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Abstract—Imageanalysis and computer vision canbeeffectively employed to recover the three-dimensional structureof imagedobjects,

together with their surface properties. In this paper, we address the problem of metric reconstruction and texture acquisition from a single

uncalibrated view of a surface of revolution (SOR). Geometric constraints induced in the image by the symmetry properties of the SOR

structure are exploited to perform self-calibration of a natural camera, 3Dmetric reconstruction, and texture acquisition. By exploiting the

analogywith thegeometry of singleaxismotion,wedemonstrate that the imagedapparent contour and thevisible segments of two imaged

cross sections in a single SOR view provide enough information for these tasks. Original contributions of the paper are: single view self-

calibration and reconstruction basedon planar rectification, previously developed for planar surfaces, has beenextended to deal alsowith

the SOR class of curved surfaces; self-calibration is obtained by estimating both camera focal length (one parameter) and principal point

(two parameters) from three independent linear constraints for the SOR fixed entities; the invariant-based description of the SOR scaling

function has been extended from affine to perspective projection. The solution proposed exploits both the geometric and topological

properties of the transformation that relates the apparent contour to the SOR scaling function. Therefore, with this method, a metric

localization of the SOR occluded parts can be made, so as to cope with them correctly. For the reconstruction of textured SORs, texture

acquisition is performed without requiring the estimation of external camera calibration parameters, but only using internal camera

parameters obtained from self-calibration.

Index Terms—Surface of revolution, camera self-calibration, single-view 3D metric reconstruction, texture acquisition, projective

geometry, image-based modeling.

�

1 INTRODUCTION

IN the last few years, the growing demand for realistic
three-dimensional (3D) object models for graphic render-

ing, creation of nonconventional digital libraries, and
population of virtual environments has renewed the interest
in the reconstruction of the geometry of 3D objects and in the
acquisition of their textures fromone ormore camera images.
In fact, solutions based on image analysis can be efficiently
employed in all those cases in which 1) the original object is
not available and only its photographic reproduction can be
used, or 2) the physical properties of the surface of the object
make its acquisition difficult, or even impossible through
structured lightmethods, or 3) the object’s size is too large for
other automatic acquisition methods.

In this paper, we address the task of metric reconstruction
and texture acquisition fromasingleuncalibrated imageof an
SOR. We follow a method which exploits geometric con-
straints of the imaged object assuming a camera with zero
skew and known aspect ratio. The geometric constraints for
camera self-calibration and object reconstruction are derived
from the symmetry properties of the imaged SOR structure.
The key idea is that, since an SOR is a nontrivial “repeated
structure” generated by the rotation of a planar curve around
an axis, it can, in principle, be recovered by properly

extending and combining together single image planar scene
reconstruction and single axis motion constraints.

In the following, we summarize recent contributions on
3D object reconstruction (Section 1.1); we discuss then new
research results on surfaces of revolution and, more gen-
erally, on straight uniform generalized cylinders (Section 1.2)
and, finally, provide an outline of the rest of the paper and a
list of the principal contributions (Section 1.3).

1.1 Three-Dimensional Object Reconstruction
Using Prior Knowledge

Solutions for the reconstruction of the geometry of 3D objects
from imagedata include classic triangulation [19], [13], visual
hulls [47], [42], dense stereo [40], and level sets methods [12]
(see [44] for a recent survey). An essential point for metric
reconstruction of 3D objects is the availability of internal
camera parameters. In particular, self-calibration of the
camera [35] is important in that, although less accurate than
offline calibration [4], [18], it is the only possible solution
when no direct measurements can be made in the scene, as,
for example, in applications dealing with archive photo-
graphs and recorded video sequences. Effective camera self-
calibration and object reconstruction can be obtained by
exploiting prior knowledge about the scene, encoded in the
form of constraints on either scene geometry or motion.

Most of the recent research contributions employ con-
straints on scene geometry. The presence of a “repeated
structure” [32] is a classical example of geometric constraint
frequently used. This happens because the image of a
repeated structure is tantamount to multiple views of the
same structure. In real applications, this can have to do with
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planes, lines, etc., occurring in particular (e.g., parallel,
orthogonal) spatial arrangements. In a repeated structure,
the epipolar geometry induced in the image by multiple
instances of the same object can be expressed through
projective homologies which require less parameters and,
therefore, are more robust to estimate [50]. A further
advantage of geometrically constrained reconstruction is
that fewer (and, in special cases, just one) imagesare required.
An interactivemodel-basedapproach,workingwith stereoor
single images, has been proposed by Debevec et al. in [10],
where the scene is represented as a constrained hierarchical
model of parametric polyhedral primitives—such as boxes,
prisms—called blocks. The user can constrain the sizes and
positions of any block in order to simplify the reconstruction
problem. All these constraints are set in the 3D space, thus
requiring a complex nonlinear optimization to estimate
camera positions and model parameters. Liebowitz et al.
have suggested to perform calibration from scene constraints
by exploiting orthogonality conditions, in order to recon-
struct piecewise planar architectural scenes [29], [28]. Single
viewpiecewise planar reconstruction and texture acquisition
has also been addressed by Sturm and Maybank following a
similar approach [46], [45].

Motion constraints for self-calibration and reconstruction
have been derived mainly for the case of scenes undergoing
planar motion [3]. In particular, recent works have exploited
single axis motion to reconstruct objects of any shape that
rotate on a turntable [15], [9], [24], [31]. Apart from
algorithmic differences in the reconstruction phase, motion
fixed entities (e.g., the imaged axis of rotation and the
vanishing lineof theplaneof rotation) are first estimated from
the image sequence and then used to calibrate the camera.
However, these turntable approaches do not succeed to
perform a complete camera self-calibration. As a conse-
quence of this, reconstruction is affected by a 1D projective
ambiguity along the rotation axis.

In the case of textured 3D objects, the texture must be
acquired from the image in order to backproject correctly
image data onto the reconstructed object surface. Generally
speaking, for the case of curved objects, no geometric
constraints can be set and texture acquisition requires the
estimation of the external calibration parameters (camera
position andorientation). There arebasically twomethods for
estimating external calibration from image data and a known
3D structure. The first method exploits the correspondence
between selected points on the 3D object and their images
[37], [6]. The second method works directly on the image
plane and minimizes the mismatch between the original
object silhouette and the synthetic silhouette obtained by
projecting the 3D object onto the image [22], [33].

For planar objects, texture acquisition using surface
geometric constraints has been solved by Liebowitz et al.
in [28], without requiring the explicit computation of
external camera parameters; projective distortions are
rectified so as to represent textures as rectangular images.
Sturm and Maybank, in [46], have also performed texture
acquisition from planar surfaces, omitting the rectification
step; this saves computation time but requires larger
memory space to store the textures.

1.2 Straight Homogeneous Generalized Cylinders
and Surfaces of Revolution

Surfaces of Revolution (SORs) represent a class of surfaces
that are generated by rotating a planar curve (scaling
function) around an axis. They are very common in

man-made objects and, thus, of great relevance for a large
number of applications. SORs are a subclass of Straight
Homogeneous Generalized Cylinders (SHGCs). SHGCs
have been extensively studied under different aspects:
description, grouping, recognition, recovery, and qualitative
surface recostruction (for an extensive review, see [1]). Their
invariant properties and use have been investigated by
several authors. Ponce et al. [36] have proposed invariant
properties of SHGC imaged contours that have been
exploited for description and recovery by other researchers
[26], [38], [30], [39], [48], [57], [56]. Abdallah and Zisserman
[2] have instead defined invariant properties of the SOR
scaling function under affine viewing conditions, thus
allowing recognition of objects of the same class from a
single view. However, they have left to future work the
problem of finding the analogous invariants in the perspec-
tive view case, and solving the problem of 3D metric
reconstruction of SORs.

Reconstruction of a generic SHGC from a single view,
either orthographic or perspective, is known to be an under-
constrained problem, except for the case of SORs [17]. Utcke
and Zisserman [49] have recently used two imaged cross
sections to perform projective reconstruction (up to a 2 DOF
transformation) of SORs from a single uncalibrated image.
Contributions addressing the problem of metric reconstruc-
tionof SORs fromasingleperspectiveviewmayalsobe found
[54], [8]. Wong et al. in [54] have addressed reconstruction of
SOR structure from its silhouette given a single uncalibrated
image;calibration isobtainedfollowingthemethoddescribed
in [53], [55]. However, with thismethod, only the focal length
can be estimated from a single view, with the assumptions of
zero skew and principal point being at the image center. The
reconstruction is affected by a 1-parameter ambiguity:
Although this can be fixed by localizing an imaged cross
section of the surface, one of the major problems in this
approach is that the silhouette is related directly to its
generating contour on the surface. This is an incorrect
assumption that makes it impossible to capture the correct
objectgeometry in thepresenceof self-occlusions, as shownin
[11]. Single view metric reconstruction of SORs was also
addressed by Colombo et al. who have discussed in [8] the
basic ideas underlying the approach presented in this paper.

Texture acquisition of straight uniform generalized
cylinders (SUGCs), which are a special subclass of SORs,
has been addressed by Pitas et al. [34]. In this approach,
texture is obtained as a mosaic image gathering visual
information from several images. Since texture is not
metrically sampled, the quality of the global visual
appearance of the object is affected in some way.

1.3 Paper Organization and Main Contribution

The paper is organized as follows: Section 2 provides
background material on basic geometric properties of SORs
and states the analogy between single axis motion and
surfaces of revolution. Section 3 describes in detail the
solutions proposed, specifically addressing computation of
the fixed entities, camera calibration, reconstruction of 3D
structure, and texture acquisition. Metric reconstruction of
the 3D structure of the SOR is reformulated as the problem of
determining the shape of a meridian curve. The inputs to the
algorithms are the visible segments of two elliptical imaged
SOR cross sections and the silhouette of the object apparent
contour.Camera self-calibration is obtainedbyderiving three
independent linear constraints from the fixed entities in a
single view of an SOR. Texture acquisition is obtained by
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exploiting the special properties of an SOR’s structure. In fact,
texture is not acquired through the estimation of external
calibration parameters, but is obtained directly from the
image, by using the same parameters that have been
computed for the 3D SOR reconstruction: this avoids errors
due to additional computations. Self-calibration information
is exploited in the resampling phase.

The main contributions of the paper with reference to the
recent literature can be summarized as follows:

1. Single-view reconstruction based on planar rectifica-
tion, originally introduced in [28] for planar surfaces,
has been extended to deal also with the SOR class of
curved surfaces.

2. Self-calibration of a natural camera (3 dofs) is
obtained from a single image of an SOR. This
improves the approach presented in [55], in which
the calibration of a natural camera requires the
presence of two different SORs in the same view.
Moreover, since self-calibration is based on two
visible elliptical segments, it can also be used to
calibrate turntable sequences and remove the 1D
projective reconstruction ambiguity due to under-
constrained calibration experienced so far in the
literature of motion-constrained reconstruction [23].

3. The invariant-based description of the SOR scaling
function discussed in [2] is extended from affine to
perspective viewing conditions.

4. Since the approach exploits both the geometric and
topological properties of the transformation that
relates the apparent contour to the scaling function, a
metric localizationofoccludedparts canbeperformed
and the scaling function can be reconstructed piece-
wise. In this regard, the method improves the SOR
reconstruction approach described in [51].

5. Texture acquisition does not require the explicit
computation of external camera parameters; there-
fore, the results developed in [28] and [46] for planar
surfaces are extended to the SOR class of curved
surfaces. Moreover, since SORs are a superclass of
the SUGC class of curved surfaces, texture acquisi-
tion extends the solution presented in [34].

In Section 4, experimental results on both synthetic and
real data are presented and discussed. Finally, in Section 5
conclusions are drawn and future work is outlined.
Mathematical proofs are reported in the Appendices.

2 BACKGROUND

In this section, we review the basic terminology and
geometric properties of SORs under perspective projection.
We also discuss an important analogy between properties
as derived from a single SOR image and those of a sequence
of images obtained from single axis motion: this analogy
will be exploited in the calibration, reconstruction, and
texture acquisition algorithms, discussed in Section 3.

2.1 Basic Terminology

Mathematically, a surface of revolution can be thought of as
obtainedbyrevolvingaplanarcurve�ðzÞ, referredtoas scaling
function, around a straight axis z (symmetry axis). Therefore,
SORs can be parametrized as Pð�; zÞ ¼ ð�ðzÞ cosð�Þ; �ðzÞ
sinð�Þ; zÞ,with � 2 ½0; 2��, z 2 ½0; 1�. In the 3Dspace, all parallels
(i.e., cross sections with planes z ¼ constant) are circles.
Meridians (i.e., the curves obtained by cutting the SOR with

planes � ¼ constant) all have the same shape, coincidingwith
that of the SOR scaling function. Locally, parallels and
meridians are mutually orthogonal in the 3D space, but not
in a 2Dview. Twokinds of curves can arise in theprojectionof
anSOR: limbsand edges [11].A limb,also referredtoasapparent
contour, is the image of the points at which the surface is
smooth and projection rays are tangent to the surface. The
corresponding 3D curve is referred to as contour generator. An
edge is the image of the points at which the surface is not
smooth and has discontinuities in the surface normal. Fig. 1
depicts an SOR and its projection. Under general viewing
conditions, the contour generator is not a planar curve and is
therefore different from a meridian [25]. Depending on this,
the apparent contour also differs from the imaged meridian.
Parallels always project onto the image as ellipses. Edges are
elliptical segments that are the projection of partially or
completely visible surface parallels.

2.2 Basic Imaged SOR Properties

Most of the properties of imaged SORs can be expressed in
terms of projective transformations called homologies. These
are special planar transformations that have a line of fixed
points (the homology axis) and a fixed point (the vertex) that
does not belong to the axis [43]. In homogeneous coordinates,
a planar homology is represented by a 3� 3 matrix
W transforming points as x0 ¼ Wx. This matrix has two equal
and one distinct real eigenvalues, with eigenspaces, respec-
tively, of dimension two and one. It can be parametrized as

W ¼ Iþ ð�� 1Þv lT

vT l
; ð1Þ

where I is the 3� 3 identity matrix, l is the axis, v is the

vertex, and � is the ratio of the distinct eigenvalue to the

repeated one. A planar homology has five degrees of

freedom (dof); hence, it can be obtained from three point

correspondences. In the special case � ¼ �1, the dofs are

reduced to four, and the corresponding homology H is said

to be harmonic. An imaged SOR satisfies the following two

fundamental properties, the geometric meaning of which is

illustrated in Fig. 2.
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Fig. 1. Imaged SOR geometry. � and � are, respectively, part of the
contour generator and of the apparent contour. The translucent cone is
the visual hull for the apparent contour. X and � are, respectively, a
meridian and its projection. The ellipse C is the edge corresponding to
the parallel Co.



Property 2.1. Any two imaged SOR cross sections are related to
each other by a planar homology W. The axis of this homology is
the vanishing line l1 of the planes orthogonal to the SOR
symmetry axis. The image of this axis, ls, contains the vertex vW

of the homology [2], [1].

Property 2.2. The apparent contour of an imaged SOR is
transformed onto itself by a harmonic homology H, the axis of
which coincides with the imaged symmetry axis of the SOR, ls.
The vertex v1 of the homology lies on the aforementioned
vanishing line l1 [16].

Denoting with C and C0, the 3� 3 symmetric conic
coefficientmatrices associatedwith twogeneric cross sections
that correspond pointwise under the planar homology W, it
holds C0 ¼ W�TCW�1. The harmonic homology generalizes the
usual concept of bilateral symmetry under perspective
projection. In fact, the imaged axis of symmetry splits the
imaged SOR in two parts, which correspond pointwise
through H. This is true, in particular, for imaged cross sections
that are fixed as a set under the harmonic homology: C ¼
H�TCH�1 (or C ¼ HTCH, being H�1 ¼ H). To give an example, the
two elliptical imaged cross sections C and C0 of Fig. 2 are
relatedbyaplanarhomologyWwithaxis l1 andvertexvW. The
vertexvW is alwayson the imagedaxisof symmetry ls. Imaged
cross section pointsx1,x2,x3 correspond tox0

1,x
0
2,x

0
3 under W.

Imaged cross section points x1, x
0
1, x2, x

0
2 also correspond,

respectively, to x3, x
0
3, x2, x

0
2 under H. The points on the

apparent contoury0
1,y

0
2 correspond toy1,y2 underH. The lines

through points y0
1, y1 and y0

2, y2 meet at v1.

2.3 The Analogy between SOR Geometry and Single
Axis Motion

Given a static camera, and a generic object rotating on a
turntable, single axis motion (SAM) provides a sequence of
different images of the object. This sequence can be imagined
asbeingproducedbya camera thatperformsavirtual rotation
around the turntable axis while viewing a fixed object. Single
axis motion can be described in terms of its fixed entities—i.e.,
those geometric objects in space or in the image that remain
invariant throughout the sequence [3]. In particular, the
imaged fixed entities can be used to express orthogonality

relations of geometric objects in the scene by means of the
image of the absolute conic (IAC) !—an imaginary point conic
directly related to the camera matrix K as ! ¼ K�TK�1 [19].

Important fixed entities for the SAM are the imaged
circular points i� and j� of the pencil of planes � orthogonal
to the axis of rotation, and the horizon l� ¼ i� � j� of this
pencil. The imaged circular points form a pair of complex
conjugate points which lie on !:

iT� ! i� ¼ 0; jT� ! j� ¼ 0: ð2Þ

In practice, as i� and j� contain the same information, the
two equations above can be written in terms of the real and
imaginary parts of either points. Other relevant fixed
entities are the imaged axis of rotation la and the vanishing
point vn of the normal direction to the plane passing
through la and the camera center. These are in pole-polar
relationship with respect to !:

la ¼ !vn: ð3Þ

Equations (2) and (3) were used separately in the context of
approaches to 3D reconstruction from turntable sequences. In
particular, (2) was used in [15] and in [23] to recover metric
properties for the pencil of parallel planes � given an
uncalibratedturntable sequence. Inbothcases, reconstruction
was obtained up to a 1D projective ambiguity, since the two
linear constraints on ! provided by (2) were not enough to
calibrate the camera.On theother hand, (3)wasused in [52] to
characterize the epipolar geometry of SAM in terms of la and
vn given a calibrated turntable sequence. Clearly, in this case,
the a priori knowledge of intrinsic camera parameters allows
one toobtainanunambiguousreconstruction. In thecaseofan
SOR object, assuming that its symmetry axis coincides with
theturntableaxis, theapparentcontourremainsunchangedin
every frame of the sequence. Therefore, for an SORobject, the
fixed entities of the motion can be computed from any single
frame of the sequence. According to this consideration, an
SOR image and a single axis motion sequence share the same
projective geometry: the fixed entities of SOR geometry
correspond to the fixed entities of single axis motion. In
particular,

1. la corresponds to ls;
2. vn corresponds to v1;
3. (i�, j�) correspond to (i, j);
4. l� corresponds to l1 ¼ i� j, where i and j denote the

imaged circular points of the SOR cross sections.

Fig. 3 shows the geometrical relationships between the
fixed entities and the imageof the absolute conic. The analogy
between SOR and SAM imaged geometry was exploited in
[31] to locate the rotationaxis and thevanishingpoint in SAM.
It was also exploited in [55] to calibrate the camera from two
SORviewsunder the assumptionof zero camera skew. In that
paper, the pole-polar relationship of ls andv1 with respect to
the image of the absolute conic was used to derive two
constraints on !. In Section 3.2, we will exploit the analogy
one step forward and show that it is possible to apply both (2)
and (3) to SORs for camera calibration and 3D reconstruction
from a single SOR view.

3 THE APPROACH

In this section, we demonstrate that, given a single SOR view
and assuming a zero skew/known aspect ratio camera
(natural camera), the problems of camera calibration, metric

102 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005

Fig. 2. Basic projective properties for an imaged SOR. Property 2.1:
Points xi and x0

i correspond under W; all lines x0
i � xi meet at vW 2 ls.

Property 2.2: Points yi and y0
i correspond under H; all lines y0

i � yi meet
at v1 2 l1 (not shown in the figure).



3D reconstruction, and texture acquisition are solved if the
apparent contour � and the visible segments of two distinct
imagedcross sectionsC1 andC2 are extracted fromtheoriginal
image. Preliminary to this, we demonstrate that the fixed
entities ls, v1, l1, i, and j—that are required for all the later
processing—can be unambiguously derived from the visible
segments of the two imaged cross sections. This relaxes the
conditions claimed by Jiang et al. in [23], where three ellipses
are requested to compute the imaged circular points.

3.1 Derivation of the Fixed Entities
The nonlinear system

xTC1x ¼ 0
xTC2x ¼ 0

�
ð4Þ

that algebraically expresses the intersection between C1 and
C2 has four solutions xk; k ¼ 1 . . . 4—of which no three are
collinear [43]—that can be computed as the roots of a quartic
polynomial [41]. At least two solutions of the systemof (4) are
complex conjugate and coincide with the imaged circular
points i and j, which are the intersection points of any imaged
cross sectionwith the vanishing line l1. According to this, the
remaining two solutions are either real or complex conjugate.

In the following, we will assume, without loss of generality,
that the solutions x1 and x2 are complex conjugate.

Fig. 4 shows the geometric construction for the derivation
of the fixed entitiesv1 and ls. The four solutionsxks forma so
called “complete quadrangle” and are represented in the
figure by the filled-in circles. In the figure it is assumed thatx1

andx2 are the two imaged circular points i and j. Thexksmay
be joined in pairs in three ways through the six lines
lij ¼ xi � xj, i ¼ 1; . . . 3, j ¼ iþ 1; . . . 4. Each pair of lines has
apoint of intersectionand the threenewpoints (hollowcircles
in the figure) form the vertices of the so called “diagonal
triangle” associated with the complete quadrangle. The
vertex of the harmonic homology v1 is the vertex of the
diagonal trianglewhich lies on the line l12 connecting the two
complex conjugate points x1 and x2. The imaged axis of
symmetry ls is the line connecting the remaining two vertices
of the diagonal triangle. In particular, the vertex of the
harmonic homology and the imaged axis of symmetry can be
computed, respectively, as

v1 ¼ l12 � l34 ð5Þ
and

ls ¼ ðl13 � l24Þ � ðl14 � l23Þ: ð6Þ

The proof of this result is given in Appendix A.
The computationof thevanishing line l1 is straighforward

when the two solutions x3 and x4 are real. In this case, x1 and
x2 are the imaged circular points and, by consequence,
l1 ¼ l12. On the other hand, when x3 and x4 also are complex
conjugate, an ambiguity arises in the computation of l1, since
both l12 and l34 are physically plausible vanishing lines. In
fact, a pair of imaged cross sections C1 and C2 with no real
points of intersection are visually compatible with two
distinct views of the planar cross sections, where each view
corresponds to a different vanishing line. Fig. 5a shows an
example of two imaged cross sections and the two possible
solutions for the vanishing line; Fig. 5b shows the correct
solution for the vanishing line when the camera center is at
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Fig. 3. The geometrical relationships between the fixed entities and the
image of the absolute conic !.

Fig. 4. Geometric properties of the four intersection points of C1 and C2
with the hypothesis l1 ¼ l12.

Fig. 5. (a) Two imaged cross sections (b), (c), and (d) and their possible
interpretations. The twofold ambiguity in the determination of the
vanishing line can be solved by exploiting the visibility conditions.
Visible contours are in bold.



any location in between the two planes of the cross sections;
Fig. 5c (SOR ends are not visible) and Fig. 5d (one SOR end
only is visible) show the correct solution for thevanishing line
when the camera center is at any location above the two
planes of the cross sections.

The example shows that, unless the two imaged cross
sections are one inside the other—which is indeed not
relevant for the purpose of our research since, in this case,
no apparent contour could be extracted—at least one of them
is not completely visible. This suggests a simple heuristics to
resolve the ambiguity based on visibility considerations.
When both C1 and C2 are not completely visible, the correct
vanishing line l1 is the onewhose intersectionwith ls belongs
to h1 \ h2, where hi is the half-plane generated by the major
axis of Ci that contains themajority of thehiddenpoints. In the
case in which one of the two ellipses, say C1, is completely
visible, then the correct l1 leaves both C1 and C2 on the same
side. Once l1 is associated to the correct lij ¼ xi � xj, the
imaged circular points are simply chosen out of the four
intersection points as i ¼ xi and j ¼ xj. The above result
demonstrates that the visible segments of two ellipses are in
any case sufficient to extract unambiguously the vanishing
line and the imaged circular points.

3.2 Camera Calibration

In order to perform camera calibration from a single image
of an SOR, we exploit the analogy between a single SOR
image and single axis motion discussed in Section 2.3.
According to this, we can rewrite (2) and (3) in terms of the
SOR fixed entities i, j, ls, and v1. The resulting system

iT ! i ¼ 0
jT ! j ¼ 0
ls ¼ !v1

8<
: ð7Þ

provides four linear constraints on the image of the absolute
conic !. However, it can be demonstrated (see Appendix B)
that the systemhas only three independent linear constraints.
Therefore, the available constraints are sufficient to calibrate
a natural camera (3 dofs) from a single image. By rewriting
the third line of (7) as ls � !v1 ¼ 0, the system can be
transformed into a homogeneous system and solved by
singular value decomposition. Once ! is computed, the
camera matrix K can be obtained by Cholesky’s factorization.

Different conditions can also be considered: 1) a single
image with n SOR objects provides—except in special
configurations—3n constraints that can be used to perform
a full pinhole camera calibration (5 dofs); 2) m distinct
images of an SOR—obtained without varying the internal
camera parameters—provide 3m linear constraints for full
camera calibration.

The geometric relationships mathematically expressed
by the system of (7) are displayed in Fig. 3. The three points
v1, vs ¼ l1 � ls and v? 2 ls are the vanishing points of
three mutually orthogonal directions in the 3D space. In
particular, v? is the vanishing point of the directions
parallel to the SOR symmetry axis; since this point cannot
be measured from a single SOR view, its associated
constraint l1 ¼ !v? cannot be used for calibration pur-
poses. If v1 is a finite point, there exists only one IAC such
that l1 intersects ! at the fixed points i and j, and the
tangent lines to ! from v1 have the tangent points on ls.
However, in the case in which the optical axis of the camera
pierces the symmetry axis of the SOR, the principal point is
on ls and as a consequence v1 becomes an ideal point

(degeneracy condition). The effect of this is a 1-dof ambiguity
in the position of the principal point, which can be
anywhere on the imaged axis of symmetry. A practical
solution to this problem is to choose as the principal point
the point on ls nearest to the image center [20]. When the
principal point is close to ls, although not exactly on it, a
near degenerate condition occurs. In this case, the accuracy
of calibration strongly depends on the accuracy of the
estimation of the fixed entities and, particularly, of v1.

3.3 Three-Dimensional Metric Reconstruction

Given the IAC, it is possible to remove the projective
distortion of any imaged plane for which the vanishing line
is known—a technique known as planar rectification [19].
According to this, if the image � of any SOR meridian, the
corresponding vanishing line m1 and the imaged axis of
symmetry ls areavailable, it ispossible toguaranteea solution
for the problem of 3D metric SOR reconstruction. As a first
step, we compute � andm1 from one imaged cross section C
and the apparent contour � under full perspective conditions.
The imaged meridian � and ls—the latter obtained as shown
in the previous section—will then be rectified in order to
compute the SOR scaling function �ðzÞ.

3.3.1 Computation of the Imaged Meridian

The following properties for the apparent contour and the
imaged cross sections of an SOR extend the basic imaged
SOR properties discussed in Section 2.2 and provide the
theoretical foundation for the computation the imaged
meridian �.

Property 3.1. The apparent contour � is tangent to an imaged
cross section at any point of contact [1] (see point of contact x0

�
of imaged cross section C0 in Fig. 6).

Property 3.2. The lines tangent to two distinct imaged cross
sections C and C0 at any two points related by the planar
homology W have the same vanishing point u1, which lies on
l1 (see lines l and l0 tangent to the imaged cross sections C and
C0 at points x and x0

� in Fig. 6).

Property 3.3. The 3D points whose images are related by the
planar homology W belong to the same SOR meridian (see
points x and x0

� or x� and x0
� of imaged cross sections C and C0

in Fig. 6).
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Fig. 6. Geometric relationships for imaged meridian reconstruction and
rectification.



As shown in Fig. 6, given the apparent contour �, there
exists a unique imaged cross section C0 that includes the
generic point x0

� 2 �. Correspondingly, once the vanishing
line l1 is given, there exists a unique planar homology W

that maps a reference imaged cross section C onto C0. As x0
�

varies on �, the vertex vW and the characteristic invariant �W

of W also vary, while l1 remains fixed. Therefore, as x0
� 2 C0

is moved along �, it gives rise to a family of planar
homologies W : C�!C0.

We now show how to compute the planar homology W at a
given x0

� . According to Property 3.1, there exists an imaged
cross section C0 such that � andC0 share the same tangent line l0

at x0
� . The tangent line l

0 intersects the vanishing line l1 at the
point u1: According to Property 3.2, this is the vanishing
point of all the lines which are tangent to the SOR along the
same meridian. Therefore, the tangent line l to C from u1
meets C at the point x such that x0

� ¼ Wx and the planar
homology vertexvW is the pointwhere the line through x and
x0
� intercepts the imaged axis of symmetry ls:

vW ¼ ðx� x0
�Þ � ls: ð8Þ

This fixes two of the three degrees of freedom left for W. The
remaining degree of freedom is fixed by computing the
characteristic invariant �W as

�W ¼ fvW;w1;x;x0
�g; ð9Þ

where w1 ¼ ðx� x0
�Þ � l1 is the point where the line

through x and x0
� intercepts the vanishing line l1, and fg

denotes the usual cross ratio of four points [43].
For each W that is obtained from the steps above, by

exploiting the Property 3.3, a point x0
� on the imaged

meridian � that passes through the point x� 2 C is computed
as x0

� ¼ Wx�. The imaged meridian � is then recovered as the
set of all the points x0

� obtained for different points x0
�

sampled on the apparent contour (see Fig. 7a).

3.3.2 Rectification of the Imaged Meridian

The rectification of � requires the availability of both the
imageof the absolute conic! and thevanishing linem1 of the
plane �� through the meridian and the SOR symmetry axis.

As this axis lies by construction on ��, once the rectifying
homography Mr for this plane is known, we are able to

rectify both the imaged meridian � and the imaged axis of
symmetry ls according to

x� ¼ Mrx
0
�

lz ¼ M�T
r ls:

�
ð10Þ

By computing the distance between any point x� and the
line lz, it is then possible to obtain the values of z and �ðzÞ
for each x0

� given the reference SOR axis ls (see Fig. 7b).
The vanishing linem1 can be obtained asm1 ¼ x1 � v?,

where x1 and v? are, respectively, the vanishing point of the
direction of all lines in �� that are orthogonal to the SOR
symmetry axis, and the vanishing point of the direction of the
same axis (see Fig. 6). The vanishing point x1 is computed as

x1 ¼ x� � o
� �

� l1 ¼ x� � C�1l1
� �

� l1; ð11Þ

where o ¼ C�1l1 is the image of the center of the cross section
that projects onto C; this point is in pole-polar relationship
with l1 with respect to C. Since ! is known, the vanishing
point v? can be computed as v? ¼ !!�1l1. The vanishing line
m1 can now be intersected with ! in order to obtain the
imaged circular points i� and j�. This intersection can be
algebraically computed by solving for � the quadratic
equation ðx1 þ �v?ÞT ! ðx1 þ �v?Þ ¼ 0, where x1 þ �v?
denotes the generic point on m1. The required imaged
circular points are obtained from the two complex conjugate
solutions �1 and �2, respectively, as i� ¼ ðx1 þ �1v?Þ and
j� ¼ ðx1 þ �2v?Þ. According to [29], the rectifying homo-
graphy for the plane �� is

Mr ¼
��1 �	��1 0
0 1 0
m1 m2 1

0
@

1
A; ð12Þ

where m1 ¼ ðm1;m2; 1Þ and i� ¼ conjðj�Þ is expressed as
M�1
r ð1; i; 0Þ ¼ ð	� i�; 1;�m2 �m1	þ im1�Þ.

3.3.3 Discussion

The above two-step method for 3D metric reconstruction is
equivalent to the computation of the set of pairs fðz; �ðzÞÞg,
where z is the point of the SOR symmetry axis that
corresponds to a point x0

� sampled on the apparent
contour �. This correspondence can be expressed in terms
of a function 
 : � ! ½0; 1� such that

z ¼ 
ðx0
�Þ: ð13Þ

The function 
 is defined only at points x0
� at which � is

smooth and has a unique tangent line. These points belong to
a unique imaged cross section C0, whose corresponding pair
ðz; �ðzÞÞ can then be correctly recovered with the method
above. In the presence of self-occlusions, the apparent
contour can have singular points at which � is not smooth
and has two distinct tangent lines. The values z� and zþ
corresponding to the two tangent lines at a singular point
delimit the portion of the z axis at which no �ðzÞ can be
computed with the method above. In this case, the method
still guarantees that the scaling function be correctly
recovered piecewise as a nonconnected curve.

If a uniform sampling strategy for � is used, a nonuniform
sampling of z is obtained. Conversely, if a uniform sampling
on the z axis is required, then the inverse of 
 should be used.
However, according to the definition of � used so far, the
function 
 is not invertible. In fact, the apparent contour is
split by the imaged axis of symmetry into two halves, the
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Fig. 7. (a) Recovery and (b) rectification of an imaged meridian.



points of which correspond in pairs under the harmonic
homology. The two points of a pair carry the same
reconstruction information, since both of them are mapped
by 
 onto the same z. Without loss of generality, we can
restrict the domain of 
 to one of two halves of �, say �0, so as
to ensure that the function 
�1 : ½0; 1� ! �0 exists. This maps
any point z at which the value �ðzÞ can be recovered with the
method above onto a single point x0

�0 of the apparent contour.
The computation of x0

�0 ¼ 
�1ðzÞ at the generic z is carried out
using a recursive subdivision scheme similar to the one
proposed in [14].

A uniform sampling on the z axis can be conveniently
used for texture acquisition, as discussed in the following
section.

3.4 Texture Acquisition

As shown in Fig. 8a, the SOR texture is the rectangular
image T ð�; zÞ ¼ Iðxð�; zÞÞ, where I is the image function
and xð�; zÞ is the image projection of the 3D point Pð�; zÞ
parametrized as in Section 2.1.

Texture acquisition following the canonical parameter-
ization ð�; zÞ can be solved through the well-known carto-
graphic method of normal cylindrical projection [5]. However,
if parallels andmeridians of the imaged object are sampled at
regular ð�; zÞ in the Euclidean space, a nonuniform sampling
of the texture is created. In order to avoid this, we follow the
inverse method (from a regular grid of ð�; zÞ on the texture
plane to points on the image plane) that assures that a
uniformly sampled texture is created.

To obtain a metric texture, � and z are therefore sampled
at regular intervals. The resulting texture image hasM rows
and N columns. The unknown image point xð�; zÞ is the
intersection between the imaged meridian �ð�Þ correspond-
ing to the SOR meridian at � and the visible portion of the
imaged parallel CðzÞ corresponding to the SOR parallel at z.
Therefore, the rows of the texture image are composed of
image pixels sampled from CðzÞ at regular intervals of �.

A method to sample the visible portion of an imaged
parallel CðzÞ at a given value of the Euclidean angle � is
described in Appendix C. The method permits Laguerre’s
formula [13]

� ¼ 1

2i
logðfv�;vs; i; jgÞ ð14Þ

to be inverted so as to compute the vanishing point v� and

to obtain, from this, the sampled point xð�; zÞ—see Fig. 8b.
The algorithm for the computation of a generic texture

row fT ð�; zÞ; � ¼ �1; . . . �Ng is:

1. Choose a reference imaged parallel C.
2. Compute x0

�0 ¼ 
�1ðzÞ as shown in Section 3.3.3.
3. Use the planar homology W associated to x0

�0 (see
Section 3.3.1) to compute the imaged parallel
C0 ¼ W�TCW�1.

4. Sample C0 at all values � ¼ �1; . . . �N as described in
Appendix C.

5. For each of theN points, x0
�ð�Þ ¼ xð�; zÞ thus obtained,

set T ð�; zÞ ¼ Iðx0
�ð�ÞÞ.

Texture acquisition is achieved by repeating steps 1

through 4 for all the M rows of the texture image, sampled

at regular intervals of z.
It is worth noting that not all the texture image pixels can

be computed by the algorithm above. In particular, singular

points on the apparent contour �0 due to self-occlusions

give rise to row intervals ½z�; zþ� for which the inverse

function 
�1ðzÞ cannot be computed (see Section 3.3.3). A

similar situation occurs for the range of � values for which

the surface is not visible. In this case, for each imaged

parallel CðzÞ, Laguerre’s formula—with the value u1 of

Section 3.2.1 used in (14) in the place of v�—can be used to

determine the interval ½�minðzÞ; �maxðzÞ� for which the

parallel is visible.
The method for texture acquisition described above has

some advantages over other solutions presented in the

literature. It uses a 2D/2D point transformation applied to

SOR pixels that requires only the knowledge of internal

camera parameters. This way, a higher accuracy is obtained

than with 2D/3D registration methods [22], which back-

project the image data onto the 3D object and require both the

internal and external camera parameters to fully recover the

camera mapping Pð�; zÞ�!xð�; zÞ. Moreover, since inverse

texture mapping is used, the method avoids “holes” in the

texture image due to insufficient sampling of the image

space, a typical drawback of direct texturemappingmethods

[21], which compute the transformation xð�; zÞ�!ð�; zÞ.
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Fig. 8. (a) The geometry of SOR texture acquisition. Meridians and parallels in the image plane (left) are mapped into mutually orthogonal lines in the

texture plane (right). (b) Sampling an imaged cross section CðzÞ at a given Euclidean angle �.



4 IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1 Accuracy Evaluation

Several experiments were performed in order to test the
accuracy of the approach. In particular, we assessed the
accuracy of vanishing point estimation, camera self-calibra-
tion, and reconstruction of the SOR scaling function. Two
different views of the synthetic object of Fig. 1—generated by
the scaling function �gtðzÞ ¼ 1

10 ðcosð�2 ð193 zþ 1ÞÞ þ 2Þ with
z 2 ½0; 1�—were taken using a virtual camera with internal
parameters: focal length f ¼ 750 (simulating a wide angle
lens) and principal point coordinates ðu0; v0Þ ¼ ð400; 300Þ.
The two views, referred to as nondegeneracy view and near
degeneracy view,were obtainedbypanning the virtual camera,
around an axis parallel to the SOR symmetry axis, by 14.0 and
3.5 degrees, respectively. The degeneracy view condition in
which the imaged SOR symmetry axis coincides with the
vertical image axis passing by the principal point is taken as
the reference camera position. In all the experiments, the
points of the imaged cross sections and apparent contour of
the SOR, sampled at the same resolution as that of the image,
were corrupted by a white, zero mean Gaussian noise with
standard deviation between 0 and 1.5 pixel. The influence of
this noise was tested by running a Monte Carlo simulation
with 10,000 trials for each of the parameters under test.

Fig. 9 shows the accuracy of vanishing point estimation
(the most noise-sensitive fixed entity), for the two cases of

nondegeneracy (Fig. 9a) and near degeneracy (Fig. 9b). Mean
and standard deviation of the estimation error are repre-
sented, respectively, as light lines andvertical bars (�1�). The
two quantities grow almost linearly with noise. The bias for
nonzero noise values is due to the use of an algebraic distance
rather than a geometric one in the estimation of ellipses. The
accuracy of the estimation in the nondegeneracy condition is
higher by about one order of magnitude than in the near
degeneracy condition. Bold curves and bars indicate a
reference condition where all the points of the imaged cross
sections are available. It can be noticed that, in noisy
conditions, the accuracy obtainedwhen a subset of the points
of the imaged cross sections is used, is approximately that
obtained in the case in which all the points are available.

Self-calibration accuracy is shown in Fig. 10 for the two
viewing conditions. Top figures show accuracy in principal
point estimation; the bottom figures show accuracy in focal
length estimation. In the nondegeneracy case (Fig. 10a), the
principal point is estimated with an error less than 10 pixels,
even in the presence of high noise; a higher error value is
always observed in the near degeneracy case (Fig. 10b). In
noisy conditions, bold and light curves exhibit the same
behavior as in the case of vanishingpoint estimation. Besides,
focal length estimation accuracy has proven to be less
dependent on camera viewpoint than principal point estima-
tion accuracy.
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Fig. 9. Vanishing point estimation accuracy in (a) nondegeneracy view condition (ground truth: v1 ¼ ð3421:978; 209:049; 1Þ) and (b) near degeneracy

view condition (ground truth: v1 ¼ ð12493:024; 206:432; 1Þ). Different scales are used in the two charts.

Fig. 10. Self-calibration accuracy in (a) nondegeneracy and (b) near degeneracy view conditions. Top: principal point estimation (ground truth:
ðu0; v0Þ ¼ ð400; 300Þ). Bottom: focal length estimation (ground truth: f ¼ 750).



A qualitative insight into principal point estimation

accuracy is provided by Fig. 11,where uncertainty 3� ellipses

are drawn for different noise values. It is apparent that, as the

SOR position in the image gets closer to the image center, the

uncertainty ellipses become larger, with their major axis

parallel to the imaged symmetry axis. In fact, in the pure

degeneracy condition, an infinite uncertainty affects the

principal point coordinate along the imaged symmetry axis.

The mean and standard deviation of the error in the

reconstruction of the scaling function are defined, respec-

tively, as
R 1

0
j�eðzÞ��gtðzÞjdz and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1

0
�eðzÞ��gtðzÞ½ �2dz

q
, where �eðzÞ is

the estimated scaling function, and �gtðzÞ is the ground truth

scaling function. Fig. 12 shows the effects of noise on the

reconstruction error in the near degeneracy case (the most

critical one). The noise on the apparent contour is the

dominant source of error for reconstruction, due to the fact

that it requires the computation of tangent lines along the

apparent contour.

4.2 Creation of 3D Textured Models

Fig. 13 shows examples of reconstruction from a single
uncalibrated view for four distinct SOR objects. For each
object, the original image and the 3D solid obtained are
shown. All the images have been taken with moderate
perspective distortion. The apparent contour and cross

sections have been manually extracted by following the
imaged object’s boundaries. The results presented can
therefore be regarded as close to those obtainable in the
absence of noise.

Figs. 13a, 13b, and 13c present objectswith linear (Fig. 13a)
and curvilinear (Figs. 13b and 13c) profiles (a can, and a
Chinese and Greek vase, respectively). For each object, both
the uncalibrated view (top) and a view of the reconstructed
solid object (bottom) are shown. Three-dimensional objects
are correctly reconstructed in all the cases. Fig. 13d presents
the case in which 3D reconstruction of the original object (a
transparent glass) would have been difficult with a laser
scanner, due to the object’s physical properties. It can be
observed (bottom) that the 3D model is correctly recon-
structed from the original view (top).

Fig. 14 shows the case of a drawing of which there is not
any physical reproduction. It displays the first “wireframe”
drawing in history, made by the Renaissance artist Paolo
Uccello (Fig. 14a) and two views of the reconstructed
3D model (Figs. 14b and 14c). Since the wireframe drawing
provides information also for the occluded parts of the
apparent contour, a more complete reconstruction of the
object model can be obtained.

Fig. 15 presents two critical cases for 3D SOR reconstruc-
tion, respectively, due to strong perspective distortion
(Fig. 15a) and the presence of self-occlusions (Fig. 15b).
Fig. 15a, middle shows that the scaling function of the bottle
is correctly recovered: The ratio of the bottom and top radii of
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Fig. 11. A sample SORwith a qualitative view of calibration uncertainty (ellipses), for different noise values, in the two cases of nondegeneracy (a) and
near degeneracy (b) view conditions.

Fig. 12. Reconstruction accuracy in the near degeneracy case. (a) Noisy apparent contour (max standard deviation = 0.0218). (b) Noisy visible
points of imaged cross sections (max standard deviation = 0.0043). (c) Noisy apparent contour and noisy visible points of imaged cross sections
(max standard deviation = 0.0395). The maximum value of standard deviation is obtained for the maximum noise value.



the reconstructed bottle differs by less than 3percent from the
real one. In Fig. 15b, left the segments �1, �2, �3, �4 of the
apparent contour of the cup are shown, that are related to
curve singularities due to self-occlusions. Fig. 15b, right
shows that, for each apparent contour segment, the corre-
sponding scaling function segments �1, �2, �3, �4 can be
obtained so that a 3D (partial) reconstruction is still possible
forwhich theglobalmetric structureof the reconstructedSOR
object is preserved.

4.3 Texture Acquisition

The acquisition of the flattened texture permits the complete
three-dimensional reconstruction of the visible part of the
SOR object as well as a separate analysis of the true texture
properties, regardless of the perspective distortion. Texture
flattening makes image details more evident than in the
original picture and also gives the same importance to central
and peripheral details. Fig. 16 shows the flattened texture
acquired from the image of the Greek vase of Fig. 13. In this
case, the original texture is applied to a quasispherical
surface. While areas are locally preserved, the flattening

process has introduced distortions in all those parts of the
surface the shape of which differs locally from that of a
cylinder coaxial with the SOR. Fig. 17a shows the case of
texture acquisition for a cylindrical surface (the can inFig. 13).
As the cylinder is a developable surface, the flattened texture
preserves the global geometry of the original surface. This
allows the recovery of the hexagonal “AL” mark, by
removing the distortion present in the original image. The
texture portions close to the apparent contour have not been
considered, in that their resampling is typically affected by
aliasing due to the strong foreshortening. Foreshortening
effects are clearly visible in Fig. 17b, where the complete
flattened texture for the Chinese vase of Fig. 13 is shown,
including the texture portions close to the apparent contour.
Flattened textures can be easily superimposed on the
reconstructed 3D model, so as to obtain photorealistic
reconstructions from image data. Fig. 18 shows the recon-
structed 3D can andChinese vasemodels of Fig. 13with their
flattened textures superimposed.

Fig. 19, top shows four different views of a Japanese vase
that together provide complete information of the vase
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Fig. 13. SOR objects: (top) single uncalibrated views and (bottom) reconstructed 3D models.

Fig. 14. (a) Wireframe drawing of a chalice by Paolo Uccello (1397-1475). (b) and (c) Two views of the reconstructed model, with evidence of self-
occluded parts.



texture. If a flattened texture is extracted from each view and
the 3D vase structure is reconstructed from one view, a 3D
fully textured reconstruction of the vase can be obtained as in
Fig. 20 provided that the complete texture is constructed by
registration of the four textures (see Fig. 19, bottom).
Similarly, partially reconstructed scaling functions obtained
fromdifferent self-occluded views can bemerged together so
as to obtain a full 3D SOR model.

5 CONCLUSIONS

In this paper, we have discussed a newmethod to recover the
original 3D structure of a generic SOR object and its texture
from a single uncalibrated view. The solution proposed
exploits projective properties of imaged SORs, expressed
through planar and harmonic homologies. Camera self-
calibration is directly obtained from the analysis of the visible
elliptic segments of two imaged cross sections of the SOR.The
same elliptic segments are used together with the SOR
apparent contour, to reconstruct the 3D structure and texture
of the SOR object, which are thus obtained from calculations
in the 2D domain. Since the homology constraints are of
general applicability, the solution can be applied under full
perspective conditions to any type of surface of revolution
with at least two partially visible cross sections. According to
this, the method provides an advancement with respect to
recent research contributions that used homology constraints
for 3D recognition/reconstruction, but were restricted to the
affine projection case [1] or to full perspective of planar

surfaces [27], [46]. The possibility of recovering the texture
superimposed on the SOR as a flattened image allows a
complete reconstruction (albeit limited to the imaged part of
the object) of the SOR3Dstructure and appearance. For views
with self-occlusions, a complete reconstruction of the
3D textured object can be easily obtained by registration of
multiple viewsof the SOR, taken from the samecameraunder
the same illumination conditions. The method can be used
reliably, in all those cases in which only a photograph or a
drawing of the SOR object is available and structured light
acquisition methods cannot be employed for the acquisition
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Fig. 15. (a) Left: An SOR view taken under strong perspective conditions (with indications of the two cross section C1 and C2, the apparent contour �
and the projection of the SOR meridian �). Middle: The SOR scaling function rectified. Right: The reconstructed 3D model. (b) Left: A SOR view with
severe self-occlusion and its apparent contour. Right: The partially reconstructed scaling function.

Fig. 16. Flattened texture from the image of the archaeological vase of Fig. 13. Surface region with the largest distortion are indicated with circles.

Fig. 17. (a) The flattened textures for the can and (b) the Chinese vase
of Fig. 13.



of the solid structure. It is particularly useful in the case of no

longer existingobjects (i.e., artworks) or objects that cannot be

moved easily from their original site. Extraction of the

apparent contour and imaged cross section segments,

although done manually in the experiments reported in this

paper, can also be performed automatically, with relatively

low complexity and good reliability. This has been proposed

in [57] and [7] under reasonable constraints on the objects and

background.

APPENDIX A

RELATING THE HARMONIC HOMOLOGY WITH

THE COMPLETE QUADRANGLE

In this appendix, we give the formal proof of (5) and (6) used

to compute the fixed entities of the harmonic homology H

from the four intersectionsxk, k ¼ 1; . . . 4 of two imaged cross

sections C1 and C2. Following the discussion of Section 3.1, we

can always assume that x1 and x2 are complex conjugate, so

that either of the pairs (x1, x2) or (x3, x4) must be equal to (i, j)

and, therefore, either of the lines l12 ¼ x1 � x2 or l34 ¼
x3 � x4 must be equal to l1 ¼ i� j.

By Property 2.2 of Section 2.2, the conics C1 and C2 are

fixed as a set under the harmonic homology: Ch ¼ HTChH,

h ¼ 1; 2. A consequence of this is that the point Hxk obtained

from the generic intersection point xk by transformation

under H, is still an intersection point of C1 and C2:

ðHxkÞTChðHxkÞ ¼ 0, h ¼ 1; 2. By expressing H according to

the parametrization
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Fig. 18. (a) Three-dimensional reconstruction of the can and (b) Chinese
vase models with superimposed texture.

Fig. 19. Top: Four complementary views of a Japanese vase. Bottom: The complete texture obtained by image registration.



H ¼ I� 2
v1 lTs
vT
1 ls

ð15Þ

obtained from (1) with � ¼ �1, we can write

Hxk ¼ xk � 2
lTs xk

lTs v1
v1: ð16Þ

Now, since by (16) the line xk � Hxk must contain the fixed
point v1, recalling that ði� jÞTv1 ¼ 0 and that no three
intersection points can be collinear, it follows that

x2 ¼ Hx1 and x4 ¼ Hx3: ð17Þ

This proves (5), since as the lines l12 and l34 can be written,
respectively, asx1 � Hx1 andx3 � Hx3. Using (15),we can also
write l13 � l24 ¼ ðx1 � x3Þ � ðHx1 � Hx3Þ and l14 � l23 ¼ ðx1 �
Hx3Þ � ðHx1 � x3Þ.Byusing,again, theparametrizationof (15)
and the basic equality a� ðb� cÞ ¼ ðaTcÞb� ðaTbÞc, it
follows easily that l13 � l24 ¼ l13 � ls and l14 � l23 ¼ l14 � ls.
This proves (6).

APPENDIX B

PARAMETRIZING THE IMAGE OF THE ABSOLUTE CONIC

In this appendix, we demonstrate that the linear system of
(7) has only three independent constraints, and provide a
parametrization for the 12 conics that satisfy these
constraints.

The third of (7) provides two independent linear
constraints on !. We will show that the first two equations
of the system, i.e., iT!i ¼ 0 and jT!j ¼ 0, add to ls ¼ !v1
only one independent constraint. Indeed, the family of 13

conics e!! satisfying ls ¼ e!!v1 can be written as

e!!ð�1; �2; �3Þ ¼ �0 þ
X3
k¼1

�k�k; ð18Þ

where the �ks are scalars and the �ks are four linearly
independent conics such that

ls ¼ �kv1: ð19Þ

Now, in Appendix A, we have shown that j ¼ Hi. Therefore,
we can write

jT�kj ¼ iTðHT�kHÞi ¼ iT�ki; ð20Þ

where the last equality follows from the fact that, as it
satisfies (19), each of the �ks is transformed onto itself by
the homology H—this can also be directly verified by using
for H the parametrization of Appendix A. From (2), it also
follows that jTe!!j ¼ iTe!!i: this means that the inhomoge-
neous linear system in the three unknowns �ks

iT e!!ð�1; �2; �3Þ i ¼ 0
jT e!!ð�1; �2; �3Þ j ¼ 0

�
ð21Þ

has12 solutions. This proves our assertion that the solution
set of (7) is composed of 12 conics. It can be easily verified
that a valid parametrization for these conics is

e!!ðp; qÞ ¼ !þ p l1lT1 þ qðlislTjs þ ljsl
T
isÞ; ð22Þ

where ! is the (unknown) true image of the absolute
conic, l1lT1 is a degenerate (rank 1) conic composed by
the line l1 taken twice, and lisl

T
js þ ljsl

T
is is a degenerate

(rank 2) conic composed by the two lines lis ¼ i� xs and
ljs ¼ j� xs meeting at any point xs 2 ls different from
vs ¼ ls � l1.

If the vanishing point v? 2 ls of the direction parallel to
the SOR symmetry axis is known, the independent
constraint vT

s !v? ¼ 0 can be added to the system of (7),
thus fixing one of the two degrees of freedom left for e!!. A
parametrization for these 11 conics is then

e!!ðrÞ ¼ r l1lT1 þ ðli?lTj? þ lj?l
T
i?Þ; ð23Þ

where li? ¼ i� v? and lj? ¼ j� v?. This last result is in
accordance with the fact, discussed in [27], that the self-
calibration equations involving the imaged circular
points i and j bring only one independent constraint if
the line i� j goes through any of the points of a self-
polar triangle for !—which, in our case, is v1, vs, v?.

APPENDIX C

SAMPLING METRICALLY AN IMAGED SOR PARALLEL

In this appendix, we derive a closed form solution to the
general problem of finding the vanishing point v� of the line
l� that intersects, in the world plane �, a reference line l0
with a given Euclidean angle �. The imaged circular points i
and j of � are supposed to be known, together with the
vanishing point v0 of l0. We then use this result to obtain the
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Fig. 20. Three views of the complete (3D structure and texture) three-dimensional reconstruction of the Japanese vase.



intersection point xð�; zÞ between the image CðzÞ of the SOR
parallel on � and the visible imaged meridian �ð�Þ.

The basic relation between the angle � and the vanishing
point v� is provided by the Laguerre’s formula [13]

� ¼ 1

2i
logðfv�;v0; i; jgÞ; ð24Þ

where fg denotes the usual cross ratio of four points. By
expressing the generic point on the vanishing line l1 of � as

vð�Þ ¼ iþ �ði� jÞ; ð25Þ
(24) can be rewritten as

ei2� ¼ f��; �0; �i; �jg; ð26Þ

where ��, �0, �i and �j are the values of the complex
parameter �, respectively, for the points v�, v0, i and j. In
particular, it holds �i ¼ 0 and �j ¼ �1; the values �� and �0

are derived hereafter.
Takenany image line l0 ¼ ðl1; l2; l3Þ throughv0 anddistinct

from l1 and set i ¼ conjðjÞ ¼ ðaþ ib; cþ id; 1Þ, solving for �0

the equation lT0 vð�0Þ ¼ 0, we get�0 ¼ � 1
2 1þ i tan�0½ �, where

the angle

�0 ¼ arctan � l1aþ l2cþ l3
l1bþ l2d

� �
ð27Þ

embeds in a compact way all the information about the
reference line l0 and the circular points.

Substituting the above value of �0 into (26), the value of
�� can be computed as

�� ¼ � 1

2
1þ i tanð�0 þ �Þ½ �; ð28Þ

which eventually yields the required vanishing point as
v� ¼ iþ ��ði� jÞ. In the particular case of an SOR image,
the vanishing point v� can be computed as above with the
point vs ¼ ls � l1 and the image line ls as the reference v0

and l0, respectively, (see Fig. 8b). The image line l� ¼ v� � o,
where o ¼ C�1ðzÞl1 is the image of the parallel’s center,
intercepts the imaged parallel C at two points, of which the
required point xð�; zÞ on the visible imaged meridian �ð�Þ is
the farthest one from v� along the line l�.
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