a simulated data set (as generated by our ap-

proach) to understand the behaviors of complex saccadic patterns for the

task under consideration.



Chapter 5

Conclusion

In conclusion of the thesis, this chapter describes what are believed to be the

novel contributions of the work and suggests areas of further research.

5.1 Novel Contribution

The main contributions of the thesis with reference to the recent literature

can be summarized as follows:

• Single-view reconstruction based on planar rectification, originally in-

troduced in [49] [7] for planar surfaces, has been extended to deal also

with the SOR class of curved surfaces.

• Self-calibration of a natural camera (3 dofs) is obtained from a single

image of an SOR. This improves the approach presented in [6], in which

the calibration of a natural camera requires the presence of two different

SORs in the same view. Moreover, since self-calibration is based on two

visible elliptical segments, it can also be used to calibrate turntable

sequences and remove the 1D projective reconstruction ambiguity due
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to underconstrained calibration experienced so far in the literature of

motion-constrained reconstruction [5].

• The invariant-based description of the SOR scaling function discussed

in [8] is extended from affine to perspective viewing conditions. 4. Since

the approach exploits both the geometric and topological properties of

the transformation that relates the apparent contour to the scaling

function, a metric localization of occluded parts can be performed and

the scaling function can be reconstructed piecewise. In this regard, the

method improves the SOR reconstruction approach described in [105]

[26].

• Texture acquisition does not require the explicit computation of ex-

ternal camera parameters; therefore, the results developed in [7] and

[20] for planar surfaces are extended to the SOR class of curved sur-

faces. Moreover, since SORs are a superclass of the SUGC class of

curved surfaces, texture acquisition extends the solution presented in

[106] [37].

• Image mosaicing from single views of surfaces of revolution is firstly

proposed and a two step method for registering images is given.

• An original approach to automatically grouping and estimation of the

projective geometry of single SOR views was presented. The approach

is mainly devoted to camera autocalibration from a single SOR view

and single view metric reconstruction of SOR objects.

• We have presented a very novel problem and a solution for planning sac-

cade sequences using a single foveal camera in a master-slave camera

system configuration. The system models the attentional gaze plan-
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ning, with a novel approach combining ideas from Dynamic Vehicle

Routing Problem (DVRP) and Projective Geometry of multiple im-

ages.

5.2 Future Research

Multiview geometry is now a very mature subject, the book [11] and the

software Boujou c© [107] bring close an era in Computer Vision. Indeed papers

regarding the geometry of multiple images are becoming infrequent in these

two last years. This is mainly due to the rigorous framework of Projective

Geometry. So it seems to be difficult to extend the proposed framework

for reconstructing Surfaces of Revolution. While it is worth extending the

approach of mosaicing images of SORs. For example further investigation

can be done in anti-aliasing filtering during the resampling step.

Automated high resolution imaging of targets using PTZ cameras is an

important and mandatory capability for modern automated surveillance. In

such systems, and especially in the case of wide area surveillance applica-

tions, to view multiple moving targets each camera must share observation

time. Active cameras in this sense are an under-researched topic in computer

vision. The lack of works addressing task-driven visual processing is mainly

motivated by the fact that its studying seems, as a first sight, too special-

ized, non-generic, or bordering on hackery. But active vision demands such

processes; it is founded in the idea of specialized processing for specialized

tasks. Most of the active vision literature is limited to studying low-level

subconscious reflexes. One wonders whether truly active and purposeful vi-

sion systems will be realized. In other words, while active tracking and visual

attention was researched in the past years, purposeful zooming is (and prob-



Chapter 5. Conclusion 122

ably will remain) a largely unexplored area in active vision [82]. Basically

sensing was not a major issue for computer vision as for example was per-

ception. However despite this for the particular task of object recognition

notably works are reported in the literature.

The same principles presented in the second part of this thesis can also be

applied to camera-networks to build large surveillance systems; the frame-

work is open and may be extended easily in several different ways; e.g. a

real-time face recognition/detection can be incorporated in the optimiza-

tion. Ongoing research will address on-line learning algorithms capable of

finding more long-term policies. Moreover, further research can apply super-

vised machine learning methods to a simulated data set (as generated by our

approach) to understand the behaviors of complex saccadic patterns for the

task under consideration.
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Appendix A

Appendix of the Part A

A.1 Computing the harmonic homology from

the vertices of the complete quadrangle

In this appendix, we give the formal proof of Eqs. 1.5 and 1.6 used to compute

the fixed entities of the harmonic homology H from the four intersections xk,

k = 1, . . . 4 of two imaged cross sections C1 and C2. As explained in section

1.4.1, we can always assume that x1 and x2 are complex conjugate, so that

either of the pairs (x1,x2) or (x3,x4) must be equal to (i,j), and therefore

either of the lines l12 = x1× x2 or l34 = x3× x4 must be equal to l∞ = i× j.

By property 1.3.2 of section 1.3.2, the conics C1 and C2 are fixed as a set

under the harmonic homology: Ch = HTChH, h = 1, 2. A consequence of this

is that if xk is an intersection point of Ch, so is the point Hxk: (Hxk)
TCh(Hxk) =

0. By expressing H according to the parametrization

H = I− 2
v∞ lTs
vT∞ ls

(A.1)
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obtained from eq. 1.1 with µ = −1, we can write

Hxk = xk − 2
lTs xk

lTs v∞
v∞ . (A.2)

Now, since the line xk × Hxk must contain the fixed point v∞, recalling that

(i × j)Tv∞ = 0 and that no three intersection points can be collinear, it

follows that

x2 = Hx1 and x4 = Hx3 . (A.3)

This proves Eq. 1.5, as the lines l12 and l34 can be written respectively as

x1 × Hx1 and x3 × Hx3. Using Eq. A.3, we can also write l13 × l24 = (x1 ×
x3)× (Hx1× Hx3) and l14× l23 = (x1× Hx3)× (Hx1×x3). By using again the

parametrization of Eq. A.1 and the basic equality a × (b × c) = (aTc)b −
(aTb)c, it follows easily that l13 × l24 = l13 × ls and l14 × l23 = l14 × ls. This

proves Eq. 1.6.

A.2 Parametrizing the image of the absolute

conic

In this appendix, we demonstrate that the linear system of Eq. 1.7 has only

three independent constraints, and provide a parametrization for the ∞2

conics that satisfy these constraints.

The third of Eqs. 1.7 provides two independent linear constraints on ω.

We will show that the first two equations of the system, i.e. iTωi = 0 and

jTωj = 0, add to ls = ωv∞ only one independent constraint. Indeed, the

family of ∞3 conics ω̃ satisfying ls = ω̃v∞ can be written as

ω̃(λ1, λ2, λ3) = Λ0 +
3∑

k=1

λkΛk , (A.4)
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where the λk’s are scalars and the Λk’s are four linearly independent conics

such that

ls = Λkv∞ . (A.5)

Now, in Appendix A.1 we have shown that j = Hi. Therefore, we can write

jTΛkj = iT(HTΛkH)i = iTΛki , (A.6)

where the last equality follows from the fact that, as it satisfies Eq. A.5, each

of the Λk’s is transformed onto itself by the homology H—this can also be

directly verified by using for H the parametrization of Appendix A.1. From

Eq. A.6 it also follows that jTω̃j = iTω̃i: this means that the inhomogeneous

linear system in the three unknowns λk’s




iT ω̃(λ1, λ2, λ3) i = 0

jT ω̃(λ1, λ2, λ3) j = 0
(A.7)

has ∞2 solutions. This proves our assert that the solution set of Eq. 1.7 is

composed of ∞2 conics.

It can be easily verified that a valid parametrization for these conics is

ω̃(p, q) = ω + p l∞lT∞ + q(lisl
T
js + ljsl

T
is) , (A.8)

where ω is the (unknown) true image of the absolute conic, l∞lT∞ is a degen-

erate (rank 1) conic composed by the line l∞ taken twice, and lisl
T
js + ljsl

T
is

is a degenerate (rank 2) conic composed by the two lines lis = i × xs and

ljs = j× xs meeting at any point xs ∈ ls different from vs = ls × l∞.

If the vanishing point v⊥ ∈ ls of the direction parallel to the SOR sym-

metry axis is known, the independent constraint vT
s ωv⊥ = 0 can be added

to the system of Eq. 1.7, thus fixing one of the two degrees of freedom left

for ω̃. A parametrization for these ∞1 conics is then

ω̃(r) = r l∞lT∞ + (li⊥lTj⊥ + lj⊥lTi⊥) , (A.9)
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where li⊥ = i × v⊥ and lj⊥ = j × v⊥. This last result is in accordance with

the fact, discussed in [54], that the self-calibration equations involving the

imaged circular points i and j bring only one independent constraint if the

line i× j goes through any of the points of a self-polar triangle for ω—which,

in our case, is v∞,vs,v⊥.

A.3 Computing the point of an imaged SOR

parallel for a given Euclidean angle

In this appendix, we derive a closed form solution to the general problem of

finding the vanishing point vθ of the line lθ that intersects, in the world plane

π, a reference line l0 with a given angle θ. The imaged circular points i and

j of π are supposed to be known, together with the vanishing point v0 of l0.

We then use this result to obtain the intersection point x(θ, z) between the

image C(z) of the SOR parallel on π and the visible imaged meridian χ(θ).

The basic relation between the angle θ and the vanishing point vθ is

provided by the Laguerre’s formula [12]

θ =
1

2i
log({vθ,v0, i, j}) , (A.10)

where {} denotes the usual cross ratio of four points. By expressing the

generic point on the vanishing line l∞ of π as

v(λ) = i + λ(i− j) , (A.11)

Eq. A.10 can be rewritten as

ei2θ = {λθ, λ0, λi, λj} , (A.12)

where λθ, λ0, λi = 0 and λj = −1 are the values of the complex parameter λ

respectively for the points vθ, v0, i and j. Taken any image line l0 = (l1, l2, l3)
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through v0 and distinct from l∞, and set i = conj(j) = (a + ib, c + id, 1),

solving for λ0 the equation lT0 v(λ0) = 0 we get λ0 = −1
2

[1 + i tan φ0], where

the angle

φ0 = arctan

(
− l1a + l2c + l3

l1b + l2d

)
(A.13)

embeds in a compact way all the information about the reference line l0 and

the circular points.

Replacing the above value of λ0 of into Eq. A.12, the value of λθ can be

easily computed as

λθ = −1

2
[1 + i tan(φ0 + θ)] , (A.14)

which eventually yields the required vanishing point as vθ = i + λθ(i− j).

In the particular case of a SOR image, the vanishing point vθ can be

computed as above with the point vs = ls × l∞ and the image line ls as the

reference v0 and l0, respectively (see Fig. 2.3). The image line lθ = vθ × o—

where o = C−1(z)l∞ is the image of the parallel’s center—intercepts the

imaged parallel C at two points, of which the required point x(θ, z) on the

visible imaged meridian χ(θ) is the farthest one from vθ along the line lθ.
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A.4 Linear Constraints on the IAC

This section describes single view calibration constraints as geometric con-

structions involving the IAC and the fixed entities computed as shown in the

first part of this thesis. The ω is represented as a symmetric matrix with

elements:

ω =




ω1 ω2 ω4

ω2 ω3 ω5

ω4 ω5 ω6


 (A.15)

The constraints can be expressed linearly as

κT ωv = 0 (A.16)

where ωv = (ω1, ω2, ω3, ω4, ω5, ω6)
T is the vector of the elements of ω and

κ = (κ1, κ2, κ3, κ4, κ5, κ6)
T is the vector of the coefficient of the constraint.

A.4.1 The constraint of the circular points

The constraint of the circular points:

IT ωI = 0 JT ωJ = 0 (A.17)

can be rewritten as

I1I1ω1+(I1I2+I2I1)ω2+I2I2ω3+(I1I3+I3I1)ω4+(I2I3+I3I2)ω5+I3I3ω6 = 0

(A.18)

and in the vector representation it becomes:

κIJ = (I1I1, I1I2 + I2I1, I2I2, I1I3 + I3I1, I2I3 + I3I2, I3I3)
T (A.19)

where I = (I1, I2, I3)
T ; in practice, all the circular points information is

contained in one of the complex conjugate points, say I. In this case also κIJ
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is a complex vector, writing out the real and imaginary parts of the eq.A.19

yields two linear expressions in the elements of ω denoted in vector form

Re[κIJ]

Im[κIJ]




T

ωv = 0 (A.20)

A.4.2 The constraint of the pole-polar relationship

The last important constraint is expressed by the pole-polar relationship

l∞ = ωv (A.21)

where v is the vanishing point of the direction orthogonal to the plane with

the vanishing line l∞. Eq.A.21 place two linear constraint on the elements of

the IAC. The third constraint is dependent on the other two. The eq.A.21

can be transformed using the cross product as

l∞ × ωv = 0 (A.22)

Indicating l∞ = (l1, l2, l3)
T and v = (v1, v2, v3)

T and expanding eq.A.22 the

constraints have the following form

−l3v1ω2 − l3v2ω3 + l2v1ω4 + (l2v2 − l3v3)ω5 + l2v3ω6 = 0

l3v1ω1 + l3v2ω2 + (l3v3 − l1v1)ω4 − l1v2ω5 − l1v3ω6 = 0

−l2v1ω1 + (l1v1 − l2v2)ω2 + l1v2ω3 − l2v3ω4 + l1v3ω5 = 0

in matrix form:

κlv =




0 −l3v1 −l3v2 l2v1 (l2v2 − l3v3) l2v3

l3v1 l3v2 0 (l3v3 − l1v1) −l1v2 −l1v3

−l2v1 (l1v1 − l2v2) l1v2 −l2v3 l1v3 0




T

(A.23)

or

κlv
T ωv = 0
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A.4.3 The constraint of the zero skew and unit aspect

ratio

The general five parameter internal camera model may be simplified in many

cases by a priori knowledge of some of the parameters. That camera skew

is zero is the most commonly applied internal parameter constraint. It spec-

ifies that the vertical and horizontal imaging axes are orthogonal. This is

a reasonable assumption for most cameras. In terms of the IAC this mean

ω2 = 0 [108] and the corresponding constraint is

(1, 0, 0)ω(0, 1, 0)T = 0

In practice CDD cameras can often be considered to have zero skew and

unit (or known) aspect ratio to have square pixels. A known aspect ratio r

yields the following constraint [108]

ω3

ω1

− ω2
2

ω2
1

=
1

r2
(A.24)

In the case when also the camera skew is zero, i.e. ω2 = 0 the constraint of

eq.A.24 becomes:

(1, r, 0)ω(1,−r, 0)T = 0

or

ω1 − r2ω3 = 0
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A.5 Closed form solution for the intersection

of two ellipses

Given two ellipses C1 and C2 is there an analytical solution to solve for the

points of intersection with Gröbner basis [47]. These solutions are the roots

of a quartic polynomials whose coefficient are calculated in terms of the conic

coefficient matrix C1 and C2.

Gröbner bases [47] provide a systematic computational method to find the

intersection between two ellipses without testing for false solution as [109] or

[110] and without relying in numerical methods.

Given C1 and C2 the coefficient matrix of two ellipses in homogeneous

representation we want to find their intersection. If we consider the dual

problem (i.e. C∗1 and C∗2) the problem becomes to find all the lines tangents

to both the ellipses. In general this problem can be formulated as





pTC1p = 0

pTC2p = 0
(A.25)

where p = (x , y , 1 )T defines a point in IR2 and C1, C2 are the coefficients

matrix of the two ellipses, respectively:

C1 =




A B/2 D/2

B/2 C E/2

D/2 E/2 F


 (A.26)

and

C2 =




a b/2 d/2

b/2 c e/2

d/2 e/2 f


 (A.27)
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By substituting eq.A.26 and eq.A.27 in the system of eq.A.25 the system

becomes





x2a + x y b + y d + y2c + y e + f = 0

x2A + x y B + y D + y2C + y E + F = 0
(A.28)

by using the Gröbner basis the system becomes:





p4x
4 + p3x

3 + p2x
2 + p1x + p0 = 0

q1y + q0 = 0
(A.29)

where the polynomials coefficients p0, p1, p2, p3, p4, q0, q1 can be calculated

for example using a computer algebra system such as Mathematica c© or

Maple c©. Using Maple c© i have obtained the following results:

p0 = f 2C2 − fCEe− 2 fCFc + fE2c + CFe2 − EFce + F 2c2 (A.30)

p1 = −2 CfcD − bCfE + 2 C2df − CeBf + 2 EcBf + CDe2

− cEeD + 2 c2FD + 2 bCFe− bcEF − CdEe

− 2 CcFd + cE2d− cBeF

(A.31)

p2 = 2 C2fa− bCBf − 2 CfcA + cB2f − CeEa− 2 CcFa + cE2a

+ c2D2 + 2 bCDe− bcED − 2 CcDd− cBeD + b2CF − bCdE

− bFcB + Ce2A− cEeA + 2 c2FA + C2d2 − CeBd + 2 EcBd

(A.32)

p3 = −2 CacD − bCEa + 2 C2ad− CeBa + 2 EcBa + b2CD

− bDcB + 2 c2AD + 2 bCeA− bcEA− bCBd− 2 CcAd

− cBeA + cB2d

(A.33)
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p4 = ACb2 − bBaC − bAcB + a2C2 − 2 acAC + cB2a + c2A2 (A.34)

q0 = −b3xC2F − b3Ax3C2 −Db3x2C2 + 2 DbxCceB + 2 bAx2CceB

− b2C2Fe + faC3e− fbC3d− bxC3d2 + fb2C2E − 2 abx2C3d

+ 2 Db2x2CcB + 2 b2xCFcB − b2Ax2C2e−Db2xC2e− bAxCFc2

+ fbAxC2c− fabxC3 + 2 bAx2C2dc− 2 DbAx2Cc2 + 2 aDbx2C2c

+ abxC2Fc− bA2x3Cc2 − 2 abx3CcB2 + xC2d2cB − a2bx3C3

− 2 bx2CdcB2 − 2 fbxCcB2 + fb2xC2B + 2 abAx3C2c− bAx3c2B2

+ 2 DAx2c3B − 2 aDx2Cc2B −Dxc2eB2 − Ax2c2eB2 −Dbx2c2B2

− Fc2eB2 + 2 ax2C2dcB − axCFc2B + faxC2cB + x2dc2B3

+ fxc2B3 − 2 aAx3Cc2B + a2x3C2cB + AxFc3B − fAxCc2B

− 2 Ax2Cdc2B − bxFc2B2 + fC2dcB − CFdc2B + A2x3c3B

+ ax3c2B3 + b2xC2Ed + D2xc3B + 2 DbxC2dc + fEc2B2

− 2 fbCEcB − fDCc2B + DFc3B − 2 abx2CEcB + ab2x2C2E

+ ax2Ec2B2 + xEdc2B2 − 2 DxCdc2B + bC2Fdc− fAC2ce

+ ACFc2e−D2bxCc2 + fDbC2c−DbCFc2 − 2 bxCEdcB

+ AxCEdc2 − aDxC2ce− a2x2C2Ec− faC2Ec + 2 aAx2CEc2

− A2x2Ec3 + fACEc2 + A2x2Cc2e− AxC2dce + a2x2C3e

+ aCEFc2 − axC2Edc + aDxCEc2 − aC2Fce−DAxEc3

− AEFc3 + axC3de + 2 bCFceB + 2 b2Ax3CcB + b2x2C2dB

+ ab2x3C2B − 2 aAx2C2ce + DAxCc2e

(A.35)
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q1 = fb2C3 − 2 fbC2cB + fCc2B2 + aC3e2 − 2 aC2Ece + aCE2c2

+ DbC2ce−DbCEc2 −DCc2eB + DEc3B − b2C2Fc− bC3de

+ bC2Edc + 2 bCFc2B − AC2ce2 + 2 ACEc2e− AE2c3 + C2dceB

− CEdc2B − Fc3B2

(A.36)

The roots of the quartic polynomial are the x coordinates of the intersec-

tion points, the corresponding y coordinates can be computed by plugging

the roots xi, i = 1..4 in the linear equation in eq.A.29 obtaining:

yi =
q0(xi)

q1

i = 1..4 (A.37)
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Appendix of the Part B

B.1 Absolute Conic and rotating cameras

The image of the absolute conic is the projection of the absolute conic Ω.

This is an imaginary point conic that lies on the plane at infinity Π∞ in

3D and has the property that it is invariant to similarity transformations of

space [101]. The conic relevant to calibration is its projection onto the image

plane, i.e. the image of the absolute conic ω (IAC). The IAC is related to

the camera calibration parameter by ω = K−TK−1. The calibration matrix K

may be computed from ω according to the Cholesky decomposition.

One important property of the IAC is that it can be transferred from one

image to another through the infinite homography H∞ as:

ωi = H∞−T
ij ωjH

∞−1
ij (B.1)

Once we have H∞ the equation above can be used to impose constraint on

ω. Points at infinity (like for example vanishing point) are mapped between

views by the infinite homography H∞ and for this is independent on trans-

lation between view. In particular when there is no translation between the
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views, the infinite homography H∞ relates points of any depth. This sim-

plification can be exploited when images are taken with cameras having a

common center. The H∞ coincide with the inter-image homographies, so we

have a convenient method of measuring H∞ directly from images.

B.2 Computing the Slave internal internal cam-

era parameter

Internal camera parameters necessary for the PTZ-camera can be computed

very accurately as recently shown in [102] using the method originally de-

scribed in [103]. When images are taken with cameras all located at the same

camera center point in space camera matrices can be simplified. It is possible

to analyze this situation by representing each camera as a 3×3 matrix instead

of a general 3× 4 camera matrix. A point in the i-th image, represented by

a homogeneous 3-vector Xi corresponds o a ray in space consisting of points

of he form λP−1
i xi. Points on this ray are mapped into the j-th image to a

point x = PjP
−1
i xi. Denoting the transformation Hij = PjP

−1
i one sees that

he i-th and j-th images are related by a projective planar transformation

Hij. Clearly this can be estimated by at least four matched points. Each

transformation estimated by point correspondences is related to the internal

camera parameter as eq.B.1. Once the homographies are known the equation

above can be expressed linearly in the terms of ω. If the skew is zero which is

usual in modern cameras, there are four unknown in the internal camera pa-

rameters: focal length (1 DOF), principal point (2 DOF) and aspect ratio (1

DOF). Four homographies suffices to compute the minimal solution. Infact

each equation provides a single constraint on ω. Since we need the internal

camera parameter in a specified home position only for computing angles we
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don’t need using the zoom. This means that the internal camera parameter

does not variyng while panning and tilting so the in the eq.B.1 ωi = ωj = ω

and becomes

ω = H−T
ij ωH−1

ij (B.2)
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