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Abstract

Image analysis and computer vision can be effectively employed to recover the three-dimensional
structure of imaged objects, together with their surface properties. In this paper, we address the prob-
lem of metric reconstruction and texture acquisition from a single uncalibrated view of a surface of
revolution (SOR). Geometric constraints induced in the image by the symmetry properties of the SOR
structure are exploited to perform self-calibration of a natural camera, 3D metric reconstruction and
texture acquisition. By exploiting the analogy with the geometry of single axis motion, we demonstrate
that the imaged apparent contour and the visible segments of two imaged cross sections in a single SOR
view provide enough information for these tasks. Original contributions of the paper are: single view
self-calibration and reconstruction based on planar rectification, previously developed for planar sur-
faces, has been extended to deal also with the SOR class of curved surfaces; self-calibration is obtained
by estimating both camera focal length (1 parameter) and principal point (2 parameters) from three inde-
pendent linear constraints for the SOR fixed entities; the invariant-based description of the SOR scaling
function has been extended from affine to perspective projection. The solution proposed exploits both
the geometric and topological properties of the transformation that relates the apparent contour to the
SOR scaling function. Therefore, with this method a metric localization of the SOR occluded parts can
be made, so as to cope with them correctly. For the reconstruction of textured SORs, texture acquisition
is performed without requiring the estimation of external camera calibration parameters, but only using
internal camera parameters obtained from self-calibration.

Index Terms

Surface of revolution, camera self-calibration, single-view 3D metric reconstruction, texture acquisi-
tion, projective geometry, image-based modeling.

[. INTRODUCTION

In the last few years, the growing demand for realistic three-dimensional (3D) object models

for graphic rendering, creation of non-conventional digital libraries, and population of virtual
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environments has renewed the interest in the reconstruction of the geometry of 3D objects and
in the acquisition of their textures from one or more camera images. In fact, solutions based on
image analysis can be efficiently employed in all those cases in which the original object is not
available and only its photographic reproduction can be used, or where the physical properties
of the surface of the object make its acquisition difficult or even impossible through structured
light methods, or where the object’s size is too large for other automatic acquisition methods.

In this paper, we address the task of metric reconstruction and texture acquisition from a sin-
gle uncalibrated image of a SOR. We follow a method which exploits geometric constraints of
the imaged object assuming a camera with zero skew and known aspect ratio. The geometric
constraints for camera self-calibration and object reconstruction are derived from the symme-
try properties of the imaged SOR structure. The key idea is that, since a SOR is a non trivial
“repeated structure” generated by the rotation of a planar curve around the axis, it can in prin-
ciple be recovered by properly extending and combining together single image planar scene
reconstruction and single axis motion constraints.

In the following we summarize recent contributions on 3D object reconstruction (Section I-A);
we discuss then new research results on surfaces of revolution and more generally on straight
uniform generalized cylinders (Section I-B), and finally provide an outline of the rest of the

paper and a list of the principal contributions (Section I-C).

A. 3D object reconstruction using prior knowledge

Solutions for the reconstruction of the geometry of 3D objects from image data include clas-
sic triangulation [19], [13], visual hulls [47], [42], dense stereo [40] and level sets methods
[12] (see [44] for a recent survey). An essential point for metric reconstruction of 3D objects
is the availability of internal camera parameters. In particular, self-calibration of the camera
[35] is important in that, although less accurate than off-line calibration [4], [18], it is the only
possible solution when no direct measurements can be made in the scene, as for example in
applications dealing with archive photographs and recorded video sequences. Effective camera
self-calibration and object reconstruction can be obtained by exploiting prior knowledge about
the scene, encoded in the form of constraints on either scene geometry or motion.

Most of the recent research contributions employ constraints on scene geometry. The presence

of a “repeated structure” [32] is a classical example of geometric constraint frequently used. This
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happens because the image of a repeated structure is tantamount to multiple views of the same
structure. In real applications this can have to do with planes, lines, etc. occurring in particular
(e.q., parallel, orthogonal) spatial arrangements. In a repeated structure, the epipolar geometry
induced in the image by multiple instances of the same object can be expressed through projec-
tive homologies, which require less parameters and therefore are more robust to estimate [50].
A further advantage of geometrically constrained reconstruction is that fewer (and, in special
cases, just one) images are required. An interactive model-based approach, working with stereo
or single images, has been proposed by Taylor et al. in [10], where the scene is represented as
a constrained hierarchical model of parametric polyhedral primitives—such as boxes, prisms—
called blocks. The user can constrain the sizes and positions of any block in order to simplify
the reconstruction problem. All these constraints are set in the 3D space, thus requiring a com-
plex non-linear optimization to estimate camera positions and model parameters. Liebowitz
et al. have suggested to perform calibration from scene constraints by exploiting orthogonality
conditions, in order to reconstruct piecewise planar architectural scenes [29], [28]. Single view
piecewise planar reconstruction and texture acquisition has also been addressed by Sturm and
Maybank following a similar approach [46], [45].

Motion constraints for self-calibration and reconstruction have been derived mainly for the
case of scenes undergoing planar motion [3]. In particular, recent works have exploited single
axis motion to reconstruct objects of any shape that rotate on a turntable [15], [9], [24], [31].
Apart from algorithmic differences in the reconstruction phase, motion fixed entities (e.g., the
imaged axis of rotation and the vanishing line of the plane of rotation) are first estimated from
the image sequence, and then used to calibrate the camera. However, these turntable approaches
do not succeed to perform a complete camera self-calibration. As a consequence of this, recon-
struction is affected by a 1D projective ambiguity along the rotation axis.

In the case of textured 3D objects, the texture must be acquired from the image in order to
backproject correctly image data onto the reconstructed object surface. Generally speaking, for
the case of curved objects, no geometric constraints can be set, and texture acquisition requires
the estimation of the external calibration parameters (camera position and orientation). There
are basically two methods for estimating external calibration from image data and a known 3D

structure. The first method exploits the correspondence between selected points on the 3D object
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and their images [37], [6]. The second method works directly on the image plane, and minimizes
the mismatch between the original object silhouette and the synthetic silhouette obtained by
projecting the 3D object onto the image [22], [33].

For planar objects, texture acquisition using surface geometric constraints has been solved by
Liebowitz et al. in [28], without requiring the explicit computation of external camera parame-
ters; projective distortions are rectified so as to represent textures as rectangular images. Sturm
and Maybank, in [46] have also performed texture acquisition from planar surfaces, omitting
the rectification step; this saves computation time but requires larger memory space to store the

textures.

B. Straight homogeneous generalized cylinders and surfaces of revolution

Surfaces of Revolution (SORSs) represent a class of surfaces that are generated by rotating a
planar curve (scaling function) around an axis. They are very common in man-made objects
and thus of great relevance for a large number of applications. SORs are a subclass of Straight
Homogeneous Generalized Cylinders (SHGCs). SHGCs have been extensively studied under
different aspects: description, grouping, recognition, recovery, and qualitative surface recostruc-
tion (for an extensive review, see [1]). Their invariant properties and use have been investigated
by several authors. Ponce et al. [36] have proposed invariant properties of SHGC imaged con-
tours that have been exploited for description and recovery by other researchers [26], [38], [30],
[39], [48], [57], [56]. Abdallah and Zisserman [2] have instead defined invariant properties of
the SOR scaling function under affine viewing conditions, thus allowing recognition of objects
of the same class from a single view. However, they have left to future work the problem of
finding the analogous invariants in the perspective view case, and solving the problem of 3D
metric reconstruction of SORs.

Reconstruction of a generic SHGC from a single view, either orthographic or perspective, is
known to be an underconstrained problem, except for the case of SORs [17]. Utcke and Zisser-
man [49] have recently used two imaged cross sections to perform projective reconstruction (up
to a 2 DOF transformation) of SORs from a single uncalibrated image. Contributions addressing
the problem of metric reconstruction of SORs from a single perspective view may also be found
[54], [8]. Wong et al. in [54] have addressed reconstruction of SOR structure from its silhou-

ette given a single uncalibrated image; calibration is obtained following the method described in
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[53], [55]. However, with this method, only the focal length can be estimated from a single view,
with the assumptions of zero skew and principal point being at the image center. The reconstruc-
tion is affected by a 1-parameter ambiguity: although this can be fixed by localizing an imaged
cross section of the surface, one of the major problems in this approach is that the silhouette
is related directly to its generating contour on the surface. This is an incorrect assumption that
makes it impossible to capture the correct object geometry in the presence of self-occlusions, as
shown in [11]. Single view metric reconstruction of SORs was also addressed by Colombo et
al., who have discussed in [8] the basic ideas underlying the approach presented in this paper.
Texture acquisition of straight uniform generalized cylinders (SUGCs), which are a special
subclass of SORs, has been addressed by Puech et al [34]. In this approach, texture is obtained as
a mosaic image gathering visual information from several images. Since texture is not metrically

sampled, the quality of the global visual appearance of the object is affected in some way.

C. Paper organization and main contribution

The paper is organized as follows. Section Il provides background material on basic geometric
properties of SORs and states the analogy between single axis motion and surfaces of revolution.
Section Il describes in detail the solutions proposed, specifically addressing computation of the
fixed entities, camera calibration, reconstruction of 3D structure, and texture acquisition. Metric
reconstruction of the 3D structure of the SOR is reformulated as the problem of determining the
shape of a meridian curve. The inputs to the algorithms are the visible segments of two elliptical
imaged SOR cross sections, and the silhouette of the object apparent contour. Camera self-
calibration is obtained by deriving three independent linear constraints from the fixed entities in
a single view of a SOR. Texture acquisition is obtained by exploiting the special properties of
a SOR’s structure. In fact texture is not acquired through the estimation of external calibration
parameters, but is obtained directly from the image, by using the same parameters that have been
computed for the 3D SOR reconstruction: this avoids errors due to additional computations.
Self-calibration information is exploited in the resampling phase.

The main contributions of the paper with reference to the recent literature can be summarized
as follows:

1) Single-view reconstruction based on planar rectification, originally introduced in [28] for

planar surfaces, has been extended to deal also with the SOR class of curved surfaces.
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2) Self-calibration of a natural camera (3 dofs) is obtained from a single image of a SOR.
This improves the approach presented in [55], in which the calibration of a natural cam-
era requires the presence of two different SORs in the same view. Moreover, since self-
calibration is based on two visible elliptical segments, it can also be used to calibrate
turntable sequences and remove the 1D projective reconstruction ambiguity due to under-
constrained calibration experienced so far in the literature of motion-constrained recon-
struction [23].

3) The invariant-based description of the SOR scaling function discussed in [2] is extended
from affine to perspective viewing conditions.

4) Since the approach exploits both the geometric and topological properties of the transfor-
mation that relates the apparent contour to the scaling function, a metric localization of
occluded parts can be performed, and the scaling function can be reconstructed piecewise.
In this regard, the method improves the SOR reconstruction approach described in [51].

5) Texture acquisition does not require the explicit computation of external camera parame-
ters; therefore, the results developed in [28] and [46] for planar surfaces are extended to
the SOR class of curved surfaces. Moreover, since SORs are a superclass of the SUGC
class of curved surfaces, texture acquisition extends the solution presented in [34].

In section IV, experimental results on both synthetic and real data are presented and discussed.

Finally, in section V conclusions are drawn and future work is outlined. Mathematical proofs

are reported in the Appendices.

[I. BACKGROUND

In this section we review the basic terminology and geometric properties of SORs under
perspective projection. We also discuss an important analogy between properties as derived from
a single SOR image and those of a sequence of images obtained from single axis motion: this
analogy will be exploited in the calibration, reconstruction and texture acquisition algorithms,

discussed in section Ill.

A. Basic terminology

Mathematically, asurface of revolutiortan be thought of as obtained by revolving a planar

curvep(z), referred to ascaling functionaround a straight axis (symmetry axis Therefore,
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SORs can be parametrizedRg), z) = (p(z) cos(8), p(z) sin(f), z), with 6 € [0, 27], z € [0, 1].

Inthe 3D space, aflarallels(i.e., cross sections with planes= constant) are circledMeridians

(i.e., the curves obtained by cutting the SOR with plahesconstant) all have the same shape,
coinciding with that of the SOR scaling function. Locally, parallels and meridians are mutually
orthogonal in the 3D space, but not in a 2D view. Two kinds of curves can arise in the projection
of a SOR:limbsandedgeq11]. A limb, also referred to aapparent contouris the image of

the points at which the surface is smooth and projection rays are tangent to the surface. The
corresponding 3D curve is referred to@mtour generatarAn edge is the image of the points

at which the surface is not smooth and has discontinuities in the surface normal. Fig. 1 depicts a
SOR and its projection. Under general viewing conditions, the contour generator is not a planar
curve, and is therefore different from a meridian [25]. Depending on this, the apparent contour
also differs from the imaged meridian. Parallels always project onto the image as ellipses. Edges

are elliptical segments that are the projection of partially or completely visible surface parallels.

Fig. 1. Imaged SOR geometnf’ and~y are respectively part of the contour generator and of the apparent contour. The
translucent cone is the visual hull for the apparent contduandx are respectively a meridian and its projection. The ellipse
Cis the edge corresponding to the paratlgl

May 25, 2004 DRAFT



B. Basic imaged SOR properties

Most of the properties of imaged SORs can be expressed in terms of projective transforma-
tions callechomologies These are special planar transformations that have a line of fixed points
(the homology axis) and a fixed point (the vertex) that does not belong to the axis [43]. In
homogeneous coordinates, a planar homology is represented ky3amatrix W transforming
points asx’ = Wx. This matrix has two equal and one distinct real eigenvalues, with eigenspaces
respectively of dimension two and one. It can be parametrized as

v’
W:I"‘(M—l)m’ (1)

wherel is the3 x 3 identity matrix,l is the axis,v is the vertex angk is the ratio of the distinct
eigenvalue to the repeated one. A planar homology has five degrees of freedom (dof); hence,
it can be obtained from three point correspondences. In the speciglcasel, the dofs are

reduced to four, and the corresponding homolagy said to beénarmonic

Fig. 2. Basic projective properties for an imaged SOR. 1.1: Paigtandx; correspond undew; all linesx; x x; meet at
vy € ;. 11.2: Pointsy; andy; correspond undet; all linesy; x y; meet atvo, € 1 (not shown in the figure).

An imaged SOR satisfies the following two fundamental properties, the geometric meaning of

which is illustrated in Fig. 2.

Property 11.1: Any two imaged SOR cross sections are related to each other by a planar ho-
mologyW. The axis of this homology is the vanishing lihg of the planes orthogonal to the

SOR symmetry axis. The image of this adis,contains the vertex, of the homology [2], [1].
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Property 11.2: The apparent contour of an imaged SOR is transformed onto itself by a har-
monic homologyH, the axis of which coincides with the imaged symmetry axis of the SOR,

The vertexv,, of the homology lies on the aforementioned vanishing lipg16].

Denoting withC andC’ the3 x 3 symmetric conic coefficient matrices associated with two generic
cross sections that correspond pointwise under the planar homldiglyolds ¢’ = w—TcW 1.

The harmonic homology generalizes the usual concept of bilateral symmetry under perspective
projection. In fact, the imaged axis of symmetry splits the imaged SOR in two parts, which
correspond pointwise through This is true, in particular, for imaged cross sections, that are
fixed as a set under the harmonic homology:= H-TCH™? (or C = H'CH, beingH~! = H).

To give an example, the two elliptical imaged cross sectibansdC’ of Fig. 2 are related by a
planar homologw with axisl,, and vertexvy. The vertexvy is always on the imaged axis of
symmetryl,. Imaged cross section points, x,, x3 correspond tex), x5, x5 underW. Imaged
Cross section points;, x}, x,, x5, also correspond respectively g, x4, x», x, undert. The
points on the apparent contoy, y, correspond tg, y» underH. The lines through pointg;,

y1 andys, y, meet atv.

C. The analogy between SOR geometry and single axis motion

Given a static camera, and a generic object rotating on a turntable, single axis motion (SAM)
provides a sequence of different images of the object. This sequence can be imagined as being
produced by a camera that performsidual rotation around the turntable axis while viewing
a fixed object. Single axis motion can be described in terms dfxigsl entities—i.e., those
geometric objects in space or in the image that remain invariant throughout the sequence [3]. In
particular, the imaged fixed entities can be used to express orthogonality relations of geometric
objects in the scene by means of theage of the absolute con{¢AC) w—an imaginary point
conic directly related to the camera matkiasw = K~ K1 [19].

Important fixed entities for the SAM are the imaged circular poip@ndj,. of the pencil of
planesw orthogonal to the axis of rotation, and the horidgn= i, x j, of this pencil. The

imaged circular points form a pair of complex conjugate points which lie:on

ilwi, =0, fwj.=0. (2)

T
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In practice, as, andj, contain the same information, the two equations above can be written in
terms of the real and imaginary parts of either points. Other relevant fixed entities are the imaged
axis of rotatiorl,, and the vanishing point, of the normal direction to the plane passing through

1, and the camera center. These are in pole-polar relationship with respect to
l, = wv, . 3)

Egs. 2 and 3 were used separately in the context of approaches to 3D reconstruction from
turntable sequences. In particular, Eq. 2 was used in [15] and in [23] to recover metric proper-
ties for the pencil of parallel planesgiven an uncalibrated turntable sequence. In both cases,
reconstruction was obtained up to a 1D projective ambiguity, since the two linear constraints on
w provided by Eq. 2 were not enough to calibrate the camera. On the other hand, Eqg. 3 was used
in [52] to characterize the epipolar geometry of SAM in termd,cdindv,, given a calibrated
turntable sequence. Clearly, in this case, the a priori knowledge of intrinsic camera parameters
allows one to obtain an unambiguous reconstruction. In the case of a SOR object, assuming that
its symmetry axis coincides with the turntable axis, the apparent contour remains unchanged in
every frame of the sequence. Therefore, for a SOR object, the fixed entities of the motion can be
computed from any single frame of the sequence. According to this considem8@R image

and a single axis motion sequence share the same projective geothetfixed entities of SOR
geometry correspond to the fixed entities of single axis motion. In particuldy: ¢drresponds

tol,; (ii) v, corresponds to.; (iii) (i, j.) correspond toi( j); (iv) L, corresponds th, = ixj,

wherei andj denote the imaged circular points of the SOR cross sections.

Fig. 3 shows the geometrical relationships between the fixed entities and the image of the ab-
solute conic. The analogy between SOR and SAM imaged geometry was exploited in [31] to
locate the rotation axis and the vanishing point in SAM. It was also exploited in [55] to calibrate
the camera from two SOR views under the assumption of zero camera skew. In that paper, the
pole-polar relationship of, andv,, with respect to the image of the absolute conic was used

to derive two constraints om. In section IlI-B we will exploit the analogy one step forward,

and show that it is possible to apply both Eqgs. 2 and 3 to SORs for camera calibration and 3D

reconstruction from a single SOR view.
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Fig. 3. The geometrical relationships between the fixed entities and the image of the absolute conic

[11. THE APPROACH

In this section we demonstrate that, given a single SOR view and assuming a zero skew/known
aspect ratio cameradtural camerd, the problems of camera calibration, metric 3D reconstruc-
tion and texture acquisition are solved if the apparent contand the visible segments of two
distinct imaged cross sectio@s andC, are extracted from the original image. Preliminary to
this, we demonstrate that the fixed entitigsv.., 1., i andj—that are required for all the later
processing—can be unambiguously derived from the visible segments of the two imaged cross
sections. This relaxes the conditions claimed by Jiang et al. in [23], where three ellipses are

requested to compute the imaged circular points.

A. Derivation of the fixed entities

The non linear system
xX'Cix =0
] @)

X CQX =0
that algebraically expresses the intersection betw&eand C, has four solutions;, &k =
1...4—of which no three are collinear [43]—that can be computed as the roots of a quartic
polynomial [41]. At least two solutions of the system of Eq. 4 are complex conjugate and co-
incide with the imaged circular poinisandj, which are the intersection points of any imaged

cross section with the vanishing lidg,. According to this, the remaining two solutions are
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either real or complex conjugate. In the following, we will assume, without loss of generality,
that the solutionsk; andx, are complex conjugate.

Fig. 4 shows the geometric construction for the derivation of the fixed entitiesndl,. The
four solutionsx,’s form a so called “complete quadrangle” and are represented in the figure by
the filled-in circles. In the figure it is assumed tlatandx, are the two imaged circular points

i andj.

Fig. 4. Geometric properties of the four intersection points;0AndC, with the hypothesi$.. = 1:2.

Thex;’s may be joined in pairs in three ways through the six lihges- x; x x;,7 = 1,...3,
j=1+1,...4. Each pair of lines has a point of intersection, and the three new points (hollow
circles in the figure) form the vertices of the so called “diagonal triangle” associated with the
complete quadrangle. The vertex of the harmonic homokagyis the vertex of the diagonal
triangle which lies on the ling, connecting the two complex conjugate poigisandx,. The
imaged axis of symmetry; is the line connecting the remaining two vertices of the diagonal
triangle. In particular, the vertex of the harmonic homology and the imaged axis of symmetry
can be computed respectively as

Voo = 12 X 134 (5)

and
I, = (113 X 124) X (114 X 123) . (6)

The proof of this result is given in Appendix 1.

The computation of the vanishing ling is straighforward when the two solutiorg andx,
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are real. In this cases; andx, are the imaged circular points and, by consequehges 1;5.

On the other hand, wher; andx, also are complex conjugate, an ambiguity arises in the
computation ot since botH;, andls, are physically plausible vanishing lines. In fact, a pair

of imaged cross sectiortg andC, with no real points of intersection are visually compatible
with two distinct views of the planar cross sections, where each view corresponds to a different
vanishing line. Fig. 5(I) shows an example of two imaged cross sections and the two possible
solutions for the vanishing line; Fig. 5(11) shows the correct solution for the vanishing line when
the camera center is at any location in between the two planes of the cross sections; Fig. 5(111)
(SOR ends are not visible) and Fig. 5(IV) (one SOR end only is visible) show the correct solution
for the vanishing line when the camera center is at any location above the two planes of the cross

sections.

(I

Fig. 5. Two imaged cross sections (I) and their possible interpretations (I1,111,IV). The twofold ambiguity in the determination
of the vanishing line can be solved by exploiting the visibility conditions. Visible contours are in bold.

The example shows that, unless the two imaged cross sections are one inside the other—which is
indeed not relevant for the purpose of our research, since in this case no apparent contour could
be extracted—at least one of them is not completely visible. This suggests a simple heuristics to
resolve the ambiguity based on visibility considerations. When®o#mdC, are not completely

visible, the correct vanishing link, is the one whose intersection withbelongs toh; N hs,

whereh; is the half-plane generated by the major axi€pthat contains the majority of the

hidden points. In the case in which one of the two ellipses,Csajs completely visible, then
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the correctl,, leaves bothc; andC, on the same side. Ondg is associated to the correct
l; = x; x x;, the imaged circular points are simply chosen out of the four intersection points as
i = x; andj = x;. The above result demonstrates that the visible segments of two ellipses are in

any case sufficient to extract unambiguously the vanishing line and the imaged circular points.

B. Camera calibration

In order to perform camera calibration from a single image of a SOR, we exploit the analogy
between a single SOR image and single axis motion discussed in section 1I-C. According to

this, we can rewrite Egs. 2 and 3 in terms of the SOR fixed eniitig$, andv.,. The resulting

system
iTwi=0
jTwj=0 (7)
I, = wvg

provides four linear constraints on the image of the absolute carttowever, it can be demon-
strated (see Appendix 2) that the system has only three independent linear constraints. There-
fore, the available constraints are sufficient to calibrate a natural camera (3 dofs) from a single
image. By rewriting the third of Egs. 7 ds x wv,, = 0, the system can be transformed into

a homogeneous system and solved by singular value decomposition..Osnicemputed, the
camera matriX can be obtained by Cholesky’s factorization.

Different conditions can also be considered: (i) a single imagem&@R objects provides—
except in special configurations3# constraints that can be used to perform a full pinhole cam-
era calibration (5 dofs); (iijn distinct images of a SOR—obtained without varying the internal
camera parameters—provide: linear constraints for full camera calibration.

The geometric relationships mathematically expressed by the system of Eq. 7 are displayed
in Fig. 3. The three points., v, = 1, x I, andv, € I, are the vanishing points of three
mutually orthogonal directions in the 3D space. In particwar,s the vanishing point of the
directions parallel to the SOR symmetry axis; since this point cannot be measured from a single
SOR view, its associated constralgt = wv,; cannot be used for calibration purposesv [f
is a finite point, there exists only one IAC such thatintersectsv at the fixed points andj,
and the tangent lines to from v, have the tangent points @n However, in the case in which

the optical axis of the camera pierces the symmetry axis of the SOR, the principal poirj is on
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and as a consequenegg, becomes an ideal pointlégeneracy conditign The effect of this is

a 1-dof ambiguity in the position of the principal point, which can be anywhere on the imaged
axis of symmetry. A practical solution to this problem is to choose as the principal point the
point onl, nearest to the image center [20]. When the principal point is clo$g adthough

not exactly on it, a near degenerate condition occurs. In this case, the accuracy of calibration

strongly depends on the accuracy of the estimation of the fixed entities, and particukagly of

C. 3D metric reconstruction

Given the IAC, it is possible to remove the projective distortion of any imaged plane for which
the vanishing line is known—a technique known as planar rectification [19]. According to this,
if the imagey of any SOR meridian, the corresponding vanishing timg and the imaged axis
of symmetryl, are available, it is possible to guarantee a solution for the problem of 3D metric
SOR reconstruction. As a first step, we compytndm,, from one imaged cross sectiorand
the apparent contouy under full perspective conditions. The imaged meridyaand1,—the
latter obtained as shown in the previous section—will then be rectified in order to compute the

SOR scaling functiop(z).

Fig. 6. Geometric relationships for imaged meridian reconstruction and rectification.

1) Computation of the imaged meridiarnthe following properties for the apparent contour

and the imaged cross sections of a SOR extend the basic imaged SOR properties discussed in
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section 1I-B, and provide the theoretical foundation for the computation the imaged meyidian

Property 111.1: The apparent contour is tangent to an imaged cross section at any point of

contact [1] (see point of contagf of imaged cross sectidti in Fig. 6).

Property 111.2: The lines tangent to two distinct imaged cross sectivasdC’ at any two
points related by the planar homolo@yhave the same vanishing poiat,, which lies onl,

(see lined andl’ tangent to the imaged cross sectigrandC’ at pointsx andx’, in Fig. 6).

Property 111.3: The 3D points whose images are related by the planar homaldigyong to
the same SOR meridian (see poirtandx’, or x, andx, of imaged cross sectior@sandcC’ in
Fig. 6).

As shown in Fig. 6, given the apparent contouthere exists a unique imaged cross section
that includes the generic poisf, € +. Correspondingly, once the vanishing lihg is given,
there exists a unigue planar homolagghat maps a reference imaged cross seaiontoC’. As
x’7 varies oy, the vertexvy and the characteristic invarian of W also vary, whild,, remains
fixed. Therefore, ag’ € C’is moved alongy, it gives rise to a family of planar homologies
W:C—C.

We now show how to compute the planar homolagat a givenx’ . According to property
l1l.1, there exists an imaged cross sect®rsuch thaty andC’ share the same tangent liHeat
x/.. The tangent lind’ intersects the vanishing ling, at the pointu,.: according to property
l11.2, this is the vanishing point of all the lines which are tangent to the SOR along the same
meridian. Therefore, the tangent libéo C from u,, meetsC at the pointx such that, = wx,
and the planar homology vertey, is the point where the line throughandx/ intercepts the
imaged axis of symmetrl:

vy = (xxx)) x1 . (8)

This fixes two of the three degrees of freedom left#orThe remaining degree of freedom is

fixed by computing the characteristic invariaftas

Mw = {Vw,WOO,X,X/W ) (9)
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wherew,, = (x x x/) x 1., is the point where the line throughandx’, intercepts the vanishing
linel,, and{} denotes the usual cross ratio of four points [43].

For eachi that is obtained from the steps above, by exploiting the property I11.3, a gQint
on the imaged meridiag that passes through the poiat € C is computed as’ = wx,. The
imaged meridiary is then recovered as the set of all the poii{sobtained for different points
x/, sampled on the apparent contour (see Fidefi),
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Fig. 7. Recoveryléft) and rectificationrfght) of an imaged meridian.

2) Rectification of the imaged meridianThe rectification ofy requires the availability of
both the image of the absolute conicand the vanishing linen,, of the planer, through the
meridian and the SOR symmetry axis. As this axis lies by constructian amce the rectifying
homography, for this plane is known, we are able to rectify both the imaged merigiand

the imaged axis of symmetiy according to

x, = M. x (10)
1, =M1,

By computing the distance between any poeip@and the lind., it is then possible to obtain the
values ofz andp(z) for eachx! given the reference SOR ais(see Fig. 7right).

The vanishing linen,, can be obtained aa., = x,, X v, wherex,, andv, are respectively
the vanishing point of the direction of all lines iy that are orthogonal to the SOR symmetry
axis, and the vanishing point of the direction of the same axis (see Fig. 6). The vanishing point
X IS cCOmputed as

Xoo = (X X 0) X Lo = (%, X C7'1o) x L, (11)
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whereo = C~ !l is the image of the center of the cross section that projects®ris point

is in pole-polar relationship with,, with respect taC. Sincew is known, the vanishing point
v, can be computed as, = w'l.. The vanishing linan,, can now be intersected with

in order to obtain the imaged circular poiritsandj,. This intersection can be algebraically
computed by solving fon the quadratic equatiofx,, + A\v,)"w (Xe + Avy) = 0, where
X~ + Av_ denotes the generic point @n... The required imaged circular points are obtained
from the two complex conjugate solutions and \, respectively as, = (x + A;v,) and

Jy = (%o + A2v1). According to [29], the rectifying homography for the plangis

ﬁ_l —Q ﬁ_l 0
mq mo 1

wherem,, = (my,ms, 1) andi, = conj(j,) is expressed as,*(1,7,0) = (o — i3, 1, —ma —
mia + imq3).

3) Discussion: The above two-step method for 3D metric reconstruction is equivalent to
the computation of the set of paif$z, p(z))}, wherez is the point of the SOR symmetry axis
that corresponds to a poigf, sampled on the apparent contourThis correspondence can be

expressed in terms of a functign v — [0, 1] such that

2 =(() . (13)

The function( is defined only at pointg’, at which+ is smooth and has a unique tangent line.
These points belong to a unique imaged cross sectiowhose corresponding pa(t, p(z))
can then be correctly recovered with the method above. In the presence of self-occlusions, the
apparent contour can have singular points at whichnot smooth and has two distinct tangent
lines. The values_ andz, corresponding to the two tangent lines at a singular point delimit
the portion of the: axis at which ng(z) can be computed with the method above. In this case,
the method still guarantees that the scaling function be correctly recovered piecewise as a non
connected curve.

If a uniform sampling strategy foy is used, a non uniform sampling ofis obtained. Con-
versely, if a uniform sampling on the axis is required, then the inverse ¢©kshould be used.

However, according to the definition gfused so far, the functiofiis not invertible. In fact, the
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apparent contour is split by the imaged axis of symmetry into two halves, the points of which
correspond in pairs under the harmonic homology. The two points of a pair carry the same re-
construction information, since both of them are mapped byto the same. Without loss of
generality we can restrict the domain@©fo one of two halves of, sayy’, so as to ensure that
the function¢=* : [0,1] — + exists. This maps any pointat which the valuey(z) can be
recovered with the method above onto a single peinbf the apparent contour. The computa-
tion of x’, = (~'(2) at the generie is carried out using a recursive subdivision scheme similar
to the one proposed in [14].

A uniform sampling on the axis can be conveniently used for texture acquisition, as dis-

cussed in the following section.

D. Texture acquisition

As shown in Fig. 8(a), the SOR texture is the rectangular inffa@ez) = 1(x(0, z)), where
I is the image function angl(d, z) is the image projection of the 3D poiRY(d, z) parametrized
as in section II-A.

Texture acquisition following the canonical parameterizattart) can be solved through the
well known cartographic method aformal cylindrical projection[5]. However, if parallels
and meridians of the imaged object are sampled at regiaj in the Euclidean space, a non-
uniform sampling of the texture is created. In order to avoid this, we follow the inverse method
(from a regular grid of, z) on the texture plane to points on the image plane) that assures that
a uniformly sampled texture is created.
To obtain a metric texture and z are therefore sampled at regular intervals. The resulting
texture image has/ rows andN columns. The unknown image poixtd, =) is the intersection
between the imaged meridiap(d) corresponding to the SOR meridian &aand the visible
portion of the imaged parall€l(z) corresponding to the SOR parallel-atTherefore, the rows
of the texture image are composed of image pixels sampledd(eirat regular intervals of.

A method to sample the visible portion of an imaged parallel) at a given value of the

Euclidean anglé is described in Appendix 3. The method permits Laguerre’s formula [13]

1

0 = 5 los({vo. v..i.3)) (14)
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(@) (b)
Fig. 8. (a): The geometry of SOR texture acquisition. Meridians and parallels in the image lef#naré mapped into

mutually orthogonal lines in the texture plamglt). (b): Sampling an imaged cross sectitfz) at a given Euclidean angte

to be inverted so as to compute the vanishing pejrand to obtain, from this, the sampled point
x(0, z)—see Fig. 8(b).

The algorithm for the computation of a generic texture {@60, z), 0 = 6;,...0x} Is:

0. Choose a reference imaged parafiel

1. Computex!, = ¢(~'(2) as shown in section IlI-C.3.

2. Use the planar homology associated te/, (see section 1I-C.1) to compute the imaged
parallel¢’ = w-Tcw1,

3. SampleC’ at all values) = 0y, ... 0y as described in Appendix 3.

4. For each of theV pointsx| , = x(0, z) thus obtained, sef (0, z) = I(x] 4)-

Texture acquisition is achieved by repeating steps 1 through 4 for all/thews of the texture
image, sampled at regular intervals:zof

It is worth noting that not all the texture image pixels can be computed by the algorithm above.
In particular, singular points on the apparent contgutlue to self-occlusions give rise to row
intervals|z_, z ] for which the inverse functiod~!(z) cannot be computed (see section IlI-C.3).
A similar situation occurs for the range éfvalues for which the surface is not visible. In this
case, for each imaged paral®l:), Laguerre’s formula—with the value,, of section IlI-C.1
used in Eq. 14 in the place #f,—can be used to determine the interil;,(2), Omax ()] for
which the parallel is visible.

The method for texture acquisition described above has some advantages over other solutions

presented in the literature. It uses a 2D/2D point transformation applied to SOR pixels that re-
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quires only the knowledge of internal camera parameters. This way, higher accuracy is obtained
than with 2D/3D registration methods [22], which backproject the image data onto the 3D object
and require both the internal and external camera parameters to fully recover the camera map-
ping P(¢,z) — x(0, z). Moreover, sincénverse texture mappinig used, the method avoids
“holes” in the texture image due to insufficient sampling of the image space, a typical drawback

of direct texture mapping methods [21], which compute the transformatigr) — (9, z).

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
A. Accuracy evaluation

Several experiments were performed in order to test the accuracy of the approach. In particu-
lar, we assessed the accuracy of vanishing point estimation, camera self-calibration, and recon-
struction of the SOR scaling function. Two different views of the synthetic object of Fig. 1—
generated by the scaling functipp (z) = 75 (cos(3(32 4 1)) 4 2) with =z € [0, 1]—were taken
using a virtual camera with internal parameters: focal lenfgth 750 (simulating a wide an-
gle lens), and principal point coordinates), vo) = (400, 300). The two views, referred to as
non degeneracy vieandnear degeneracy viewvere obtained by panning the virtual camera,
around an axis parallel to the SOR symmetry axis, by 14.0 and 3.5 degrees, respectively. The
degeneracy viewondition in which the imaged SOR symmetry axis coincides with the vertical
image axis passing by the principal point is taken as the reference camera position. In all the
experiments, the points of the imaged cross sections and apparent contour of the SOR, sampled
at the same resolution as that of the image, were corrupted by a white, zero mean Gaussian
noise with standard deviation between 0 and 1.5 pixel. The influence of this noise was tested by
running a Monte Carlo simulation with 10000 trials for each of the parameters under test.

Fig. 9 shows the accuracy of vanishing point estimation (the most noise-sensitive fixed entity),
for the two cases of non degeneracy (a) and near degeneracy (b). Mean and standard deviation of
the estimation error are represented respectively as light lines and verticatials The two
guantities grow almost linearly with noise. The bias for nonzero noise values is due to the use
of an algebraic distance rather than a geometric one in the estimation of ellipses. The accuracy
of the estimation in the non degeneracy condition is higher by about one order of magnitude

than in the near degeneracy condition. Bold curves and bars indicate a reference condition
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Fig. 9. Vanishing point estimation accuracy in (a) non degeneracy view condition (ground tmath: =

(3421.978,209.049, 1)) and (b) near degeneracy view condition (ground truth; = (12493.024,206.432, 1)). Different
scales are used in the two charts.

where all the points of the imaged cross sections are available. It can be noticed that, in noisy
conditions, the accuracy obtained when a subset of the points of the imaged cross sections is

used, is approximately that obtained in the case in which all the points are available.
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Fig. 10.  Self-calibration accuracy in (a) non degeneracy and (b) near degeneracy view condibpngrincipal point
estimation (ground truthfuo, vo) = (400, 300)). Bottom focal length estimation (ground trutlf: = 750).

Self-calibration accuracy is shown in Fig. 10 for the two viewing conditions. Top figures show
accuracy in principal point estimation; bottom figures show accuracy in focal length estimation.
In the non degeneracy case (a), the principal point is estimated with an error less than 10 pixels,
even in the presence of high noise; a higher error value is always observed in the near degeneracy

case (b). In noisy conditions, bold and light curves exhibit the same behavior as in the case of
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vanishing point estimation. Besides, focal length estimation accuracy has proven to be less

dependent on camera viewpoint than principal point estimation accuracy.

(@) (b)
Fig. 11. A sample SOR with a qualitative view of calibration uncertainty (ellipses), for different noise values, in the two cases
of non degeneracy (a) and near degeneracy (b) view conditions.

A qualitative insight into principal point estimation accuracy is provided by Fig. 11, where
uncertainty3o ellipses are drawn for different noise values. It is apparent that, as the SOR
position in the image gets closer to the image center, the uncertainty ellipses become larger, with
their major axis parallel to the imaged symmetry axis. In fact, in the pure degeneracy condition,

an infinite uncertainty affects the principal point coordinate along the imaged symmetry axis.
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Fig. 12. Reconstruction accuracy in the near degeneracy case. (a): noisy apparent contour (max standard deviation=0.0218).
(b): noisy visible points of imaged cross sections (max standard deviation=0.0043). (c): noisy apparent contour and noisy visible
points of imaged cross sections (max standard deviation=0.0395). The maximum value of standard deviation is obtained for the
maximum noise value.

The mean and standard deviation of the error in the reconstruction of the scaling function are

defined respectively af' [p.(2) — py(2)|dz and \/fol [pe(2) = par(2)) dz, wherep,(z) is the
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estimated scaling function, ang;(z) is the ground truth scaling function. Fig. 12 shows the
effects of noise on the reconstruction error in the near degeneracy case (the most critical one).
The noise on the apparent contour is the dominant source of error for reconstruction, due to the

fact that it requires the computation of tangent lines along the apparent contour.

B. Creation of 3D textured models

Fig. 13 shows examples of reconstruction from a single uncalibrated view for four distinct
SOR objects. For each object, the original image and the 3D solid obtained are shown. All the
images have been taken with moderate perspective distortion. The apparent contour and cross
sections have been manually extracted by following the imaged object’s boundaries. The results

presented can therefore be regarded as close to those obtainable in the absence of noise.

@ (b) (c) (d)
Fig. 13. SOR objects: single uncalibrated viewap| and reconstructed 3D modelsofton).

Figs. 13 (a,b,c) present objects with linear (a) and curvilinear (b,c) profiles (a can, and a
Chinese and Greek vase, respectively). For each object, both the uncalibratetbpjeawnd a
view of the reconstructed solid objetigtton) are shown. 3D objects are correctly reconstructed
in all the cases. Fig. 13(d) presents the case in which 3D reconstruction of the original object

(a transparent glass) would have been difficult with a laser scanner, due to the object’s physical
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properties. It can be observedotton) that the 3D model is correctly reconstructed from the

original view ({op).

Fig. 14. Left Wireframe drawing of a chalice by Paolo Uccello (1397—-14R&iyldle andright: two views of the reconstructed
model, with evidence of self-occluded parts.

Fig. 14 shows the case of a drawing of which there is not any physical reproduction. It dis-
plays the first “wireframe” drawing in history, made by the Renaissance artist Paolo Uccello
(left), and two views of the reconstructed 3D modaliddle andright). Since the wireframe
drawing provides information also for the occluded parts of the apparent contour, a more com-

plete reconstruction of the object model can be obtained.
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@ (b)
Fig. 15. (a).Left A SOR view taken under strong perspective conditions (with indications of the two cross secton
Cq, the apparent contouy and the projection of the SOR meridiar). Middle: The SOR scaling function rectifiecRight
The reconstructed 3D model. (Heft A SOR view with severe self-occlusion and its apparent contRight The partially
reconstructed scaling function.

Fig. 15 presents two critical cases for 3D SOR reconstruction, respectively due to strong
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perspective distortion (a) and the presence of self-occlusions (b). Fig.nmii@g shows that

the scaling function of the bottle is correctly recovered: the ratio of the bottom and top radii
of the reconstructed bottle differs by less than 3% from the real one. In Fig. 18&ffjbthe
segmentsy, 12, 73, 74 Of the apparent contour of the cup are shown, that are related to curve
singularities due to self-occlusions. Fig. 15 (ght) shows that, for each apparent contour
segment, the corresponding scaling function segmenis, ps, p4 can be obtained so that a 3D
(partial) reconstruction is still possible for which the global metric structure of the reconstructed

SOR object is preserved.

C. Texture acquisition

The acquisition of the flattened texture permits the complete three-dimensional reconstruction
of the visible part of the SOR object as well as a separate analysis of the true texture properties,
regardless of the perspective distortion. Texture flattening makes image details more evident
than in the original picture, and also gives the same importance to central and peripheral details.

Fig. 16 shows the flattened texture acquired from the image of the Greek vase of Fig. 13. In this

Fig. 16. Flattened texture from the image of the archaeological vase of Fig. 13. Surface region with the largest distortion are
indicated with circles.

case the original texture is applied to a quasi-spherical surface. While areas are locally preserved,
the flattening process has introduced distortions in all those parts of the surface the shape of
which differs locally from that of a cylinder coaxial with the SOR. Fig. 17(a) shows the case of
texture acquisition for a cylindrical surface (the can in Fig. 13). As the cylinder is a developable

surface, the flattened texture preserves the global geometry of the original surface. This allows
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the recovery of the hexagonal ‘AL’ mark, by removing the distortion present in the original
image. The texture portions close to the apparent contour have not been considered, in that their
re-sampling is typically affected by aliasing due to the strong foreshortening. Foreshortening
effects are clearly visible in Fig. 17(b), where the complete flattened texture for the Chinese
vase of Fig. 13 is shown, including the texture portions close to the apparent contour. Flattened
textures can be easily superimposed on the reconstructed 3D model, so as to obtain photo-
realistic reconstructions from image data. Fig. 18 shows the reconstructed 3D can and Chinese

vase models of Fig. 13 with their flattened textures superimposed.

() (b)
Fig. 17. The flattened textures for the can (a) and the Chinese vase (b) of Fig. 13.

(a) (b)

Fig. 18. Three-dimensional reconstruction of the can (a) and Chinese vase (b) models with superimposed texture.

Fig. 19 top) shows four different views of a Japanese vase, that together provide complete
information of the vase texture. If a flattened texture is extracted from each view and the 3D

vase structure is reconstructed from one view, a 3D fully textured reconstruction of the vase can
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be obtained as in Fig. 20, provided that the complete texture is constructed by registration of the
four textures (see Fig. 19ptton). Similarly, partially reconstructed scaling functions obtained

from different self-occluded views can be merged together so as to obtain a full 3D SOR model.
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Fig. 19. Top Four complementary views of a Japanese vBsttom The complete texture obtained by image registration.

V. CONCLUSIONS

In this paper, we have discussed a new method to recover the original 3D structure of a generic
SOR object and its texture from a single uncalibrated view. The solution proposed exploits pro-
jective properties of imaged SORs, expressed through planar and harmonic homologies. Camera
self-calibration is directly obtained from the analysis of the visible elliptic segments of two im-
aged cross sections of the SOR. The same elliptic segments are used together with the SOR

apparent contour, to reconstruct the 3D structure and texture of the SOR object, which are thus
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Fig. 20. Three views of the complete (3D structure and texture) three-dimensional reconstruction of the Japanese vase.

obtained from calculations in the 2D domain. Since the homology constraints are of general
applicability, the solution can be applied under full perspective conditions to any type of surface
of revolution with at least two partially visible cross sections. According to this, the method
provides an advancement with respect to recent research contributions that used homology con-
straints for 3D recognition/reconstruction, but were restricted to the affine projection case [1]
or to full perspective of planar surfaces [27], [46]. The possibility of recovering the texture
superimposed on the SOR as a flattened image allows a complete reconstruction (albeit lim-
ited to the imaged part of the object) of the SOR 3D structure and appearance. For views with
self-occlusions, a complete reconstruction of the 3D textured object can be easily obtained by
registration of multiple views of the SOR, taken from the same camera under the same illumina-
tion conditions. The method can be used reliably, in all those cases in which only a photograph
or a drawing of the SOR object is available and structured light acquisition methods cannot be
employed for the acquisition of the solid structure. It is particularly useful in the case of no
longer existing objects (i.e., artworks) or objects that cannot be moved easily from their origi-
nal site. Extraction of the apparent contour and imaged cross section segments, although done
manually in the experiments reported in this paper, can also be performed automatically, with
relatively low complexity and good reliability. This has been proposed in [57] and [7] under

reasonable constraints on the objects and background.
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APPENDIX1. RELATING THE HARMONIC HOMOLOGY WITH THE COMPLETE QUADRANGLE

In this appendix, we give the formal proof of Egs. 5 and 6 used to compute the fixed entities
of the harmonic homology from the four intersections,, £ = 1,...4 of two imaged cross
sectiongC; andC,. Following the discussion of section IlI-A, we can always assumexthand
X5 are complex conjugate, so that either of the paiisx,) or (x3,x4) must be equal tafj), and
therefore either of the linds, = x; x x5 orl3; = x3 X x4 must be equal tb,, =i x j.

By property 11.2 of section II-B, the conics; andC, are fixed as a set under the harmonic
homology:C, = H'C,H, h = 1,2. A consequence of this is that the point; obtained from
the generic intersection poimi, by transformation undéet, is still an intersection point of;

andCy: (Hx,)'C,(Hx,) = 0, h = 1,2. By expressingdi according to the parametrization

Voo 1T
H=1-2—>2" 15
ol (15)
obtained from Eq. 1 withx = —1, we can write
lT
kazxk—Zs—kaoo ) (16)
vy

Now, since by Eq. 16 the ling; x Hx; must contain the fixed point.,, recalling that(i x

j)Tve = 0 and that no three intersection points can be collinear, it follows that
X9 = Hx; and x; = Hx3 . (17)

This proves Eq. 5, as the lingés andls, can be written respectively & x Hx; andxs x Hxs.
Using Eq. 17, we can also writg; x Iy = (x; X x3) X (Hx; x Hx3) andlyy x L3 = (x; X Hx3) X
(Hx; x x3). By using again the parametrization of Eq. 15 and the basic equaalityb x c) =
(a'c)b — (a"b)c, it follows easily thafl;3 x 1o, = 1;3 x 1, andly, x o3 = 14 x 1,. This proves

Eqg. 6.

APPENDIX 2. PARAMETRIZING THE IMAGE OF THE ABSOLUTE CONIC

In this appendix, we demonstrate that the linear system of Eq. 7 has only three independent
constraints, and provide a parametrization foréh&conics that satisfy these constraints.
The third of Eqs. 7 provides two independent linear constraints.oVe will show that

the first two equations of the system, iitwi = 0 andj'wj = 0, add tol, = wv,, only one
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independent constraint. Indeed, the familysof conicsw satisfyingl, = &v., can be written

as

3
DA, A2 As) = Ao+ ) Ml (18)

k=1
where the\,’s are scalars and the,’s are four linearly independent conics such that

ls = Akvoo . (19)
Now, in Appendix 1 we have shown thapt Hi. Therefore, we can write
JIAG =iTH AR =1TAg (20)

where the last equality follows from the fact that, as it satisfies Eq. 19, each of,thas
transformed onto itself by the homology—this can also be directly verified by using fiothe
parametrization of Appendix 1. From Eq. 20 it also follows tjlatj = i'wi: this means that

the inhomogeneous linear system in the three unknowiss

iTC’B<)\1, )\2, )\3) 1 == 0

B (21)
ij<)\17 A2, )\3)j =0

hasoo? solutions. This proves our assert that the solution set of Eq. 7 is composetiafhics.

It can be easily verified that a valid parametrization for these conics is
5(p,q) = w + plaoll, + q(L L], + LY (22)

wherew is the (unknown) true image of the absolute cohid,_ is a degenerate (rank 1) conic
composed by the ling,, taken twice, andlisle.s + 1,11 is a degenerate (rank 2) conic composed
by the two linesl;; = i x x; andl;; = j x x, meeting at any poink, € 1, different from
v, =1, x 1.

If the vanishing pointy; € 1, of the direction parallel to the SOR symmetry axis is known,
the independent constrainfwv, = 0 can be added to the system of Eq. 7, thus fixing one of

the two degrees of freedom left for A parametrization for thesso! conics is then
@(r) =rldl + Ll +110])) (23)

wherel;; =i x v, andl;; =j x v,. This last result is in accordance with the fact, discussed

in [27], that the self-calibration equations involving the imaged circular péiatslj bring only
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one independent constraint if the ling j goes through any of the points of a self-polar triangle

for wv—which, in our case, i, vs,v].

APPENDIX 3. SAMPLING METRICALLY AN IMAGED SORPARALLEL

In this appendix, we derive a closed form solution to the general problem of finding the van-
ishing pointvy of the linel, that intersects, in the world plane a reference lin, with a given
Euclidean anglé. The imaged circular pointsandj of = are supposed to be known, together
with the vanishing point, of /. We then use this result to obtain the intersection pwifit =)
between the image(z) of the SOR parallel om and the visible imaged meridiag(#).

The basic relation between the anglend the vanishing point, is provided by the Laguerre’s
formula [13]

1 PR
0 = Zlog({VeyVOahJ}) ’ 0

where{} denotes the usual cross ratio of four points. By expressing the generic point on the
vanishing linel, of = as
V() =i+A({-j) (25)

Eqg. 24 can be rewritten as
ei29 = {/\97 )\07 )\i7 )\]} ) (26)

where)y, Ao, A; and); are the values of the complex parameteespectively for the pointsy,
vy, i andj. In particular, it holds\; = 0 and); = —1; the values\y and), are derived hereafter.
Taken any image lindy = ({y, 5, [3) throughv, and distinct froml,,, and seti = conj(j) =
(a+ib, c+1d, 1), solving for\, the equationv(\y) = 0 we get\y = —1 [1 + i tan ¢], where
the angle

27
l1b+ lod (27)

embeds in a compact way all the information about the referencélared the circular points.

Substituting the above value af into Eq. 26, the value o%, can be computed as
1
g = 5 1+ itan(gg +6)] (28)

which eventually yields the required vanishing poinvas= i+ \¢(i— j). In the particular case

of a SOR image, the vanishing poiw can be computed as above with the point= 1, x 1,
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and the image lind, as the reference, andl,, respectively (see Fig. 8(b)). The image line
ly = vy x o, whereo = C71(2)l,, is the image of the parallel’s center, intercepts the imaged
parallelC at two points, of which the required poirtd, z) on the visible imaged meridiap(6)

is the farthest one from, along the lind,.
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