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Abstract

We present a vision system for real-time 3D tracking

of multiple people moving over an extended area, as seen

from a rotating and zooming camera. Despite the general

problems of multiple target tracking (MTT), the use of a

pan–tilt–zoom (PTZ) camera adds several difficulties for the

multiplicity of connected problems.

Our approach exploits multi-view image matching tech-

niques to index and refine, at runtime, the closest world

to image homography for the current view. This is made

possible by applying (in a batch phase) bundle adjustment

method over a set of distinctive visual landmarks extracted

from the field of regard 1 of the zooming camera sensor.

The approach is experimentally evaluated on several dif-

ficult video sequences. Quantitative results show that the

proposed approach makes it possible to deliver stable track-

ing performance in scenes of previously infeasible complex-

ity. We achieve an almost constant standard deviation error

of less than 0.3 meters in recovering 3D trajectories of mul-

tiple moving targets in an area of 70x15 meters.

1. Introduction

In recent years computer vision has seen tremendous

progress and several algorithms have become applicable for

real-world tasks. These successes have promoted demand

for active vision systems than can autonomously operate

in scenarios of daily life. This is interesting for applica-

tions such as wide area scene monitoring using robotic cam-

eras. The goal of wide area monitoring, gaze redirection and

zoom control on target details, has opened new problems for

tracking, especially for use as surveillance devices. In par-

ticular, abnormal behavior detection at a distance demands

both 3D trajectories analysis [20] and the necessary image

resolution to perform biometric recognition [21]. This can-

not generally be achieved with a single stationary camera

1The camera field of regard is defined as the union of all field of view

over the entire range of pan and tilt rotation angles and zoom values.

sensor. Even though a large number of stationary or PTZ

cameras were adopted, making them operate in a coopera-

tive way is an expensive solution. Making the most use of a

single zooming sensor is a worthy goal.

In this paper we focus on tracking multiple people over

an extended area as observed by a single rotating and zoom-

ing camera sensor. Such a scenario puts notable demands

on two well known classes of vision algorithms: multi view

geometry for camera sensor registration (i.e. manage visual

data to account for camera zooming and pose change) [10]

and multiple target tracking [28].

In order to recover 3D metric trajectories of multiple tar-

gets at a distance, camera parameters must be taken into

account during the measurement process. It is well known

that any metric measurement in the scene needs some form

of camera calibration. For zooming cameras, however, pre-

calibration is almost impossible, since it is difficult to recre-

ate the full range of zoom and focus settings. Markers are

not available, and 3D measurements are not easily obtained

for points visible in the provided scene. Known uncali-

brated techniques are currently far from being real time and

the task of aligning the systems coordinate frame, with that

of the tracked objects remains non-trivial. However, a cor-

rect exploitation of zooming lens could provide high accu-

racy for tracking targets at a distance. In particular, the ac-

curacy at which a target position can be estimated depends

on the distance between the target and the camera (the more

a target is distant from the camera, the larger the measure-

ment uncertainty is). High zooming-in induces high accu-

racy in the measurement. To the best of our knowledge no

studies have taken advantage of this potential accuracy to

recover multiple trajectories in wide areas.

In addition, tracking of multiple targets with a zooming

camera sensor becomes even more challenging because of

the imaged scale variations of the targets due to change of

camera focal length, camera redirection and change of ob-

ject to camera distance. False measurements extraction due

to wrong scale inference could prevent also data association

since the computational complexity increases exponentially



with clutter [26]. This because we don’t know if a given ob-

servation was a false alarm or a correct measurement from

a target.

1.1. Relationship to Previous Work

In the literature multiple target tracking with a moving

camera follows two distinct approaches: 1) performing tar-

get localization from an adequate representation of the tar-

get shape and appearance 2) performing target localization

from target dynamics and registration of the moving sensor.

Several partial solutions have been proposed. Some au-

thors have considered the problem of managing the target

scale change especially when tracked with zooming cam-

eras. In [19], the authors combine the boosting detector of

[27] with tracking based on particle filters. No camera mo-

tion or geometric scene information are used in this case;

imaged target scale is estimated according to the boosting

detector (the target scale dynamics is modeled in its state

and estimated through a particle filter). The boosting learn-

ing process requires off-line acquisition of target appear-

ances.

In [29], this work is extended by taking into account also

the sensor movements. In particular, the world-to-image ho-

mography computed from the hockey rink model is consid-

ered [18]. In this way, a more complex dynamic model is

specified in 3D world coordinates. Scale dynamics is not

modeled in the target state and the mean-shift algorithm [3]

is used to stabilize the results of tracking to predict better the

location of the target. Adaptation to scale changes is per-

formed by examining windows slightly larger/smaller than

the current target size.

In [24], the authors perform tracking by modeling the

whole image as a set of layers. Each layer consists of an

elliptic shape, a target motion model (translation, rotation

and scale) and layer appearance (intensity modeled using a

single Gaussian). Sensor registration is performed by com-

pensating the background motion using the estimated inter-

image homographies. In this way, the target motion can

be estimated from the compensated image. The approach

has been applied to airborne vehicle tracking and to activ-

ity monitoring, with ground-based stationary pan-tilt-zoom

camera. In the latter case target size changes more than in

the airborne tracking; larger shape variance is needed to ac-

commodate size changes.

Recent advances in the image searching techniques have

been shown that real-time landmark matching and local-

ization with a large landmark database has become possi-

ble [17]. Based on this technique, the work [9] have been

shown that a query in a 1 million image database takes

0.02 seconds. This results in a frame-rate of about 50Hz,

well suited for real-time robot global localization. Despite

this success, no focus is given to take advantage of this ef-

fort aimed to multiple target tracking with robotic zooming

cameras. The closest work related to our approach is [7] in

Figure 1. Left: Off the shelf PTZ camera. Right: Components of

our system and their connections, executed for each frame of a

video sequence.

which discriminative features from a single view are used

to perform image object transfer in a collaborative camera

network.

1.2. Overview and paper contribution

Our proposed approach differs from previous similar

work on MTT using a single PTZ camera [19, 29, 24]

mainly in three aspects: object scale inference, observation

model estimation and EKF-CJPDAF filtering model.

We exploit multi-view image matching to recover and

refine at runtime the closest world to image homography

and the closest focal length with respect to the current view.

Estimation is carried out by indexing a set of bundle ad-

justed [25] visual landmarks extracted from the field of re-

gard of the zooming camera sensor. Under the assump-

tion of vertical stick like targets moving on planar scene,

the target scale and the observation model are directly es-

timated from the target state and the geometric relation-

ships between the PTZ camera and the single view geom-

etry of viewed scene. This permits to obtain very effective

and accurate template matching for target measurement ex-

traction. Indeed scale knowledge significantly reduces the

expected computational cost of template matching and in-

creases accuracy in measurement extraction; while the ob-

servation model computed by linearizing the time-variant

world to image homography correctly captures the measure-

ment uncertainties as the camera moves and zooms. Based

on this evidence, we adopt an EKF-CJPDAF tracking and

data association filter that carefully combines the interplay

between the two modules.

We provide several new contributions in this research:

(1) We introduce a new multiple target tracking framework

for a single rotating and zooming camera that combines the

robustness of tracking-by-detection, the accuracy of a batch

bundle adjustment optimization and the efficiency of EKF-

CJPDAF with scale invariant target template matching; (2)

Differently from any previous work performing MTT with a

single PTZ camera, we are able to recover 3D metric trajec-

tories of moving persons with almost constant uncertainty



less than 0.3 meters, at more than 70 meters distance from

the camera; (3) Differently from [29], no explicit 3D model

based alignment is performed to obtain the time variant

world to image homography since we match unstructured

features. Moreover our batch learning strategy is simpler

since it does not require learning target appearance.

Fig. 1 gives an overview of the proposed vision system.

Each frame is processed as follows: first, a nearest neigh-

bor image is retrieved from the bundle adjusted image set

and a new camera pose is estimated; then targets measure-

ments are extracted taking advantage of motion prediction

and scale information inferred from camera pose and zoom

value. At any point in time the system uses only informa-

tion from the last and current frame. The rest of the paper is

organized as follows. Sections 2 and 3 detail the three main

components of the system, namely observation model esti-

mation, scale invariant target measurement extraction and

multiple target tracking. Finally sect. 4 presents experimen-

tal results.

2. Estimating the Observation Model

In the case of a PTZ camera viewing a plane (z = 0),

the observation model must assume a non-linear function gt

relating at time t the targets world coordinates (xt, yt, 0) ∈
R

3 to image measurement zt ∈ R
2:

zt = gt(xt, yt) + vt (1)

where vt is an uncorrelated stochastic process with Gaus-

sian distribution vt ∼ N (0,V). V is the 2 × 2 covari-

ance matrix of the measurement noise which models image

pixellation noise and image localization errors, and holds

constant. Since we have assumed that targets move in a

plane, gt is the time variant world-to-image homography

that models the projection from the world plane to the cur-

rent camera view.

Estimating the time variant world to image homography

gt with a PTZ camera in real-time is a challenging problem.

Recent works identify features in the images for which the

real-world coordinates can be measured (i.e. they perform

model based alignment) [11, 18]. The main advantage of

these methods is the absence of drift because the system is

always registering directly to the scene as long as a subset

of the features is visible. This strategy has also the bene-

fit that the coordinate system is always implicitly defined.

However, in many real-world cases, especially with zoom-

ing cameras, three critical inherent drawbacks may occur:

1) the 3D reference model is difficult to obtain, 2) the sub-

set of the features is not always visible because of zoom

in operations, 3) measurable 3D features may not be easily

detectable.

A general solution for these problems is to compute

an initial homography between a ground plane in a frame

and the world ground plane [22]. Then, detect the interest

Figure 2. Camera motion detection and camera geometry indexing.

The current image It is matched and its closest camera geometry

retrieved through Hmj (see text).

points in the reference frame and the next frame, check their

matching, and hence use the resulting correspondences to

compute the next homography. The process is repeated for

all subsequent frames. However the clear limitation of such

approach is that concatenating transformations introduces

accumulation of small errors. Frame to frame registration

leads to misalignments, which invalidate the observation

model of eq. 1, and results in a bias in target measurement.

Some recent works limit this drifting effect by performing

real-time global optimization over several frames [2, 13]. A

main drawback is that all these methods are limited to the

special case of panning and tilting smooth motions. No ex-

plicit general zooming camera motions are considered.

We avoid these drawbacks by matching unstructured fea-

tures that index bundle adjusted scene geometry. This track-

ing by detection approach considerably facilitates the model

based alignment problem, avoiding complex recursive fil-

tering approach or global optimization at run-time [14]. Ob-

viously, this can be done if it is possible to train the system

beforehand. According to this, differently from [7] which

uses just one image, during a learning stage a base set of

visual landmark points from some reference views is build.

The reference views are taken so as to cover the whole field

of regard of the PTZ system at several different pan tilt an-

gles and zoom settings. Each image in the base set has an

ensemble of descriptors that correspond to location features

seen from different camera poses and focal length values.

Each view I1..n is supplemented with a bundle adjusted



Figure 3. a): Three orthogonal vanishing points in the reference

plane. b): The base set images. The red rectangle indicates the

reference image c): Imaged points with 3D known length. d): The

rectified reference plane.

homography, Hlj with l = 1..n, that relates the view in

the base set to a common reference plane Π (i.e. the pla-

nar mosaic plane) as shown in fig. 2. The reference plane

Π is related to 3D world coordinates through homography

HW . Each homography Hlj is parameterized by two rotation

angles (pan and tilt) and the focal length. Optimization is

carried out by minimizing the global reprojection error ac-

cording to bundle-adjustment [6].

At runtime the match for a SIFT feature extracted from

the current frame It is searched according to the Euclidean

distance of the descriptor vectors. Because the keypoints

are detected in scale–space, the scene does not necessarily

have to be well–textured which is often the case of planar

man–made scene. SIFT based matching exploits scale in-

variance and is therefore appropriate in the presence of cam-

era zooming operations, moreover SIFT is also indicated for

blurred features due to its multi-resolution character.

To allow for fast search the base set is organized as a

KD–tree. The search is performed so that bins are explored

in the order of their closest distance from the query descrip-

tion vector, and stopped after a given number of data points

have been considered [16]. In particular since the number

of images that may overlap in a single ray is small (we as-

sume no = 4) each feature is matched to its no nearest

neighbors. These nearest neighbor features may belong to

different images of the base set and a vote for the corre-

sponding view is taken if the descriptors distance ratios sat-

isfy: dk–NN

d(k+1)–NN
< 0.67, k = 1 . . . no − 1. The image Im closest

to the current view It is the one having the greatest num-

ber of feature matches (i.e. votes). Once Im is found, the

homography Ht relating It to Im is computed at run time

with RANSAC (see fig. 2). The clear advantage is that

wrong feature matches, being distributed over a large num-

ber of images, are less likely to cause an incorrect image

match. This allows for a significant reduction in the num-

ber of RANSAC iterations required at runtime.

Finally the world to reference plane transformation HW

is obtained exploiting single view geometry properties of

the base set (see fig. 3(a) and fig. 3(b)). The mosaic of the

base set is obtained from the inter-image homographies Hlj

between a reference image Ij and each of the other images

in the base set. From this single wide view, the transfor-

mation HW maps any point in the 3D world plane onto the

reference plane Π. The 3D scene plane is mapped onto the

current image It as (see Fig. 2):

Gt = HtH
−1

mjHW (2)

The world to mosaic homographyHW is computed as HW =
H
−1
p Hs where Hp is the rectifying homography defined as:

Hp =
(

β−1
−αβ−1

0

0 1 0

l1 l2 1

)
, the scalars l1, l2, α and β are

obtained from the projections of the circular points of the

imaged scene plane [15]. Hs is a similarity transformation

obtained from the 3D length of two specified imaged points

p1, p2 as shown in fig. 3(c) and fig. 3(d).

2.1. Target scale inference

The target imaged scale can be directly estimated from

the target state and from the geometric relationships be-

tween the PTZ camera views and the matched image onto

the base set. This allows to obtain a robust and more effec-

tive estimation of the target image likelihood.

Because targets have been assumed to be closely verti-

cal in the 3D scene plane, they can be approximated by a

rectangular bounding box template in the image. The posi-

tion of the two extremities (the imaged feet and heads loca-

tion for humans) are related by a planar homology [4]. This

transformation is obtained by exploiting information about

the directions orthogonal and parallel to the scene plane,

namely the vanishing point and the vanishing line of the

plane. Since for the individual images of the sequence, the

vanishing line and the vanishing points change according to

the variation of the camera parameters due to the pan-tilt-

zoom operation, for each image at time t the planar homol-

ogy constraint is expressed as:

Wt = I+ (µ− 1)
vt,∞ · lTt,∞
vT
t,∞ · lt,∞

, (3)

and is completely defined by lt,∞ and vt,∞ obtained re-

spectively as:

lt,∞ = Gt · [0, 0, 1]
T, vt,∞ = KtK

T
t · lt,∞ (4)

The cross-ratio µ, being projective invariant, remains con-

stant throughout the sequence. The internal camera matrix

Kt is computed in closed form by directly exploiting the ho-

mography Ht in eq. 2. This is achieved by solving for Kt the

following equation:

Ht Km K
T
m Ht = KtK

T
t (5)

The internal camera parameters Km =
(

fm 0 x0

0 fm y0
0 0 1

)

are retrieved from the closest image Im as described in the



Figure 4. Measurement extraction process in the neighborhood of

the predicted measurement ẑt+1. The measurement zt+1 (foot po-

sition) is derived by transforming the template according to Wt+1.

z
′

t+1 is the head position and Rt is the measurement region.

previous section. Assuming Ht =
(

h11 h12 h13

h21 h22 h23

h31 h32 h33

)
and

Kt =
(

ft 0 x0

0 ft y0
0 0 1

)
we have two equations for the focal

length ft:

f2
t =

f2
m (h2

11 + h2
12) + h2

13

f2
m (h2

31
+ h2

32
) + h2

33

, f2
t =

f2
m (h2

21 + h2
22) + h2

23

f2
m (h2

31
+ h2

32
) + h2

33

(6)

We take the mean of the two constraints of eq. 6. This esti-

mation has a very good stability and accuracy since the focal

length fm in the intrinsic camera matrix Km for the matched

image Im is estimated offline, as described in sect. 2, and

takes into account the whole base set because of the bundle

adjustment optimization.

The planar homology constraint can be applied at run-

time using the eq. 3 to estimate the predicted imaged scale

of the target template at time t+1. For each target, measure-

ment search is computed as follows: we assume zt+1 and

z′t+1 to be respectively the imaged extremities of a stick-

like target, specified in the image It+1; these two points are

related through Wt+1 of eq. 3 according to:

z′t+1 = Wt+1zt+1. (7)

If the predicted measurement ẑt+1 is considered, the pre-

dicted head position is estimated applying eq. 7 to the target

template in ẑt+1. This operation is performed in the neigh-

borhood of ẑt+1. In this case the target measurement posi-

tion is obtained by searching for the maximum of the image

likelihood (see fig. 4). Unlike the iterative approaches pre-

sented in previous works our scale inference formulation is

analytic and indirectly takes into account the geometry and

the appearance of the whole field of regard.

3. Multiple person tracking

The scale inference strategy just described in the pre-

vious section allow us to perform scale invariant template

matching inside the target search region. This is achieved

by adopting color spatiograms template matching since they

retain information about the geometry of object feature dis-

tributions [1] (color histogram alone would not benefit of

any prior knowledge about target scale).

According to this we use a color spatiogram template

hT (b) = 〈nb, µb,Σb〉 , b = 1, ..., B with B = 4 taken in

the first frame of the sequence. The values of nb, µb and

Σb are respectively the number of pixels in the b-th bin, the

mean and covariance of the coordinates of those pixels.

According to this, differently from [24, 19], it is possi-

ble to decouple the target imaged size from its position and

speed so that a simplified target state model can be used.

Therefore, the following model is assumed:

xt = Axt−1 +wt−1, (8)

where the target state is modeled as x ∈ R
4, xk =

[xt, yt, ẋt, ẋt], being ẋt, ẏt the target velocity components,

A the constant velocity model transition matrix; wt is an

uncorrelated stochastic process with Gaussian distribution

wt ∼ N (0,Qt) and Qt is the 4 × 4 covariance matrix of

the process noise, that accounts for the deviations from the

assumed behavior (i.e. target maneuvers).

The process noise wt = N (0,Q), and particularly co-

variance Q, must therefore model the capability of the tar-

get to change acceleration and/or motion direction between

consecutive instants. If we assume wt to be constant during

the k-th sampling period, the increase in the velocity dur-

ing this period is wt∆t, while the effect of this acceleration

on the position is wt∆t2 1

2
. The following expression for

covariance Q is therefore obtained as:

Q =
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. (9)

To have a realistic representation of the target movement, in

that targets move mainly in the lateral directions, the com-

ponents of target acceleration σx, σy should be different. A

rotation matrix can be applied to covariance Q:

Dt =

(
I2×2 0
0 R2×2

)
, R2×2 =

(
vt

‖vt‖
at

‖at‖

)
, (10)

where vt ∈ R
2 is the velocity vector with component

vt = [ẋt ẏt]
T and at ∈ R

2 is the vector orthogonal to

vt, with components at = [−ẏt/ẋt 1]T . Our formulation

allows to perform the fast recursive estimation of the Ex-

tended Kalman Filter (EKF), where the only equation that

is explicitly affected by the process noise is the covariance

time update equation: P−
t = APt−1A

T +DtQDT
t .

The measurement equation of eq. 1 is finally linearized

around the prediction x̂−
t , according to EKF formulation as:

Ĝt =

(
∂G1t
∂xt

∂G1t
∂yt

0 0
∂G2t
∂xt

∂G2t
∂yt

0 0

)

x=x̂
−

t

. (11)

The closed form recursive estimation of the EKF is fur-

ther exploited to enhance real time performance by using



an ad-hoc JPDAF formulation, for data association [8]. If

the total number of observations and tracks is large the use

of JPDAF is computationally expensive. CJPDAF (Cheap

JPDAF) calculates the probability of track k being associ-

ated with measurement i as:

βki =
pki

Sk + Si − pki + C
, (12)

where pki = N (νi(k)), being νi(k) the innovation of the

k-th track wrt i-th measurement, Sk =
∑M

i=1
pki, Si =∑T

k=1
pki and C is a parameter that models clutter den-

sity, T is the number of targets and M is the number of

observations at time k. This technique heavily weights mea-

surements in only one covariance target region, and lightly

weights measurements that lie in an area with several over-

lapped covariance target regions. If several other tracks can

be associated with measurement i, a large Si will lower the

weight. If the track has several measurements to choose

from, all weights will be lowered by Sk. This calculation

gives higher weights to those measurements which are clos-

est to the predicted position and which are associated by the

fewest number of other tracks.

4. Experimental results

Performance evaluation in 3D multiple target tracking

with a zooming camera is a very complicated task. Some

errors can be due to a mistake of the camera tracker rather

than a weakness of the data association strategy. A person

could have been undetected because of wrong scale infer-

ence, due to optical and mechanical misalignments in the

lens system. It is not easy to separate the performance of

the components from that of the overall system.

To address these difficulties we used a real data-set, ac-

quired with an off-the shelf SONY SNC-RZ30 PTZ cam-

era, deployed over an area of approximately 900 squared

meters, long 70 meters. The video sequences are recorded

at 368 × 272 pixels and 20fps. The scene is learned, as

described in sect. 2, from 150 images acquired at different

levels of pan, tilt and zoom, so as to cover the whole field of

regard. We considered several scenarios of increasing diffi-

culty with three and four targets. Each sequence is acquired

with continuous pan, tilt and zoom (difficult sequences in-

troduce also a zoom out step during targets occlusion). Ini-

tial target image templates are acquired manually, though

automatic initialization can be achieved by plugging the de-

tector [5] or [12] into our framework. We quantitatively

measure performance by comparing generated and manu-

ally annotated trajectories. In total about 3500 frames are

examined. Our system with non-optimized code (apart from

the SIFT library) reaches about 20 frames per second.

Fig. 5 refers to the results obtained in the three tar-

gets scenario. Fig. 5(a) shows the rectified reference plane,

with superimposed recovered trajectories and some sample

Figure 6. An example of target scale error with varying the cross-

ratio µ. The plots are reported for two different measured 3D

world lengths.

frames. In particular, left and bottom frames show two tar-

get occlusions resolved at different zoom factor. The top

four frames indicate the adaptation of the motion model to

a target maneuver. Target uncertainty increases in the direc-

tion of lateral acceleration. Fig. 5(b) shows the recovered

trajectories superimposed in the reference plane. The first

three plots in fig. 5(c) show the estimation error for each

target in the scene. The error is small and remains constant

over time as the target to camera distance and zoom factor

increase. This result shows that the proposed method cor-

rectly exploits the zoom to get tracking accuracy at a dis-

tance. The fourth plot in fig. 5(c) shows the targets speed

expressed in m/s; the correct estimation of speed allows

to detect the two running targets. The fifth plot in fig. 5(c)

shows focal length advancement from about 450 pixels to

about 2000 pixels, corresponding approximately to a 4×
zoom factor. Fig. 5(d) confirms the correct exploitation of

zoom lenses. The uncertainty (3σ error ellipses) of each tar-

get remains almost constant as targets walk away from the

camera. The covariance ellipse increases only when the tar-

get is occluded because of the data association mechanism.

As one would expect, error localization is more pro-

nounced along depth direction. Indeed the standard devi-

ation error is higher along the camera z direction. In our

experiments the average standard deviation is 0.3 meters,

also when the target to camera distance is more than 70 me-

ters. This good performance is possible because of the ab-

sence of drift, due to the continuous detection and accuracy

of the associated homography (Hmj in eq. 2).

To confirm these results all sequences were quantita-

tively analyzed by varying two different system parameters:

1) the 3D world known length used to compute similarity

transformation HW in eq. 2; 2) the cross-ratio µ of eq. 3.

Fig. 6 shows the target imaged scale error for two different

known length in the 3D world. The tracker yields moderate

error for a reasonable deviation of the cross-ratio, showing

low sensitivity to this parameter. In the last experiment we

test the performance of the tracker for a very challenging

sequence with four targets.

Fig. 8 shows the first part of the sequence where four

targets (two dressed similarly) are walking close together



(a) (b)

(c) (d)

Figure 5. (a): The 3D trajectories recovered by our system, here superimposed onto the rectified mosaic. (b): The same trajectories plotted

in a low resolution mosaic image. (c): A series of plot showing: The estimation error for the three targets, their speeds and the estimated

camera focal length in pixels. (d): A detail of fig.(a), the recovered trajectories are here plotted with the filtered uncertainties of the 3D

target location (3σ regions computed from the covariance matrix). The plot bottom-left shows the determinant of the covariance matrix.

Figure 8. Some frames extracted from a challenging tracking problem. In particular it is emphasized the intersection of all four targets and

the tracker ability to handle complex scenarios. 3D Trajectories are overlayed at run-time in the video frames showing accuracy in camera

parameters estimation. Besides the absence of camera parameters smoothing, overlayed trajectories does not present excessive jittering.

crossing each other; one of the targets is maneuvering, try-

ing to steal identities to the others.

Fig. 7(top) reports the uncertainty of each target. When

all the targets are occluded (between frame 150 and 200) the

camera performs a zoom out motion. This causes a tracking

failure due to low resolution of targets appearance.

5. Conclusion

In this paper we have presented a real-time system that

produces long and stable tracks in complex scenarios. We

improve the effectiveness of multiple target tracking sys-

tems to scene of previously infeasible complexity. Our sys-

tem combines the robustness of tracking-by-detection with



Figure 7. Top: focal-length advancement estimation during track-

ing failure. Bottom: The camera zooms out when targets occlude

each other (between frame 150 and 200). The graph shows the

covariance determinant value for each target.

the accuracy of a batch bundle adjustment optimization.

Both these characteristics are exploited at runtime to infer

the observation model and target scale of a single PTZ cam-

era sensor.

Various directions are available for future research:

1) control the camera to track several targets simultane-

ously, slewing the video sensor from target to target and

zooming in and out as necessary; 2) landmarks mainte-

nance in continuous changing background; 3) 3D ”photo-

tracking” with hand-held cameras using bundle adjusted

data sets as used for site-exploration in “photo-tourism”

[23].
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