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Abstract

This paper considers the problem of designing an active observer to plan a sequence of
decisions regarding what target to look at, through a foveal-sensing action. We propose a
framework in which a pan/tilt/zoom (PTZ) camera schedules saccades in order to acquire
high resolution images (at least one) of as many moving targets as possible before they
leave the scene. An intelligent choice of the order of sensing the targets can significantly
reduce the total dead-time wasted by the active camera and, consequently, its cycle time.
The grabbed images provide meaningful identification imagery of distant targets which are
not recognizable in a wide angle view. We cast the whole problem as a particular kind of
dynamic discrete optimization. In particular, we will show that the problem can be solved
by modelling the attentional gaze control as a novel on-line Dynamic Vehicle Routing Prob-
lem (DVRP) with deadlines. Moreover we also show how multi-view geometry can be used
for evaluating the cost of high resolution image sensing with a PTZ camera.

Congestion analysis experiments are reported proving the effectiveness of the solution in
acquiring high resolution images of a large number of moving targets in a wide area. The
evaluation was conducted with a simulation using a dual camera system in a master-slave
configuration. Camera performances are also empirically tested in order to validate how the
manufacturer’s specification deviates from our model using an off-the-shelf PTZ camera.

Key words: Active Vision, Travelling Salesperson Problem, Video Surveillance,
Sequential Decision Making

1 Introduction

Our work is motivated by the goal of reproducing the ability of humans to recog-
nize a person in a crowd of moving people for surveillance purposes. In humans, the
process of recognizing a person and that of moving the eyes are served by almost
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two distinct subcortical brain areas: one specialized for recognizing faces and one
specialized for making decisions on whom look at next. The eye acts as a foveal
sensor that allows high resolution only at the point of interest, avoiding the cost of
uniform high resolution. Indeed during a scan-path in a moving crowd of walking
people it is normal to backtrack to a previous observed person thinking ”oh that’s
my friend”. This because the gaze planning task does not directly depend on the
face recognition task. Visual attention in this particular task is more affected by the
target position, the predicted time in exiting the scene and the effort made in mov-
ing the head and the eyes from one direction to another. In fact during a saccade,
the redirection is so rapid that the gaze transition lasts only a tenth of a millisec-
ond. During that time the few images obtained are typically blurred because of the
fast camera motion. As far as the deployment in sophistication in visual analysis is
concerned, saccades are dead times. So our brain avoids doing large redirection of
the gaze while undertaking this task, trying to minimize that dead time.
A direct application of that behavior of the human visual system can be applied in
Visual Surveillance. Automated surveillance can be a powerful tool in deterrence
of crime, but most of the solutions and implementations proposed so far are unnec-
essarily poor in evidential quality. In this sense, remote identification of targets is
and will be an important mandatory capability for modern automated surveillance
systems. In particular, recognizing a person or a car license plate requires that high
resolution views must be taken before they leave the scene. Using a large number of
static or active cameras that operate cooperatively is an expensive and impractical
solution. One way to cope with this problem is to make better use of the capabilities
of the sensor.
We argue that one active pan/tilt/zoom (i.e. a foveal sensor) camera (the slave cam-
era) together with a wide angle camera (the master camera) and a good strategy for
visiting the targets can be used instead. The fixed camera is used to monitor the
scene estimating where targets are in the surveilled area. The active camera then
follows each target to produce high resolution images. In this configuration, we
show that the visual signal from the master camera provides the necessary infor-
mation to plan the saccade sequence. Moreover, the introduction of an appropriate
scheduling policy allows to maximize the number of targets that can be identified
from the high resolution images collected. Indeed, this is achieved by continuously
gazing at the most appropriate targets, where the appropriateness strongly depends
on the task considered. In fact, tasks may have conflicting requirements, as in the
case where different tasks would direct the fovea to different points in the scene.
For systems with multiple behaviors, this scheduling problem becomes increas-
ingly paramount.
The key contributions of the paper are: (1) We propose a novel formulation for
the remote target identification problem in terms of saccadic gaze planning. (2)
We give a general framework in which an active camera can be modelled. (3) The
use of uncalibrated methods makes the proposed framework function in any pla-
nar scene. (4) We extend previous approaches on PTZ greedy scheduling proving
through simulation that our framework yields better system performance. We have
also discussed in (Del Bimbo and Pernici, 2005) the basic ideas underlying the
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approach presented in this paper.

2 Related Work

The few works addressing this subject do not address the planning problem or do
not fully exploit all the information intrinsically present in the structure of the prob-
lem. In (Stillman et al., 1998) the problem of deciding which camera should be
assigned to which person was addressed and some general approaches were given.
It should also be noted that there is no work except (Costello et al., 2004) on objec-
tively evaluating the performance of multi-camera systems for acquiring high reso-
lution imagery of people. Most results are presented in the form of video examples
or a series of screen captures without explicit system performance evaluations. Very
little attention is given to the problem of what to do when there are more people in
the scene than active cameras available.
Many works in the literature uses a master/slave camera system configuration with
two (Zhou et al., 2003) (Costello et al., 2004) (Batista et al., 1998) (Prince et al.,
2005) (Marchesotti et al., 2003) or more cameras (Lim et al., 2003) (Senior et al.,
2005) (Stillman et al., 1998) (Hampapur et al., 2003) (Collins et al., 2001). The
remote target identification problem is also termed as distant human identification
(DHID).
In (Zhou et al., 2003), a single person is tracked by the active camera. If multiple
people are present in the scene, the person closest to the position of the previous
tracked individual is chosen.
In (Costello et al., 2004) the authors use greedy scheduling policies taken from
the network packet scheduling literature. They are the first to describe the prob-
lem formally and propose a solution. In particular, in this work the authors, albeit
mentioning that there is a transition cost measured in time to be paid whenever
the camera switches from person to person, do not explicitly model this cost in
their problem formulation. The consequence is that their analysis wrongly moti-
vates an empirically determined watching time instead of at least a single video
frame. Moreover the method uses greedy policies instead of policies with a time
horizon. Also in (Lim et al., 2003) the authors propose a form of collective camera
scheduling to solve surveillance tasks such as acquisition of multi-scale images of
a moving target. They take into account the camera latency and model the problem
as a graph weighted matching. In the paper there are no experimental results and
no performance evaluation for the task of acquiring as many multi-scale images of
many targets as possible in real time.
In (Prince et al., 2005) another similar approach with a dual camera system was
recently proposed in indoor scenes with walking people. No target scheduling was
performed, targets are repeatedly zoomed to acquire facial images by a supervised
learning approach driven by skin, motion and foreground features detection. In
(Greiffenhagen et al., 2000) a ceiling mounted panoramic camera provides wide-
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field plan-view sensing and a narrow-field pan/tilt/zoom camera at head height pro-
vides high-resolution facial images.
The works in (Murray et al., 1995)(Batista et al., 1998) concentrate on active track-
ing. In both works the respective authors propose a simple behavior (a policy) with
a finite state machine in order to give some form of continuity when the currently
tracked target is changed.
In (Senior et al., 2005) two calibration methods to steer a PTZ camera to follow
targets tracked by another camera are proposed. The authors give some criteria of
optimization leaving the formal optimization as future research. Though perform-
ing coarse registration the methods (Senior et al., 2005) and (Zhou et al., 2003),
generally suffice to bring the target object within a narrow zoomed field of view.
The other important work related to our problem is (Bertsimas and Van Ryzin,
1991), in which the authors study the problem in which a vehicle moves from point
to point (customers) in a metric space with constant speed, and at any moment a
request for service can arrive at a point in the space. The objective is to maximize
the number of served customers. They analyze several policies showing that in such
a problem lower bounds on system performance can be obtained analytically. This
work is reminiscent of our problem, the main differences are that our customers
(targets) are moving and have deadlines. A further important difference is that the
nature of our particular vehicle (a PTZ-camera) does not allow us to model the cost
of moving from target to target in the euclidean space.

3 Saccade Planning as a novel Dynamic Vehicle Routing Problem

Three main features characterize the task under consideration: targets’ motion and
position, target arrivals, and target deadlines.
The first one is that targets moving farthest from the camera appear to move slower
in the image while closer targets appear to move faster. For example gazing from
a closer target to a distant one is generally slower mainly as a result of a zoom
induced delay (as pan and tilt motions are much faster in comparison). In the case
when the targets are at similar distances and opposite directions from the slave
camera the gazing depends mainly on the pan and/or tilt. Once a finite number of
targets is at hand this trade-off can be exploited by using an appropriate cost for
changing the orientation and zoom of the PTZ camera in an instance of the Kinetic
Travelling Salesperson Problem (KTSP). This is an extension of the classical Trav-
elling Salesperson Problem (TSP) with moving cities.
The second and third main features are that targets arrive unpredictably so it is im-
possible to know how many targets will be in the scene at any time and what target
to choose to look at especially if solutions have to be computed on-line. The prob-
lem of how to choose the best permutation subset from the currently tracked targets
is an instance of the Time Dependent Orienteering (TDO) with deadlines.

4



3.1 Kinetic Travelling Salesperson Problem (KTSP)

As cameras can be calibrated with automatic or manual methods such as in (Senior
et al., 2005) it is possible to associate to each point in the plane where targets are
moving a vector of PTZ-camera parameters. According to this, at each point in
the world plane it is possible to issue camera commands in order to bring a moving
target in a close up view by giving to the camera the 3D vector (p, t, z) 1 , specifying
pan, tilt and zoom values to be applied. In our formulation we model the PTZ-
camera as an intercepter with restricted resources (e.g., limited speed in setting its
parameter). The dynamics of the targets are assumed known or predictable (i.e.,
for each target one can specify its location at any time instant). The problem is
expressed as that of finding a policy for the PTZ-camera which allows to ”visually
hit” 2 (with a saccade sequence) as many targets as possible in accordance with the
device speed. This allows to cast the problem as a Kinetic Travelling Salesperson
problem (KTSP) (Helvig et al., 2003). In fig.1(a) are shown four targets A, B, C, D
moving on a plane. The shortest-time tour is shown with the respective interception
points. At each interception point is also shown the time instants of the sequence
when the intercepter visually hits the targets. Formally this problem is formulated
as follow:

KTSP : Given a set S = {s1, s2, ..., sn} of moving targets, each si moving with
known or predictable motion xi(t), and given an active camera intercepter starting
at a given position and having maximum speed Vptz ≥ Vi ∀i , find the shortest-time
tour (or path) which intercepts all targets. Vi indicates the imaged speed of target i
and Vptz indicates the maximum speeds of the pan-tilt-zoom device. The solution is
defined as the permutation of the discrete set S that has the shortest travel time.

It is necessary that the intercepter run faster than the targets. This is not generally
a problem even for slower PTZ-cameras. By imagining the PTZ-camera as a robot
manipulator with two revolute (pan-tilt) joints and one prismatic (zoom) joint, it is
possible to view the principal axis of the camera as a robot arm which rotates and
moves forward to reach a point in the space. In such a setting, due to the typically
high distance at which PTZ-cameras are mounted, the speeds of the virtual end-
effector are generally higher than common moving targets such as cars or humans.

3.2 Time Dependent Orienteering (TDO)

In a typical surveillance application, targets arrive as a continuous process, so that
we must collect ”demands to observe”, plan tours to observe targets, and finally dis-
patch the PTZ camera. In such a dynamic-stochastic setting there is a lot of interde-

1 In general this vector can be thought as the set of the controllable parameters of an active
camera. For example (p, t, z, f) where f is the focal length.
2 capture high-resolution images or videos of as much as possible of any object that passes
through a designated area.
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pendency between the state variables describing the system. Moreover, tours must
be planned while existing targets move or leave the scene, and/or new targets ar-
rive. Basically the whole problem can be viewed as a global dynamic optimization.
Since for such a problem no a-priori solution can be found, an effective approach
is to determine a strategy to specify the actions to be taken as a function of the state
of the system. In practice, we consider the whole stochastic-dynamic problem as a
series of deterministic-static subproblems, with the overall goal of tracking the time
progression of the objective function as close as possible. In our problem, targets
are assumed to enter the scene at any time from a finite set of locations. The camera
must steer its foveal sensor to observe any target before it leaves the scene. Assum-
ing with no loss of generality that the paths of the targets are straight lines and that
targets move at constant speeds, the time by which a target must be observed by
the camera can be estimated. Moreover, real-time constraints may impose bounds
on the total amount of time needed to plan the target observation tour. According to
this, given a fixed reference time, KTSP can be reformulated as a Time Dependent
Orienteering (TDO) problem (Fomin and Lingas, 2002). In the classical formula-
tion of the static orienteering problem there is a resource constraint on the length
of the tour; the problem solution is the one that maximizes the number of sites
visited. The time dependent orienteering problem for a single PTZ-camera can be
formulated as follows:

TDO : Given a set S = {s1, s2, ..., sn} of moving targets, each si moving with
a known or predictable motion xi(t) , the deadline t, and a time-travel function
l : S × S × N 7−→ IR+ ∪ {0} the salesperson’s tour to intercept a subset T =
{s1, s2, ..., sm} of m targets is a sequence of triples: (s1, t

+
1 , t−1 ), (s2, t

+
2 , t−2 ),

...(sm, t+m, t−m), such that: for i ∈ {1, 2, ..., m}, t+i , t−i ∈ N ∪ {0} with 0 = t+1 ≤
t−1 ≤ t+2 ≤ ... ≤ t+m ≤ t−m ≤ t . The subset T is composed by the maximum number
of targets interceptable within the time t, imposed by the real-time constraint.

The deadline t breaks the dynamic problem into a sequence of static problems. Such
a formulation has a great advantage which is computationally helpful. Since there
is no polynomial time algorithms to solve the KTSP, it is impossible to solve an
instance of the KTSP problem with more than eight or nine targets in a fraction of
a second, by the exhaustive search. However even if such an algorithm did exist the
time needed to switch to all the targets would be so large that novel targets would
not be observed due to the time needed to complete the tour. So, the exhaustive
search approach enumerating and evaluating all the subsets permutations perfectly
fits with the nature of our dynamic incremental formulation.

3.3 Deadlines

Based on the tracking predictions the targets are put in a queue, according to their
residual time to exit the scene. TDO is instantiated for the first k targets in the
queue. If Ak is the set of the permutations of the subsets of k targets then it can be

6



(a)

A

B

i
t

+

i
t

−
1i

t
−
+

1i
t

+
+

i

−
p

i

+
p

1i

+
+p

1i

−
+p

, 1i i
φ +

, 1i i
ψ +

1
travelTime

i i
t t

+ −
+= −

serviceTime
i i
t t

− += −

(b)

Fig. 1. (a) An instance of Kinetic-TSP with four targets. The shortest-time tour (light line).
(b) A symbolic scheme representing a saccade from the target A to the target B. The φi,i+1,
ψi,i+1 are respectively the pan and tilt angles as seen from the slave camera when the
camera leaves target A at time t−i and intercepts B at time t+i+1.

shown that:

|Ak| =
k∑

i=0

k!

(k − i)!
(1)

where |Ak| is the cardinality of the set Ak. So for example with a queue of k = 7
targets we have |A7| = 13700. In this case the exhaustive enumeration requires
13700 solution evaluations. Here we want to maximize the number of targets taken
at high resolution. With the deadlines the TDO becomes a constrained combina-
torial optimization, where the feasible set can be defined as follows (see the TDO
definition in the previous section):

t−i < tdi , ∀i = 1..|T | (2)

Where T ∈ Ak is an instance of the permutations of the subsets, and tdi is the
deadline for the target at position i in T . That means the the camera must leave the
target i in T at time t−i before the target leaves the scene at time tdi .

4 Master-Slave Camera System Geometry

In order to show the advantages of adopting this framework for our research objec-
tive, we consider the classic camera system in a master/slave configuration (Zhou
et al., 2003) (Costello et al., 2004). In this configuration a static, wide field of view
master camera is used to monitor a wide area and track the moving targets pro-
viding the position information to the foveal camera. The foveal camera is used to
observe the targets at high resolution.
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Fig. 2. The geometry of a PTZ camera viewing a world plane in which the pan axis co-
incides with the normal of the plane. Also shown are the angles φ and ψ travelled by the
pan-tilt device gazing from the target P1 to the target P2.

4.1 Modelling the cost of changing orientation and zoom

We estimate the interception times of a target for each of the three foveal camera
control signals (respectively tφ, tψ, tz for pan, tilt, zoom). Since the effects of the
three control signals are independent from each other (i.e. the pan motor operates
independently from the tilt motor) the time needed to conclude a saccade is dom-
inated by the largest one. The largest time is taken as the time spent by the foveal
camera to observe the target and is taken into account to derive the overall time
needed to complete the tour in the TDO formulation.
With reference to fig.1(b) the estimated tφ, tψ, tz are assumed as the times needed
to make the foveal camera gaze at the target at position i + 1, leaving the target
at position i in the sequence S = {s1, ..., si, si+1, ..., sm} (in fig.1(b) the targets
at position i and i + 1 are respectively indicated as A and B). In other words
they represent the times needed for changing the pan and tilt angles and zoom
respectively by φi,i+1, ψi,i+1 and zi,i+1 (not shown in the figure) in order to inter-
cept the new target at time t+i+1 while leaving the old target at time t−i . The time
t? = max{tφi,i+1

, tψi,i+1
, tzi,i+1

} is the travel time needed to change the gaze.
By assuming targets moving on a calibrated plane, these times can be computed,
at least in principle, by adopting a linear constant speed model for the motors: A
closed form solution is obtained by assuming that during the camera interception
process, the target motion is negligible. This is basically the same assumption made
so far: due to the typically high distance at which PTZ-cameras are mounted, the
speeds of the virtual end-effector are generally higher than common moving targets
such as cars or humans. With this assumption the travel times tφi,i+1

and tψi,i+1
can

be computed as

tφi,i+1
=

φt+i+1
− φt−i

ωφ

tψi,i+1
=

ψt+i+1
− ψt−i

ωψ

(3)

8



where ωφ, ωψ are the pan and tilt angular speeds and φt−i
, ψt−i

, φt+i+1
, ψt+i+1

represent
the angle positions respectively at time t−i and t+i+1.

4.2 Computing the Pan, Tilt Angles and the Zoom

In order to keep tractable the estimate of the angles of the targets as seen by the
slave camera we assume that the PTZ-camera is not mounted oblique w.r.t. the
world plane. The camera pan axis it is approximately aligned with the normal of the
world plane. This is generally the case when PTZ-cameras are mounted on top of a
pole (see fig.2). This means that during continuous panning while keeping a fixed
angle for the tilt, the intersection of the optical axis with the plane approximately
describes a circle. The principal axis sweeps a cone surface so its intersection with
the world plane is in general an ellipse with an eccentricity close to one. In the
same sense during continuous tilting while keeping a fixed angle for the pan, the
intersection of the optical axis with the 3D plane describes approximately a line.
The swept surface is a plane (see fig.2). In such conditions the tilt angle between a
reference ray and the ray emanating from the image point corresponding to a target
trajectory can be measured once the intrinsic internal camera parameters in a home
position (i.e. a reference position) for the slave camera are known as (Hartley and
Zisserman., 2004):

cos(ψ) =
x′T1 ωv∞√

x′T1 ωx′1
√

vT∞ωv∞
(4)

where ω is the image of the absolute conic (IAC) which is directly related to the
internal camera matrix K as ω = K−TK−1 (see the appendix A for basic definition
and properties). We can consider the slave camera as an angle measurement device
using the extended image plane composed by the planar image mosaic having ΠH

as a reference plane. Indeed fig.3 shows exactly that: the point x1 on the camera
C is transferred by the homography H′ on the camera C′. The H′ relates the master
camera plane to the home position plane ΠH which is the reference view where the
calibration is computed (i.e. all the homographies Hij are related to that view). So it
is like transferring the point x1 onto a camera having the mosaic plane as the image
plane and then using eq. 4 there for computing the tilt angle.

The pan angle of a world point in the plane can be computed directly from the
master camera once the world to image homography H is known. Given a pinhole
camera model the zoom is proportional to the scene depth. The depth can be com-
puted by triangulation given the camera internal parameter and the world to image
homography.
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Fig. 3. The slave camera is internally calibrated and the inter-image homography H′ between
the master camera C and the slave camera C′ is computed in its home position (image plane
ΠH ). We can consider the slave camera as an angle measurement device using the extended
image plane composed of the planar image mosaic having ΠH . as a reference plane.

5 Experimental Results

In this section we show two different kind of experiments. The first regards the
camera speed kinematic model used and the second regards a statistical perfor-
mance analysis in a congestion setting. They are not intended to fully evaluate the
performance of the saccades planning framework described in the paper with a full
real implementation.

5.1 Estimating Camera Speeds

We ran several experiments to empirically estimate the pan/tilt/zoom speeds of our
cameras in order to validate the constant velocity kinematic models used in eq.3.
The results of these experiments are shown figure 4. In particular we have con-
ducted several trials and then we have averaged the results. In fig.4(a) the pan and
tilt speeds are shown while in fig.4(b) are reported the zoom speeds. Worthy of note
is the fact that, contrary to manufacturer specification, the cameras do not move at a
constant speed. Indeed, there are situations in which either panning or tilting might
be the slowest of motions, as indicated by the crossover point of the two curves in
figure. When moving such short distances, camera motion is nearly instantaneous
and we found that assuming a constant camera velocity when planning a saccade
sequence worked just as well as the more complex camera performance model.

5.2 Congestion Analysis

Evaluating different planning strategies using a video surveillance system installed
in a real context is a very complicated task. In fact, while we can easily collect video
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Fig. 4. Empirically estimated pan and tilt times for the Sony SNC-RZ30, averaged over
thirty trials.

from a static camera, and use it for target tracking, it is almost impossible to collect
all the information needed to plan tours in a master-slave camera configuration with
a foveal slave camera. Moreover, a wide range of traffic levels and paths through the
scene need to be used. It is also difficult to derive statistics about the performance
of the different scheduling policy implementations by observing the system. For
example, errors could be due to a mistake performed by the tracking camera rather
than a weakness of the scheduling policy. It is not easy to separate the performance
of the scheduling policy from that of the overall system.

To address all of these difficulties, we have created a Monte Carlo simulation for
evaluating scheduling policies using randomly generated data. But there is also
another main reason for using randomly generated data. The use of randomly gen-
erated data often enables more in-depth analysis, since the datasets can be con-
structed in such a way that other issues could be addressed. For example the arrival
rate parameter, generally denoted λ, describes the ”congestion” of the system. This
is basically the only important parameter which is worth of testing in a similar
scenario. We stress the importance of this kind of testing: real data testing cannot
evaluate the algorithm performance in this context. For example, errors could be
due to a mistake performed by the tracking camera rather than a weakness of the
policy. In order to evaluate how good the proposed approach is it, is mandatory to
separate the performance of the algorithm from that of the overall system.
We performed a Monte Carlo simulation that permits evaluating the effects of dif-
ferent scheduling policies in a congestion analysis setting. We used in our simulator
a particular scene in which our framework could be of invaluable benefit. A large
area of approximatively 50x60 meters (half of a soccer field) is monitored with the
slave camera placed at position (30, 0, 10). The master camera sees the monitored
area at a wide angle from above (more suitable for tracking due to low occlusion
between targets). Arrivals of targets are modelled as a Poisson process. The scene is
composed of two target sources situated at opposite sides of the area. Targets orig-
inate from these two sources from initial positions that are uniformly distributed
in given ranges of length 10 meters positioned at opposite sides of the area. The
starting angles for targets are also distributed uniformly with the range [−40, 40]
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degrees. Target speeds are generated from a truncated Gaussian with a mean of 3.8
meter/sec and standard deviation of 0.5 meter/sec. (typical of a running person) and
are kept constant for the duration of target motion. Targets follow a linear trajec-
tory. This is not a restrictive assumption since each TDO has in this simulation a
deadline of t = 5 seconds, and the probability of maneuvering for targets with a
running-human dynamic in an interval of five seconds is very low. So the overall
performance of the system is not generally affected. The deadline t has a role simi-
lar to a sampling time for traffic behavior and can be generally tuned depending on
the speeds of the targets. In our simulated scene it is quite improbable that a target
enters and exits the scene before five seconds are elapsed. Generally when people
move in a free space, a minimal distance is generally followed (i. e. so a line path
in generally used).
The used scene can represent a continuous flow of people, in a crisis situation. An
example is people exiting from a stadium or from the subway stairs. It can be inter-
esting, for crime detection purposes, to acquire as many high resolution images of
such running people as possible before they leave the scene.
By assuming a constant speed for the zooming motor and a linear mapping of
focal length to zoom it is possible to build a look-up table in the simulator as:
Zoom[x, y] = M · dist(C′,X) where x and y are the imaged coordinates of the
world plane point X as seen by the master camera, C′ is the camera center of the
slave camera and M is the constant factor which depends on the size at which
targets are imaged and on the target size in the scene. We want to collect human
imagery with an imaged height of approximatively 350 pixels using an image reso-
lution of 720× 576. In fig.5, plots indicate the number of targets that are observed
by the foveal camera (ordinates) as a function of the arrival rate λ (abscissa) for
two different situations. Since there are two sources with the same arrival rate, λ
actually refers to half the number of arrivals per second. The size of the queue is
six elements which guarantees that the enumeration of all the subsets with their
permutations is generated in a fraction of a second (basically a negligible time).
Performance is measured by running a scenario in which 500 targets are repeatedly
generated one hundred times and the performance metric was estimated by taking
the mean. The metric corresponds to the fraction of people observed in the scene.
In particular we take the mean (over the experiments) of the number of observed
targets divided by number of all the targets.
Fig.5(a) shows a comparison of our methods with the ’earliest deadline first’ pol-
icy studied in (Costello et al., 2004); it evident that our policy, using long term
planning plus the cost of moving the sensor, outperforms a simple greedy strategy.
While there is no need for planning in very modest traffic scenes, traffic monitor-
ing, in large, wide areas would receive an invaluable great advantage of more than
40% by adopting the proposed techniques.
Fig.5(b) shows the performance degradation w.r.t. the service time (or the watching
time) ts. This time is directly related to the quality of the acquired images and can
potentially affect recognition results. The figure also shows that varying ts does not
affects performance in direct proportion.
Fig.5(c) shows experiments conducted using different speeds for PTZ motors typi-
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Fig. 5. Policy performance versus arrival rate λ. (a) Our methods and simple earliest dead-
line first policy. (b) Performance variation at varying service time ts (the specified time
to watch a target). (c) Three different PTZ-camera under test with different pan-tilt-zoom
speed.

cal of off-the-shelf active cameras. Three cameras were selected using their respec-
tive performance as indicated by the technical specification (see table1). Using per-
formance values in the simulator produces the plots of fig.5(c). Although the three
models are very different in performance, such differences are less evident for the
observing task under test. This is mostly caused by the camera position w.r.t. the
scene plane; the performance in tilt speed was practically never employed because
of the latency of the other controls w.r.t. the imaged motion pattern of targets. The
control which delayed most of the saccades, employing the largest setup time, was
the zoom control (mostly caused by the scene depth). This explains why the two
fastest cameras exhibit similar performance. This type of analysis can be useful for
determining the type of camera and ultimately the cost needed to monitor an area
with a multi-camera system.
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Pan Speed Tilt Speed Zoom Speed

deg/sec deg/sec #mag/sec

Sony EVI-D30 80 50 0.6

Sony SNC-RZ30 170 76.6 8.3

Directed Perception 300 300 11.3
Table 1
Off the shelf PTZ-cameras performance. The #mag means magnification factor per second
and is calculated dividing the maximum optical zoom (for example 25X) by the zoom
movement time from wide to tele (for example 2.2 seconds).

6 Conclusions

Planning saccade sequences is mandatory for making PTZ cameras usable in real
environments. In this paper, we have defined a new scheduling policy to acquire
high resolution images of as many moving targets as possible before they leave the
scene, taking into account the costs of camera movements, and performed a con-
gestion analysis putting the number of target sensed in relationship with the number
of moving targets in the camera field. Results have been derived under reasonable
assumptions on camera travel times and by performing a Monte Carlo simulation.
The whole framework allows the derivation of useful quantitative evaluations that
otherwise would be impossible to obtain from real observations. In fact, in a real
scenario it is almost impossible to configure experimental test conditions in order to
collect all the information needed to plan tours with a PTZ camera in a master slave
configuration; and on the other hand, since errors due to target tracking are inter-
woven with errors due to the scheduling policy, the effects of the scheduling policy
cannot be identified reliably. The same approach followed here can also be applied
to camera networks for large surveillance systems. The framework can be easily
extended to deal with additional functions like object recognition or face detection,
or management of targets with different degrees of interest. Future research will ad-
dress the definition of on-line learning algorithms to obtain camera scheduling with
no constraints on the number of moving targets and the size of the temporal win-
dow, and the application of the proposed policy to real surveillance environments
with inclusion of face detection and high resolution target acquisition.

Appendixes

A Absolute Conic and rotating cameras

The image of the absolute conic is the projection of the absolute conic Ω. This
is an imaginary point conic that lies on the plane at infinity Π∞ in 3D and has
the property that it is invariant to similarity transformations of space (Hartley and
Zisserman., 2004). The conic relevant to calibration is its projection onto the image
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plane, i.e. the image of the absolute conic ω (IAC). The IAC is related to the camera
calibration parameter by ω = K−TK−1. The calibration matrix K may be computed
from ω according to the Cholesky decomposition.
One important property of the IAC is that it can be transferred from one image to
another through the infinite homography H∞ as:

ωi = H∞−T
ij ωjH

∞−1
ij (A.1)

Once we have H∞ the equation above can be used to impose constraints on ω. Points
at infinity (like for example vanishing point) are mapped between views by the
infinite homography H∞ and this is independent on translation between views. In
particular when there is no translation between the views, the infinite homography
H∞ relates points of any depth. This simplification can be exploited when images
are taken with cameras having a common center. The H∞ coincides with the inter-
image homographies, so we have a convenient method of measuring H∞ directly
from images.

B Computing the Slave internal camera parameter

Internal camera parameters necessary for the PTZ-camera can be computed very
accurately as recently shown in (Sinha and Pollefeys., 2004) using the method orig-
inally described in (De Agapito et al., 1999). When images are taken with cameras
all located at the same camera center point in space, camera matrices can be simpli-
fied. It is possible to analyze this situation by representing each camera as a 3 × 3
matrix instead of a general 3 × 4 camera matrix. A point in the i-th image, repre-
sented by a homogeneous 3-vector Xi corresponds to a ray in space consisting of
points of the form λP−1

i xi. Points on this ray are mapped into the j-th image to a
point x = PjP

−1
i xi. Denoting the transformation Hij = PjP

−1
i one sees that he i-th

and j-th images are related by a projective planar transformation Hij . Clearly this
can be estimated by at least four matched points. Each transformation estimated by
point correspondences is related to the internal camera parameter as eq.A.1. Once
the homographies are known the equation above can be expressed linearly in the
terms of ω. If the skew is zero which is usual in modern cameras, there are four un-
known in the internal camera parameters: focal length (1 DOF), principal point (2
DOF) and aspect ratio (1 DOF). Four homographies suffices to compute the mini-
mal solution. In fact each equation provides a single constraint on ω. Since we need
the internal camera parameter in a specified home position only for computing an-
gles we don’t need to use the zoom. This means that the internal camera parameter
does not varying while panning and tilting so in eq.A.1 ωi = ωj = ω and becomes

ω = H−T
ij ωH−1

ij (B.1)
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