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Abstract

Image analysis and computer vision can be effectively employed to recover the three-dimensional

structure of imaged objects, together with their surface properties. In this paper, we address the prob-

lem of metric reconstruction and texture acquisition from a single uncalibrated view of a surface of

revolution (SOR). Geometric constraints induced in the image by the symmetry properties of the SOR

structure are exploited to perform self-calibration of a natural camera, 3D metric reconstruction and

texture acquisition. By exploiting the analogy with the geometry of single axis motion, we demonstrate

that the imaged apparent contour and the visible segments of two imaged cross sections in a single SOR

view provide enough information for these tasks. Original contributions of the paper are: single view

self-calibration and reconstruction based on planar rectification, previously developed for planar sur-

faces, has been extended to deal also with the SOR class of curved surfaces; self-calibration is obtained

by estimating both camera focal length (1 parameter) and principal point (2 parameters) from three inde-

pendent linear constraints for the SOR fixed entities; the invariant-based description of the SOR scaling

function has been extended from affine to perspective projection. The solution proposed exploits both

the geometric and topological properties of the transformation that relates the apparent contour to the

SOR scaling function. Therefore, with this method a metric localization of the SOR occluded parts can

be made, so as to cope with them correctly. For the reconstruction of textured SORs, texture acquisition

is performed without requiring the estimation of external camera calibration parameters, but only using

internal camera parameters obtained from self-calibration.

Index Terms

Surface of revolution, camera self-calibration, single-view 3D metric reconstruction, texture acquisi-

tion, projective geometry, image-based modeling.

I. I NTRODUCTION

In the last few years, the growing demand for realistic three-dimensional (3D) object models

for graphic rendering, creation of non-conventional digital libraries, and population of virtual
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environments has renewed the interest in the reconstruction of the geometry of 3D objects and

in the acquisition of their textures from one or more camera images. In fact, solutions based on

image analysis can be efficiently employed in all those cases in which the original object is not

available and only its photographic reproduction can be used, or where the physical properties

of the surface of the object make its acquisition difficult or even impossible through structured

light methods, or where the object’s size is too large for other automatic acquisition methods.

In this paper, we address the task of metric reconstruction and texture acquisition from a sin-

gle uncalibrated image of a SOR. We follow a method which exploits geometric constraints of

the imaged object assuming a camera with zero skew and known aspect ratio. The geometric

constraints for camera self-calibration and object reconstruction are derived from the symme-

try properties of the imaged SOR structure. The key idea is that, since a SOR is a non trivial

“repeated structure” generated by the rotation of a planar curve around the axis, it can in prin-

ciple be recovered by properly extending and combining together single image planar scene

reconstruction and single axis motion constraints.

In the following we summarize recent contributions on 3D object reconstruction (Section I-A);

we discuss then new research results on surfaces of revolution and more generally on straight

uniform generalized cylinders (Section I-B), and finally provide an outline of the rest of the

paper and a list of the principal contributions (Section I-C).

A. 3D object reconstruction using prior knowledge

Solutions for the reconstruction of the geometry of 3D objects from image data include clas-

sic triangulation [19], [13], visual hulls [47], [42], dense stereo [40] and level sets methods

[12] (see [44] for a recent survey). An essential point for metric reconstruction of 3D objects

is the availability of internal camera parameters. In particular, self-calibration of the camera

[35] is important in that, although less accurate than off-line calibration [4], [18], it is the only

possible solution when no direct measurements can be made in the scene, as for example in

applications dealing with archive photographs and recorded video sequences. Effective camera

self-calibration and object reconstruction can be obtained by exploiting prior knowledge about

the scene, encoded in the form of constraints on either scene geometry or motion.

Most of the recent research contributions employ constraints on scene geometry. The presence

of a “repeated structure” [32] is a classical example of geometric constraint frequently used. This
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happens because the image of a repeated structure is tantamount to multiple views of the same

structure. In real applications this can have to do with planes, lines, etc. occurring in particular

(e.g., parallel, orthogonal) spatial arrangements. In a repeated structure, the epipolar geometry

induced in the image by multiple instances of the same object can be expressed through projec-

tive homologies, which require less parameters and therefore are more robust to estimate [50].

A further advantage of geometrically constrained reconstruction is that fewer (and, in special

cases, just one) images are required. An interactive model-based approach, working with stereo

or single images, has been proposed by Taylor et al. in [10], where the scene is represented as

a constrained hierarchical model of parametric polyhedral primitives—such as boxes, prisms—

called blocks. The user can constrain the sizes and positions of any block in order to simplify

the reconstruction problem. All these constraints are set in the 3D space, thus requiring a com-

plex non-linear optimization to estimate camera positions and model parameters. Liebowitz

et al. have suggested to perform calibration from scene constraints by exploiting orthogonality

conditions, in order to reconstruct piecewise planar architectural scenes [29], [28]. Single view

piecewise planar reconstruction and texture acquisition has also been addressed by Sturm and

Maybank following a similar approach [46], [45].

Motion constraints for self-calibration and reconstruction have been derived mainly for the

case of scenes undergoing planar motion [3]. In particular, recent works have exploited single

axis motion to reconstruct objects of any shape that rotate on a turntable [15], [9], [24], [31].

Apart from algorithmic differences in the reconstruction phase, motion fixed entities (e.g., the

imaged axis of rotation and the vanishing line of the plane of rotation) are first estimated from

the image sequence, and then used to calibrate the camera. However, these turntable approaches

do not succeed to perform a complete camera self-calibration. As a consequence of this, recon-

struction is affected by a 1D projective ambiguity along the rotation axis.

In the case of textured 3D objects, the texture must be acquired from the image in order to

backproject correctly image data onto the reconstructed object surface. Generally speaking, for

the case of curved objects, no geometric constraints can be set, and texture acquisition requires

the estimation of the external calibration parameters (camera position and orientation). There

are basically two methods for estimating external calibration from image data and a known 3D

structure. The first method exploits the correspondence between selected points on the 3D object
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and their images [37], [6]. The second method works directly on the image plane, and minimizes

the mismatch between the original object silhouette and the synthetic silhouette obtained by

projecting the 3D object onto the image [22], [33].

For planar objects, texture acquisition using surface geometric constraints has been solved by

Liebowitz et al. in [28], without requiring the explicit computation of external camera parame-

ters; projective distortions are rectified so as to represent textures as rectangular images. Sturm

and Maybank, in [46] have also performed texture acquisition from planar surfaces, omitting

the rectification step; this saves computation time but requires larger memory space to store the

textures.

B. Straight homogeneous generalized cylinders and surfaces of revolution

Surfaces of Revolution (SORs) represent a class of surfaces that are generated by rotating a

planar curve (scaling function) around an axis. They are very common in man-made objects

and thus of great relevance for a large number of applications. SORs are a subclass of Straight

Homogeneous Generalized Cylinders (SHGCs). SHGCs have been extensively studied under

different aspects: description, grouping, recognition, recovery, and qualitative surface recostruc-

tion (for an extensive review, see [1]). Their invariant properties and use have been investigated

by several authors. Ponce et al. [36] have proposed invariant properties of SHGC imaged con-

tours that have been exploited for description and recovery by other researchers [26], [38], [30],

[39], [48], [57], [56]. Abdallah and Zisserman [2] have instead defined invariant properties of

the SOR scaling function under affine viewing conditions, thus allowing recognition of objects

of the same class from a single view. However, they have left to future work the problem of

finding the analogous invariants in the perspective view case, and solving the problem of 3D

metric reconstruction of SORs.

Reconstruction of a generic SHGC from a single view, either orthographic or perspective, is

known to be an underconstrained problem, except for the case of SORs [17]. Utcke and Zisser-

man [49] have recently used two imaged cross sections to perform projective reconstruction (up

to a 2 DOF transformation) of SORs from a single uncalibrated image. Contributions addressing

the problem of metric reconstruction of SORs from a single perspective view may also be found

[54], [8]. Wong et al. in [54] have addressed reconstruction of SOR structure from its silhou-

ette given a single uncalibrated image; calibration is obtained following the method described in
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[53], [55]. However, with this method, only the focal length can be estimated from a single view,

with the assumptions of zero skew and principal point being at the image center. The reconstruc-

tion is affected by a 1-parameter ambiguity: although this can be fixed by localizing an imaged

cross section of the surface, one of the major problems in this approach is that the silhouette

is related directly to its generating contour on the surface. This is an incorrect assumption that

makes it impossible to capture the correct object geometry in the presence of self-occlusions, as

shown in [11]. Single view metric reconstruction of SORs was also addressed by Colombo et

al., who have discussed in [8] the basic ideas underlying the approach presented in this paper.

Texture acquisition of straight uniform generalized cylinders (SUGCs), which are a special

subclass of SORs, has been addressed by Puech et al [34]. In this approach, texture is obtained as

a mosaic image gathering visual information from several images. Since texture is not metrically

sampled, the quality of the global visual appearance of the object is affected in some way.

C. Paper organization and main contribution

The paper is organized as follows. Section II provides background material on basic geometric

properties of SORs and states the analogy between single axis motion and surfaces of revolution.

Section III describes in detail the solutions proposed, specifically addressing computation of the

fixed entities, camera calibration, reconstruction of 3D structure, and texture acquisition. Metric

reconstruction of the 3D structure of the SOR is reformulated as the problem of determining the

shape of a meridian curve. The inputs to the algorithms are the visible segments of two elliptical

imaged SOR cross sections, and the silhouette of the object apparent contour. Camera self-

calibration is obtained by deriving three independent linear constraints from the fixed entities in

a single view of a SOR. Texture acquisition is obtained by exploiting the special properties of

a SOR’s structure. In fact texture is not acquired through the estimation of external calibration

parameters, but is obtained directly from the image, by using the same parameters that have been

computed for the 3D SOR reconstruction: this avoids errors due to additional computations.

Self-calibration information is exploited in the resampling phase.

The main contributions of the paper with reference to the recent literature can be summarized

as follows:

1) Single-view reconstruction based on planar rectification, originally introduced in [28] for

planar surfaces, has been extended to deal also with the SOR class of curved surfaces.
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2) Self-calibration of a natural camera (3 dofs) is obtained from a single image of a SOR.

This improves the approach presented in [55], in which the calibration of a natural cam-

era requires the presence of two different SORs in the same view. Moreover, since self-

calibration is based on two visible elliptical segments, it can also be used to calibrate

turntable sequences and remove the 1D projective reconstruction ambiguity due to under-

constrained calibration experienced so far in the literature of motion-constrained recon-

struction [23].

3) The invariant-based description of the SOR scaling function discussed in [2] is extended

from affine to perspective viewing conditions.

4) Since the approach exploits both the geometric and topological properties of the transfor-

mation that relates the apparent contour to the scaling function, a metric localization of

occluded parts can be performed, and the scaling function can be reconstructed piecewise.

In this regard, the method improves the SOR reconstruction approach described in [51].

5) Texture acquisition does not require the explicit computation of external camera parame-

ters; therefore, the results developed in [28] and [46] for planar surfaces are extended to

the SOR class of curved surfaces. Moreover, since SORs are a superclass of the SUGC

class of curved surfaces, texture acquisition extends the solution presented in [34].

In section IV, experimental results on both synthetic and real data are presented and discussed.

Finally, in section V conclusions are drawn and future work is outlined. Mathematical proofs

are reported in the Appendices.

II. BACKGROUND

In this section we review the basic terminology and geometric properties of SORs under

perspective projection. We also discuss an important analogy between properties as derived from

a single SOR image and those of a sequence of images obtained from single axis motion: this

analogy will be exploited in the calibration, reconstruction and texture acquisition algorithms,

discussed in section III.

A. Basic terminology

Mathematically, asurface of revolutioncan be thought of as obtained by revolving a planar

curveρ(z), referred to asscaling function, around a straight axisz (symmetry axis). Therefore,
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SORs can be parametrized asP(θ, z) = (ρ(z) cos(θ), ρ(z) sin(θ), z), with θ ∈ [0, 2π], z ∈ [0, 1].

In the 3D space, allparallels(i.e., cross sections with planesz = constant) are circles.Meridians

(i.e., the curves obtained by cutting the SOR with planesθ = constant) all have the same shape,

coinciding with that of the SOR scaling function. Locally, parallels and meridians are mutually

orthogonal in the 3D space, but not in a 2D view. Two kinds of curves can arise in the projection

of a SOR:limbsandedges[11]. A limb, also referred to asapparent contour, is the image of

the points at which the surface is smooth and projection rays are tangent to the surface. The

corresponding 3D curve is referred to ascontour generator. An edge is the image of the points

at which the surface is not smooth and has discontinuities in the surface normal. Fig. 1 depicts a

SOR and its projection. Under general viewing conditions, the contour generator is not a planar

curve, and is therefore different from a meridian [25]. Depending on this, the apparent contour

also differs from the imaged meridian. Parallels always project onto the image as ellipses. Edges

are elliptical segments that are the projection of partially or completely visible surface parallels.

�
�

�

Γ Χ
γ χ

�
�

Fig. 1. Imaged SOR geometry.Γ andγ are respectively part of the contour generator and of the apparent contour. The

translucent cone is the visual hull for the apparent contour.X andχ are respectively a meridian and its projection. The ellipse

C is the edge corresponding to the parallelCo.
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B. Basic imaged SOR properties

Most of the properties of imaged SORs can be expressed in terms of projective transforma-

tions calledhomologies. These are special planar transformations that have a line of fixed points

(the homology axis) and a fixed point (the vertex) that does not belong to the axis [43]. In

homogeneous coordinates, a planar homology is represented by a3 × 3 matrix W transforming

points asx′ = Wx. This matrix has two equal and one distinct real eigenvalues, with eigenspaces

respectively of dimension two and one. It can be parametrized as

W = I + (µ− 1)
v lT

vT l
, (1)

whereI is the3× 3 identity matrix,l is the axis,v is the vertex andµ is the ratio of the distinct

eigenvalue to the repeated one. A planar homology has five degrees of freedom (dof); hence,

it can be obtained from three point correspondences. In the special caseµ = −1, the dofs are

reduced to four, and the corresponding homologyH is said to beharmonic.

v
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Fig. 2. Basic projective properties for an imaged SOR. II.1: Pointsxi andx′i correspond underW; all linesx′i × xi meet at

vW ∈ ls. II.2: Pointsyi andy′i correspond underH; all linesy′i × yi meet atv∞ ∈ l∞ (not shown in the figure).

An imaged SOR satisfies the following two fundamental properties, the geometric meaning of

which is illustrated in Fig. 2.

Property II.1: Any two imaged SOR cross sections are related to each other by a planar ho-

mologyW. The axis of this homology is the vanishing linel∞ of the planes orthogonal to the

SOR symmetry axis. The image of this axis,ls, contains the vertexvW of the homology [2], [1].
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Property II.2: The apparent contour of an imaged SOR is transformed onto itself by a har-

monic homologyH, the axis of which coincides with the imaged symmetry axis of the SOR,ls.

The vertexv∞ of the homology lies on the aforementioned vanishing linel∞ [16].

Denoting withC andC′ the3×3 symmetric conic coefficient matrices associated with two generic

cross sections that correspond pointwise under the planar homologyW, it holdsC′ = W−TCW−1.

The harmonic homology generalizes the usual concept of bilateral symmetry under perspective

projection. In fact, the imaged axis of symmetry splits the imaged SOR in two parts, which

correspond pointwise throughH. This is true, in particular, for imaged cross sections, that are

fixed as a set under the harmonic homology:C = H−TCH−1 (or C = HTCH, beingH−1 = H).

To give an example, the two elliptical imaged cross sectionsC andC′ of Fig. 2 are related by a

planar homologyW with axis l∞ and vertexvW. The vertexvW is always on the imaged axis of

symmetryls. Imaged cross section pointsx1, x2, x3 correspond tox′1, x
′
2, x

′
3 underW. Imaged

cross section pointsx1, x′1, x2, x′2 also correspond respectively tox3, x′3, x2, x′2 underH. The

points on the apparent contoury′1, y
′
2 correspond toy1, y2 underH. The lines through pointsy′1,

y1 andy′2, y2 meet atv∞.

C. The analogy between SOR geometry and single axis motion

Given a static camera, and a generic object rotating on a turntable, single axis motion (SAM)

provides a sequence of different images of the object. This sequence can be imagined as being

produced by a camera that performs avirtual rotation around the turntable axis while viewing

a fixed object. Single axis motion can be described in terms of itsfixed entities—i.e., those

geometric objects in space or in the image that remain invariant throughout the sequence [3]. In

particular, the imaged fixed entities can be used to express orthogonality relations of geometric

objects in the scene by means of theimage of the absolute conic(IAC) ω—an imaginary point

conic directly related to the camera matrixK asω = K−TK−1 [19].

Important fixed entities for the SAM are the imaged circular pointsiπ andjπ of the pencil of

planesπ orthogonal to the axis of rotation, and the horizonlπ = iπ × jπ of this pencil. The

imaged circular points form a pair of complex conjugate points which lie onω:

iTπ ω iπ = 0, jT
π ω jπ = 0 . (2)
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In practice, asiπ andjπ contain the same information, the two equations above can be written in

terms of the real and imaginary parts of either points. Other relevant fixed entities are the imaged

axis of rotationla, and the vanishing pointvn of the normal direction to the plane passing through

la and the camera center. These are in pole-polar relationship with respect toω:

la = ωvn . (3)

Eqs. 2 and 3 were used separately in the context of approaches to 3D reconstruction from

turntable sequences. In particular, Eq. 2 was used in [15] and in [23] to recover metric proper-

ties for the pencil of parallel planesπ given an uncalibrated turntable sequence. In both cases,

reconstruction was obtained up to a 1D projective ambiguity, since the two linear constraints on

ω provided by Eq. 2 were not enough to calibrate the camera. On the other hand, Eq. 3 was used

in [52] to characterize the epipolar geometry of SAM in terms ofla andvn given a calibrated

turntable sequence. Clearly, in this case, the a priori knowledge of intrinsic camera parameters

allows one to obtain an unambiguous reconstruction. In the case of a SOR object, assuming that

its symmetry axis coincides with the turntable axis, the apparent contour remains unchanged in

every frame of the sequence. Therefore, for a SOR object, the fixed entities of the motion can be

computed from any single frame of the sequence. According to this consideration,a SOR image

and a single axis motion sequence share the same projective geometry: the fixed entities of SOR

geometry correspond to the fixed entities of single axis motion. In particular: (i)la corresponds

to ls; (ii) vn corresponds tov∞; (iii) ( iπ, jπ) correspond to (i, j); (iv) lπ corresponds tol∞ = i×j,

wherei andj denote the imaged circular points of the SOR cross sections.

Fig. 3 shows the geometrical relationships between the fixed entities and the image of the ab-

solute conic. The analogy between SOR and SAM imaged geometry was exploited in [31] to

locate the rotation axis and the vanishing point in SAM. It was also exploited in [55] to calibrate

the camera from two SOR views under the assumption of zero camera skew. In that paper, the

pole-polar relationship ofls andv∞ with respect to the image of the absolute conic was used

to derive two constraints onω. In section III-B we will exploit the analogy one step forward,

and show that it is possible to apply both Eqs. 2 and 3 to SORs for camera calibration and 3D

reconstruction from a single SOR view.
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Fig. 3. The geometrical relationships between the fixed entities and the image of the absolute conicω.

III. T HE APPROACH

In this section we demonstrate that, given a single SOR view and assuming a zero skew/known

aspect ratio camera (natural camera), the problems of camera calibration, metric 3D reconstruc-

tion and texture acquisition are solved if the apparent contourγ and the visible segments of two

distinct imaged cross sectionsC1 andC2 are extracted from the original image. Preliminary to

this, we demonstrate that the fixed entitiesls, v∞, l∞, i andj—that are required for all the later

processing—can be unambiguously derived from the visible segments of the two imaged cross

sections. This relaxes the conditions claimed by Jiang et al. in [23], where three ellipses are

requested to compute the imaged circular points.

A. Derivation of the fixed entities

The non linear system 



xTC1x = 0

xTC2x = 0
(4)

that algebraically expresses the intersection betweenC1 and C2 has four solutionsxk, k =

1 . . . 4—of which no three are collinear [43]—that can be computed as the roots of a quartic

polynomial [41]. At least two solutions of the system of Eq. 4 are complex conjugate and co-

incide with the imaged circular pointsi andj, which are the intersection points of any imaged

cross section with the vanishing linel∞. According to this, the remaining two solutions are
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either real or complex conjugate. In the following, we will assume, without loss of generality,

that the solutionsx1 andx2 are complex conjugate.

Fig. 4 shows the geometric construction for the derivation of the fixed entitiesv∞ andls. The

four solutionsxk’s form a so called “complete quadrangle” and are represented in the figure by

the filled-in circles. In the figure it is assumed thatx1 andx2 are the two imaged circular points

i andj.

∞
=

a
v v

b
v

3
x

4
x

1
=x i

2
=x j

c
v

12 ∞
=l l

34
l

23
l

24
l

13
l

14
l

s
l

Fig. 4. Geometric properties of the four intersection points ofC1 andC2 with the hypothesisl∞ = l12.

Thexk’s may be joined in pairs in three ways through the six lineslij = xi × xj, i = 1, . . . 3,

j = i + 1, . . . 4. Each pair of lines has a point of intersection, and the three new points (hollow

circles in the figure) form the vertices of the so called “diagonal triangle” associated with the

complete quadrangle. The vertex of the harmonic homologyv∞ is the vertex of the diagonal

triangle which lies on the linel12 connecting the two complex conjugate pointsx1 andx2. The

imaged axis of symmetryls is the line connecting the remaining two vertices of the diagonal

triangle. In particular, the vertex of the harmonic homology and the imaged axis of symmetry

can be computed respectively as

v∞ = l12 × l34 (5)

and

ls = (l13 × l24)× (l14 × l23) . (6)

The proof of this result is given in Appendix 1.

The computation of the vanishing linel∞ is straighforward when the two solutionsx3 andx4
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are real. In this case,x1 andx2 are the imaged circular points and, by consequence,l∞ = l12.

On the other hand, whenx3 andx4 also are complex conjugate, an ambiguity arises in the

computation ofl∞, since bothl12 andl34 are physically plausible vanishing lines. In fact, a pair

of imaged cross sectionsC1 andC2 with no real points of intersection are visually compatible

with two distinct views of the planar cross sections, where each view corresponds to a different

vanishing line. Fig. 5(I) shows an example of two imaged cross sections and the two possible

solutions for the vanishing line; Fig. 5(II) shows the correct solution for the vanishing line when

the camera center is at any location in between the two planes of the cross sections; Fig. 5(III)

(SOR ends are not visible) and Fig. 5(IV) (one SOR end only is visible) show the correct solution

for the vanishing line when the camera center is at any location above the two planes of the cross

sections.

Fig. 5. Two imaged cross sections (I) and their possible interpretations (II,III,IV). The twofold ambiguity in the determination

of the vanishing line can be solved by exploiting the visibility conditions. Visible contours are in bold.

The example shows that, unless the two imaged cross sections are one inside the other—which is

indeed not relevant for the purpose of our research, since in this case no apparent contour could

be extracted—at least one of them is not completely visible. This suggests a simple heuristics to

resolve the ambiguity based on visibility considerations. When bothC1 andC2 are not completely

visible, the correct vanishing linel∞ is the one whose intersection withls belongs toh1 ∩ h2,

wherehi is the half-plane generated by the major axis ofCi that contains the majority of the

hidden points. In the case in which one of the two ellipses, sayC1, is completely visible, then
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the correctl∞ leaves bothC1 andC2 on the same side. Oncel∞ is associated to the correct

lij = xi × xj, the imaged circular points are simply chosen out of the four intersection points as

i = xi andj = xj. The above result demonstrates that the visible segments of two ellipses are in

any case sufficient to extract unambiguously the vanishing line and the imaged circular points.

B. Camera calibration

In order to perform camera calibration from a single image of a SOR, we exploit the analogy

between a single SOR image and single axis motion discussed in section II-C. According to

this, we can rewrite Eqs. 2 and 3 in terms of the SOR fixed entitiesi, j, ls andv∞. The resulting

system 



iT ω i = 0

jT ω j = 0

ls = ωv∞

(7)

provides four linear constraints on the image of the absolute conicω. However, it can be demon-

strated (see Appendix 2) that the system has only three independent linear constraints. There-

fore, the available constraints are sufficient to calibrate a natural camera (3 dofs) from a single

image. By rewriting the third of Eqs. 7 asls × ωv∞ = 0, the system can be transformed into

a homogeneous system and solved by singular value decomposition. Onceω is computed, the

camera matrixK can be obtained by Cholesky’s factorization.

Different conditions can also be considered: (i) a single image withn SOR objects provides—

except in special configurations—3n constraints that can be used to perform a full pinhole cam-

era calibration (5 dofs); (ii)m distinct images of a SOR—obtained without varying the internal

camera parameters—provide3m linear constraints for full camera calibration.

The geometric relationships mathematically expressed by the system of Eq. 7 are displayed

in Fig. 3. The three pointsv∞, vs = l∞ × ls andv⊥ ∈ ls are the vanishing points of three

mutually orthogonal directions in the 3D space. In particular,v⊥ is the vanishing point of the

directions parallel to the SOR symmetry axis; since this point cannot be measured from a single

SOR view, its associated constraintl∞ = ωv⊥ cannot be used for calibration purposes. Ifv∞

is a finite point, there exists only one IAC such thatl∞ intersectsω at the fixed pointsi andj,

and the tangent lines toω from v∞ have the tangent points onls. However, in the case in which

the optical axis of the camera pierces the symmetry axis of the SOR, the principal point is onls
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and as a consequencev∞ becomes an ideal point (degeneracy condition). The effect of this is

a 1-dof ambiguity in the position of the principal point, which can be anywhere on the imaged

axis of symmetry. A practical solution to this problem is to choose as the principal point the

point on ls nearest to the image center [20]. When the principal point is close tols, although

not exactly on it, a near degenerate condition occurs. In this case, the accuracy of calibration

strongly depends on the accuracy of the estimation of the fixed entities, and particularly ofv∞.

C. 3D metric reconstruction

Given the IAC, it is possible to remove the projective distortion of any imaged plane for which

the vanishing line is known—a technique known as planar rectification [19]. According to this,

if the imageχ of any SOR meridian, the corresponding vanishing linem∞ and the imaged axis

of symmetryls are available, it is possible to guarantee a solution for the problem of 3D metric

SOR reconstruction. As a first step, we computeχ andm∞ from one imaged cross sectionC and

the apparent contourγ under full perspective conditions. The imaged meridianχ andls—the

latter obtained as shown in the previous section—will then be rectified in order to compute the

SOR scaling functionρ(z).
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Fig. 6. Geometric relationships for imaged meridian reconstruction and rectification.

1) Computation of the imaged meridian:The following properties for the apparent contour

and the imaged cross sections of a SOR extend the basic imaged SOR properties discussed in
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section II-B, and provide the theoretical foundation for the computation the imaged meridianχ.

Property III.1: The apparent contourγ is tangent to an imaged cross section at any point of

contact [1] (see point of contactx′γ of imaged cross sectionC′ in Fig. 6).

Property III.2: The lines tangent to two distinct imaged cross sectionsC andC′ at any two

points related by the planar homologyW have the same vanishing pointu∞, which lies onl∞

(see linesl andl′ tangent to the imaged cross sectionsC andC′ at pointsx andx′γ in Fig. 6).

Property III.3: The 3D points whose images are related by the planar homologyW belong to

the same SOR meridian (see pointsx andx′γ or xχ andx′χ of imaged cross sectionsC andC′ in

Fig. 6).

As shown in Fig. 6, given the apparent contourγ, there exists a unique imaged cross sectionC′

that includes the generic pointx′γ ∈ γ. Correspondingly, once the vanishing linel∞ is given,

there exists a unique planar homologyW that maps a reference imaged cross sectionC ontoC′. As

x′γ varies onγ, the vertexvW and the characteristic invariantµW of W also vary, whilel∞ remains

fixed. Therefore, asx′γ ∈ C′ is moved alongγ, it gives rise to a family of planar homologies

W : C −→ C′.

We now show how to compute the planar homologyW at a givenx′γ. According to property

III.1, there exists an imaged cross sectionC′ such thatγ andC′ share the same tangent linel′ at

x′γ. The tangent linel′ intersects the vanishing linel∞ at the pointu∞: according to property

III.2, this is the vanishing point of all the lines which are tangent to the SOR along the same

meridian. Therefore, the tangent linel to C from u∞ meetsC at the pointx such thatx′γ = Wx,

and the planar homology vertexvW is the point where the line throughx andx′γ intercepts the

imaged axis of symmetryls:

vW = (x× x′γ)× ls . (8)

This fixes two of the three degrees of freedom left forW. The remaining degree of freedom is

fixed by computing the characteristic invariantµW as

µW = {vW,w∞,x,x′γ} , (9)
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wherew∞ = (x×x′γ)× l∞ is the point where the line throughx andx′γ intercepts the vanishing

line l∞, and{} denotes the usual cross ratio of four points [43].

For eachW that is obtained from the steps above, by exploiting the property III.3, a pointx′χ

on the imaged meridianχ that passes through the pointxχ ∈ C is computed asx′χ = Wxχ. The

imaged meridianχ is then recovered as the set of all the pointsx′χ obtained for different points

x′γ sampled on the apparent contour (see Fig. 7,left).
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Fig. 7. Recovery (left) and rectification (right) of an imaged meridian.

2) Rectification of the imaged meridian:The rectification ofχ requires the availability of

both the image of the absolute conicω and the vanishing linem∞ of the planeπχ through the

meridian and the SOR symmetry axis. As this axis lies by construction onπχ, once the rectifying

homographyMr for this plane is known, we are able to rectify both the imaged meridianχ and

the imaged axis of symmetryls according to



xρ = Mrx
′
χ

lz = M-T
r ls

. (10)

By computing the distance between any pointxρ and the linelz, it is then possible to obtain the

values ofz andρ(z) for eachx′χ given the reference SOR axisls (see Fig. 7,right).

The vanishing linem∞ can be obtained asm∞ = x∞×v⊥, wherex∞ andv⊥ are respectively

the vanishing point of the direction of all lines inπχ that are orthogonal to the SOR symmetry

axis, and the vanishing point of the direction of the same axis (see Fig. 6). The vanishing point

x∞ is computed as

x∞ = (xχ × o)× l∞ =
(
xχ × C−1l∞

)× l∞ , (11)
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whereo = C−1l∞ is the image of the center of the cross section that projects ontoC; this point

is in pole-polar relationship withl∞ with respect toC. Sinceω is known, the vanishing point

v⊥ can be computed asv⊥ = ω−1l∞. The vanishing linem∞ can now be intersected withω

in order to obtain the imaged circular pointsiχ andjχ. This intersection can be algebraically

computed by solving forλ the quadratic equation(x∞ + λv⊥)T ω (x∞ + λv⊥) = 0, where

x∞ + λv⊥ denotes the generic point onm∞. The required imaged circular points are obtained

from the two complex conjugate solutionsλ1 andλ2 respectively asiχ = (x∞ + λ1v⊥) and

jχ = (x∞ + λ2v⊥). According to [29], the rectifying homography for the planeπχ is

Mr =




β−1 −α β−1 0

0 1 0

m1 m2 1


 , (12)

wherem∞ = (m1,m2, 1) andiχ = conj(jχ) is expressed asM−1
r (1, i, 0) = (α − iβ, 1,−m2 −

m1α + im1β).

3) Discussion: The above two-step method for 3D metric reconstruction is equivalent to

the computation of the set of pairs{(z, ρ(z))}, wherez is the point of the SOR symmetry axis

that corresponds to a pointx′γ sampled on the apparent contourγ. This correspondence can be

expressed in terms of a functionζ : γ → [0, 1] such that

z = ζ(x′γ) . (13)

The functionζ is defined only at pointsx′γ at whichγ is smooth and has a unique tangent line.

These points belong to a unique imaged cross sectionC′, whose corresponding pair(z, ρ(z))

can then be correctly recovered with the method above. In the presence of self-occlusions, the

apparent contour can have singular points at whichγ is not smooth and has two distinct tangent

lines. The valuesz− andz+ corresponding to the two tangent lines at a singular point delimit

the portion of thez axis at which noρ(z) can be computed with the method above. In this case,

the method still guarantees that the scaling function be correctly recovered piecewise as a non

connected curve.

If a uniform sampling strategy forγ is used, a non uniform sampling ofz is obtained. Con-

versely, if a uniform sampling on thez axis is required, then the inverse ofζ should be used.

However, according to the definition ofγ used so far, the functionζ is not invertible. In fact, the
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apparent contour is split by the imaged axis of symmetry into two halves, the points of which

correspond in pairs under the harmonic homology. The two points of a pair carry the same re-

construction information, since both of them are mapped byζ onto the samez. Without loss of

generality we can restrict the domain ofζ to one of two halves ofγ, sayγ′, so as to ensure that

the functionζ−1 : [0, 1] → γ′ exists. This maps any pointz at which the valueρ(z) can be

recovered with the method above onto a single pointx′γ′ of the apparent contour. The computa-

tion of x′γ′ = ζ−1(z) at the genericz is carried out using a recursive subdivision scheme similar

to the one proposed in [14].

A uniform sampling on thez axis can be conveniently used for texture acquisition, as dis-

cussed in the following section.

D. Texture acquisition

As shown in Fig. 8(a), the SOR texture is the rectangular imageT (θ, z) = I(x(θ, z)), where

I is the image function andx(θ, z) is the image projection of the 3D pointP(θ, z) parametrized

as in section II-A.

Texture acquisition following the canonical parameterization(θ, z) can be solved through the

well known cartographic method ofnormal cylindrical projection[5]. However, if parallels

and meridians of the imaged object are sampled at regular(θ, z) in the Euclidean space, a non-

uniform sampling of the texture is created. In order to avoid this, we follow the inverse method

(from a regular grid of(θ, z) on the texture plane to points on the image plane) that assures that

a uniformly sampled texture is created.

To obtain a metric texture,θ and z are therefore sampled at regular intervals. The resulting

texture image hasM rows andN columns. The unknown image pointx(θ, z) is the intersection

between the imaged meridianχ(θ) corresponding to the SOR meridian atθ and the visible

portion of the imaged parallelC(z) corresponding to the SOR parallel atz. Therefore, the rows

of the texture image are composed of image pixels sampled fromC(z) at regular intervals ofθ.

A method to sample the visible portion of an imaged parallelC(z) at a given value of the

Euclidean angleθ is described in Appendix 3. The method permits Laguerre’s formula [13]

θ =
1

2i
log({vθ,vs, i, j}) (14)
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Fig. 8. (a): The geometry of SOR texture acquisition. Meridians and parallels in the image plane (left) are mapped into

mutually orthogonal lines in the texture plane (right). (b): Sampling an imaged cross sectionC(z) at a given Euclidean angleθ.

to be inverted so as to compute the vanishing pointvθ and to obtain, from this, the sampled point

x(θ, z)—see Fig. 8(b).

The algorithm for the computation of a generic texture row{T (θ, z), θ = θ1, . . . θN} is:

0. Choose a reference imaged parallelC.

1. Computex′γ′ = ζ−1(z) as shown in section III-C.3.

2. Use the planar homologyW associated tox′γ′ (see section III-C.1) to compute the imaged

parallelC′ = W−TCW−1.

3. SampleC′ at all valuesθ = θ1, . . . θN as described in Appendix 3.

4. For each of theN pointsx′χ(θ) = x(θ, z) thus obtained, setT (θ, z) = I(x′χ(θ)).

Texture acquisition is achieved by repeating steps 1 through 4 for all theM rows of the texture

image, sampled at regular intervals ofz.

It is worth noting that not all the texture image pixels can be computed by the algorithm above.

In particular, singular points on the apparent contourγ′ due to self-occlusions give rise to row

intervals[z−, z+] for which the inverse functionζ−1(z) cannot be computed (see section III-C.3).

A similar situation occurs for the range ofθ values for which the surface is not visible. In this

case, for each imaged parallelC(z), Laguerre’s formula—with the valueu∞ of section III-C.1

used in Eq. 14 in the place ofvθ—can be used to determine the interval[θmin(z), θmax(z)] for

which the parallel is visible.

The method for texture acquisition described above has some advantages over other solutions

presented in the literature. It uses a 2D/2D point transformation applied to SOR pixels that re-
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quires only the knowledge of internal camera parameters. This way, higher accuracy is obtained

than with 2D/3D registration methods [22], which backproject the image data onto the 3D object

and require both the internal and external camera parameters to fully recover the camera map-

ping P(θ, z) −→ x(θ, z). Moreover, sinceinverse texture mappingis used, the method avoids

“holes” in the texture image due to insufficient sampling of the image space, a typical drawback

of direct texture mapping methods [21], which compute the transformationx(θ, z) −→ (θ, z).

IV. I MPLEMENTATION AND EXPERIMENTAL RESULTS

A. Accuracy evaluation

Several experiments were performed in order to test the accuracy of the approach. In particu-

lar, we assessed the accuracy of vanishing point estimation, camera self-calibration, and recon-

struction of the SOR scaling function. Two different views of the synthetic object of Fig. 1—

generated by the scaling functionρgt(z) = 1
10

(cos(π
2
(19

3
z + 1)) + 2) with z ∈ [0, 1]—were taken

using a virtual camera with internal parameters: focal lengthf = 750 (simulating a wide an-

gle lens), and principal point coordinates(u0, v0) = (400, 300). The two views, referred to as

non degeneracy viewandnear degeneracy view, were obtained by panning the virtual camera,

around an axis parallel to the SOR symmetry axis, by 14.0 and 3.5 degrees, respectively. The

degeneracy viewcondition in which the imaged SOR symmetry axis coincides with the vertical

image axis passing by the principal point is taken as the reference camera position. In all the

experiments, the points of the imaged cross sections and apparent contour of the SOR, sampled

at the same resolution as that of the image, were corrupted by a white, zero mean Gaussian

noise with standard deviation between 0 and 1.5 pixel. The influence of this noise was tested by

running a Monte Carlo simulation with 10000 trials for each of the parameters under test.

Fig. 9 shows the accuracy of vanishing point estimation (the most noise-sensitive fixed entity),

for the two cases of non degeneracy (a) and near degeneracy (b). Mean and standard deviation of

the estimation error are represented respectively as light lines and vertical bars (±1σ). The two

quantities grow almost linearly with noise. The bias for nonzero noise values is due to the use

of an algebraic distance rather than a geometric one in the estimation of ellipses. The accuracy

of the estimation in the non degeneracy condition is higher by about one order of magnitude

than in the near degeneracy condition. Bold curves and bars indicate a reference condition
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Fig. 9. Vanishing point estimation accuracy in (a) non degeneracy view condition (ground truth:v∞ =

(3421.978, 209.049, 1)) and (b) near degeneracy view condition (ground truth:v∞ = (12493.024, 206.432, 1)). Different

scales are used in the two charts.

where all the points of the imaged cross sections are available. It can be noticed that, in noisy

conditions, the accuracy obtained when a subset of the points of the imaged cross sections is

used, is approximately that obtained in the case in which all the points are available.
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Fig. 10. Self-calibration accuracy in (a) non degeneracy and (b) near degeneracy view conditions.Top: principal point

estimation (ground truth:(u0, v0) = (400, 300)). Bottom: focal length estimation (ground truth:f = 750).

Self-calibration accuracy is shown in Fig. 10 for the two viewing conditions. Top figures show

accuracy in principal point estimation; bottom figures show accuracy in focal length estimation.

In the non degeneracy case (a), the principal point is estimated with an error less than 10 pixels,

even in the presence of high noise; a higher error value is always observed in the near degeneracy

case (b). In noisy conditions, bold and light curves exhibit the same behavior as in the case of
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vanishing point estimation. Besides, focal length estimation accuracy has proven to be less

dependent on camera viewpoint than principal point estimation accuracy.

(a) (b)

Fig. 11. A sample SOR with a qualitative view of calibration uncertainty (ellipses), for different noise values, in the two cases

of non degeneracy (a) and near degeneracy (b) view conditions.

A qualitative insight into principal point estimation accuracy is provided by Fig. 11, where

uncertainty3σ ellipses are drawn for different noise values. It is apparent that, as the SOR

position in the image gets closer to the image center, the uncertainty ellipses become larger, with

their major axis parallel to the imaged symmetry axis. In fact, in the pure degeneracy condition,

an infinite uncertainty affects the principal point coordinate along the imaged symmetry axis.
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Fig. 12. Reconstruction accuracy in the near degeneracy case. (a): noisy apparent contour (max standard deviation=0.0218).

(b): noisy visible points of imaged cross sections (max standard deviation=0.0043). (c): noisy apparent contour and noisy visible

points of imaged cross sections (max standard deviation=0.0395). The maximum value of standard deviation is obtained for the

maximum noise value.

The mean and standard deviation of the error in the reconstruction of the scaling function are

defined respectively as
∫ 1

0
|ρe(z) − ρgt(z)|dz and

√∫ 1

0
[ρe(z)− ρgt(z)]2 dz, whereρe(z) is the
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estimated scaling function, andρgt(z) is the ground truth scaling function. Fig. 12 shows the

effects of noise on the reconstruction error in the near degeneracy case (the most critical one).

The noise on the apparent contour is the dominant source of error for reconstruction, due to the

fact that it requires the computation of tangent lines along the apparent contour.

B. Creation of 3D textured models

Fig. 13 shows examples of reconstruction from a single uncalibrated view for four distinct

SOR objects. For each object, the original image and the 3D solid obtained are shown. All the

images have been taken with moderate perspective distortion. The apparent contour and cross

sections have been manually extracted by following the imaged object’s boundaries. The results

presented can therefore be regarded as close to those obtainable in the absence of noise.

greek_from_british.jpg (600x600x24b jpeg)

(a) (b) (c) (d)

Fig. 13. SOR objects: single uncalibrated views (top) and reconstructed 3D models (bottom).

Figs. 13 (a,b,c) present objects with linear (a) and curvilinear (b,c) profiles (a can, and a

Chinese and Greek vase, respectively). For each object, both the uncalibrated view (top) and a

view of the reconstructed solid object (bottom) are shown. 3D objects are correctly reconstructed

in all the cases. Fig. 13(d) presents the case in which 3D reconstruction of the original object

(a transparent glass) would have been difficult with a laser scanner, due to the object’s physical
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properties. It can be observed (bottom) that the 3D model is correctly reconstructed from the

original view (top).

Fig. 14. Left: Wireframe drawing of a chalice by Paolo Uccello (1397–1475).Middleandright: two views of the reconstructed

model, with evidence of self-occluded parts.

Fig. 14 shows the case of a drawing of which there is not any physical reproduction. It dis-

plays the first “wireframe” drawing in history, made by the Renaissance artist Paolo Uccello

(left), and two views of the reconstructed 3D model (middleand right). Since the wireframe

drawing provides information also for the occluded parts of the apparent contour, a more com-

plete reconstruction of the object model can be obtained.
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Fig. 15. (a).Left: A SOR view taken under strong perspective conditions (with indications of the two cross sectionC1 and

C2, the apparent contourγ and the projection of the SOR meridianχ). Middle: The SOR scaling function rectified.Right:

The reconstructed 3D model. (b).Left: A SOR view with severe self-occlusion and its apparent contour.Right: The partially

reconstructed scaling function.

Fig. 15 presents two critical cases for 3D SOR reconstruction, respectively due to strong
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perspective distortion (a) and the presence of self-occlusions (b). Fig. 15(a,middle) shows that

the scaling function of the bottle is correctly recovered: the ratio of the bottom and top radii

of the reconstructed bottle differs by less than 3% from the real one. In Fig. 15 (b,left) the

segmentsγ1, γ2, γ3, γ4 of the apparent contour of the cup are shown, that are related to curve

singularities due to self-occlusions. Fig. 15 (b,right) shows that, for each apparent contour

segment, the corresponding scaling function segmentsρ1, ρ2, ρ3, ρ4 can be obtained so that a 3D

(partial) reconstruction is still possible for which the global metric structure of the reconstructed

SOR object is preserved.

C. Texture acquisition

The acquisition of the flattened texture permits the complete three-dimensional reconstruction

of the visible part of the SOR object as well as a separate analysis of the true texture properties,

regardless of the perspective distortion. Texture flattening makes image details more evident

than in the original picture, and also gives the same importance to central and peripheral details.

Fig. 16 shows the flattened texture acquired from the image of the Greek vase of Fig. 13. In this

Fig. 16. Flattened texture from the image of the archaeological vase of Fig. 13. Surface region with the largest distortion are

indicated with circles.

case the original texture is applied to a quasi-spherical surface. While areas are locally preserved,

the flattening process has introduced distortions in all those parts of the surface the shape of

which differs locally from that of a cylinder coaxial with the SOR. Fig. 17(a) shows the case of

texture acquisition for a cylindrical surface (the can in Fig. 13). As the cylinder is a developable

surface, the flattened texture preserves the global geometry of the original surface. This allows
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the recovery of the hexagonal ‘AL’ mark, by removing the distortion present in the original

image. The texture portions close to the apparent contour have not been considered, in that their

re-sampling is typically affected by aliasing due to the strong foreshortening. Foreshortening

effects are clearly visible in Fig. 17(b), where the complete flattened texture for the Chinese

vase of Fig. 13 is shown, including the texture portions close to the apparent contour. Flattened

textures can be easily superimposed on the reconstructed 3D model, so as to obtain photo-

realistic reconstructions from image data. Fig. 18 shows the reconstructed 3D can and Chinese

vase models of Fig. 13 with their flattened textures superimposed.

(a) (b)

Fig. 17. The flattened textures for the can (a) and the Chinese vase (b) of Fig. 13.

(a) (b)

Fig. 18. Three-dimensional reconstruction of the can (a) and Chinese vase (b) models with superimposed texture.

Fig. 19 (top) shows four different views of a Japanese vase, that together provide complete

information of the vase texture. If a flattened texture is extracted from each view and the 3D

vase structure is reconstructed from one view, a 3D fully textured reconstruction of the vase can
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be obtained as in Fig. 20, provided that the complete texture is constructed by registration of the

four textures (see Fig. 19,bottom). Similarly, partially reconstructed scaling functions obtained

from different self-occluded views can be merged together so as to obtain a full 3D SOR model.

C
1
 

C
2

Fig. 19. Top: Four complementary views of a Japanese vase.Bottom: The complete texture obtained by image registration.

V. CONCLUSIONS

In this paper, we have discussed a new method to recover the original 3D structure of a generic

SOR object and its texture from a single uncalibrated view. The solution proposed exploits pro-

jective properties of imaged SORs, expressed through planar and harmonic homologies. Camera

self-calibration is directly obtained from the analysis of the visible elliptic segments of two im-

aged cross sections of the SOR. The same elliptic segments are used together with the SOR

apparent contour, to reconstruct the 3D structure and texture of the SOR object, which are thus
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Fig. 20. Three views of the complete (3D structure and texture) three-dimensional reconstruction of the Japanese vase.

obtained from calculations in the 2D domain. Since the homology constraints are of general

applicability, the solution can be applied under full perspective conditions to any type of surface

of revolution with at least two partially visible cross sections. According to this, the method

provides an advancement with respect to recent research contributions that used homology con-

straints for 3D recognition/reconstruction, but were restricted to the affine projection case [1]

or to full perspective of planar surfaces [27], [46]. The possibility of recovering the texture

superimposed on the SOR as a flattened image allows a complete reconstruction (albeit lim-

ited to the imaged part of the object) of the SOR 3D structure and appearance. For views with

self-occlusions, a complete reconstruction of the 3D textured object can be easily obtained by

registration of multiple views of the SOR, taken from the same camera under the same illumina-

tion conditions. The method can be used reliably, in all those cases in which only a photograph

or a drawing of the SOR object is available and structured light acquisition methods cannot be

employed for the acquisition of the solid structure. It is particularly useful in the case of no

longer existing objects (i.e., artworks) or objects that cannot be moved easily from their origi-

nal site. Extraction of the apparent contour and imaged cross section segments, although done

manually in the experiments reported in this paper, can also be performed automatically, with

relatively low complexity and good reliability. This has been proposed in [57] and [7] under

reasonable constraints on the objects and background.
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APPENDIX 1. RELATING THE HARMONIC HOMOLOGY WITH THE COMPLETE QUADRANGLE

In this appendix, we give the formal proof of Eqs. 5 and 6 used to compute the fixed entities

of the harmonic homologyH from the four intersectionsxk, k = 1, . . . 4 of two imaged cross

sectionsC1 andC2. Following the discussion of section III-A, we can always assume thatx1 and

x2 are complex conjugate, so that either of the pairs (x1,x2) or (x3,x4) must be equal to (i,j), and

therefore either of the linesl12 = x1 × x2 or l34 = x3 × x4 must be equal tol∞ = i× j.

By property II.2 of section II-B, the conicsC1 andC2 are fixed as a set under the harmonic

homology:Ch = HTChH, h = 1, 2. A consequence of this is that the pointHxk obtained from

the generic intersection pointxk by transformation underH, is still an intersection point ofC1

andC2: (Hxk)
TCh(Hxk) = 0, h = 1, 2. By expressingH according to the parametrization

H = I− 2
v∞ lTs
vT∞ ls

(15)

obtained from Eq. 1 withµ = −1, we can write

Hxk = xk − 2
lTsxk

lTsv∞
v∞ . (16)

Now, since by Eq. 16 the linexk × Hxk must contain the fixed pointv∞, recalling that(i ×
j)Tv∞ = 0 and that no three intersection points can be collinear, it follows that

x2 = Hx1 and x4 = Hx3 . (17)

This proves Eq. 5, as the linesl12 andl34 can be written respectively asx1 × Hx1 andx3 × Hx3.

Using Eq. 17, we can also writel13× l24 = (x1×x3)×(Hx1×Hx3) andl14× l23 = (x1×Hx3)×
(Hx1 × x3). By using again the parametrization of Eq. 15 and the basic equalitya× (b× c) =

(aTc)b− (aTb)c, it follows easily thatl13 × l24 = l13 × ls andl14 × l23 = l14 × ls. This proves

Eq. 6.

APPENDIX 2. PARAMETRIZING THE IMAGE OF THE ABSOLUTE CONIC

In this appendix, we demonstrate that the linear system of Eq. 7 has only three independent

constraints, and provide a parametrization for the∞2 conics that satisfy these constraints.

The third of Eqs. 7 provides two independent linear constraints onω. We will show that

the first two equations of the system, i.e.iTωi = 0 andjTωj = 0, add tols = ωv∞ only one
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independent constraint. Indeed, the family of∞3 conicsω̃ satisfyingls = ω̃v∞ can be written

as

ω̃(λ1, λ2, λ3) = Λ0 +
3∑

k=1

λkΛk , (18)

where theλk’s are scalars and theΛk’s are four linearly independent conics such that

ls = Λkv∞ . (19)

Now, in Appendix 1 we have shown thatj = Hi. Therefore, we can write

jTΛkj = iT(HTΛkH)i = iTΛki , (20)

where the last equality follows from the fact that, as it satisfies Eq. 19, each of theΛk’s is

transformed onto itself by the homologyH—this can also be directly verified by using forH the

parametrization of Appendix 1. From Eq. 20 it also follows thatjTω̃j = iTω̃i: this means that

the inhomogeneous linear system in the three unknownsλk’s




iT ω̃(λ1, λ2, λ3) i = 0

jT ω̃(λ1, λ2, λ3) j = 0
(21)

has∞2 solutions. This proves our assert that the solution set of Eq. 7 is composed of∞2 conics.

It can be easily verified that a valid parametrization for these conics is

ω̃(p, q) = ω + p l∞lT∞ + q(lisl
T
js + ljsl

T
is) , (22)

whereω is the (unknown) true image of the absolute conic,l∞lT∞ is a degenerate (rank 1) conic

composed by the linel∞ taken twice, andlislTjs + ljsl
T
is is a degenerate (rank 2) conic composed

by the two lineslis = i × xs and ljs = j × xs meeting at any pointxs ∈ ls different from

vs = ls × l∞.

If the vanishing pointv⊥ ∈ ls of the direction parallel to the SOR symmetry axis is known,

the independent constraintvT
sωv⊥ = 0 can be added to the system of Eq. 7, thus fixing one of

the two degrees of freedom left for̃ω. A parametrization for these∞1 conics is then

ω̃(r) = r l∞lT∞ + (li⊥lTj⊥ + lj⊥lTi⊥) , (23)

whereli⊥ = i× v⊥ andlj⊥ = j× v⊥. This last result is in accordance with the fact, discussed

in [27], that the self-calibration equations involving the imaged circular pointsi andj bring only
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one independent constraint if the linei× j goes through any of the points of a self-polar triangle

for ω—which, in our case, isv∞,vs,v⊥.

APPENDIX 3. SAMPLING METRICALLY AN IMAGED SORPARALLEL

In this appendix, we derive a closed form solution to the general problem of finding the van-

ishing pointvθ of the linelθ that intersects, in the world planeπ, a reference linel0 with a given

Euclidean angleθ. The imaged circular pointsi andj of π are supposed to be known, together

with the vanishing pointv0 of l0. We then use this result to obtain the intersection pointx(θ, z)

between the imageC(z) of the SOR parallel onπ and the visible imaged meridianχ(θ).

The basic relation between the angleθ and the vanishing pointvθ is provided by the Laguerre’s

formula [13]

θ =
1

2i
log({vθ,v0, i, j}) , (24)

where{} denotes the usual cross ratio of four points. By expressing the generic point on the

vanishing linel∞ of π as

v(λ) = i + λ(i− j) , (25)

Eq. 24 can be rewritten as

ei2θ = {λθ, λ0, λi, λj} , (26)

whereλθ, λ0, λi andλj are the values of the complex parameterλ respectively for the pointsvθ,

v0, i andj. In particular, it holdsλi = 0 andλj = −1; the valuesλθ andλ0 are derived hereafter.

Taken any image linel0 = (l1, l2, l3) throughv0 and distinct froml∞, and seti = conj(j) =

(a+ ib, c+ id, 1), solving forλ0 the equationlT0v(λ0) = 0 we getλ0 = −1
2

[1 + i tan φ0], where

the angle

φ0 = arctan

(
− l1a + l2c + l3

l1b + l2d

)
(27)

embeds in a compact way all the information about the reference linel0 and the circular points.

Substituting the above value ofλ0 into Eq. 26, the value ofλθ can be computed as

λθ = −1

2
[1 + i tan(φ0 + θ)] , (28)

which eventually yields the required vanishing point asvθ = i+λθ(i− j). In the particular case

of a SOR image, the vanishing pointvθ can be computed as above with the pointvs = ls × l∞
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and the image linels as the referencev0 and l0, respectively (see Fig. 8(b)). The image line

lθ = vθ × o, whereo = C−1(z)l∞ is the image of the parallel’s center, intercepts the imaged

parallelC at two points, of which the required pointx(θ, z) on the visible imaged meridianχ(θ)

is the farthest one fromvθ along the linelθ.
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