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Abstract
This paper considers the problem of modeling an active ob-
server to plan a sequence of decisions regarding what target
to look at, through a foveal-sensing action. The gathered
images by the active observer provides meaningful identifi-
cation imagery of distant targets which are not recognizable
in a wide angle view.

We propose a framework in which a pan/tilt/zoom (PTZ)
camera schedules saccades in order to acquire high reso-
lution images of as many moving targets as possible before
they leave the scene. We cast the whole problem as a par-
ticular kind of dynamic discrete optimization, specifically as
a novel on-line Dynamic Vehicle Routing Problem (DVRP)
with deadlines. We show that using an optimal choice for
the sensing order of targets the total time spent in visit-
ing the targets by the active camera can be significantly re-
duced.

To show the effectiveness of our approach we apply con-
gestion analysis to a dual camera system in a master-slave
configuration. We report that our framework gives good re-
sults in monitoring wide areas with little extra costs with
respect to approaches using a large number of cameras.

1. Introduction
Automated surveillance can have a powerful effect in de-
terrence of crime, but most of the solutions and implemen-
tations proposed so far are unnecessarily poor in evidential
quality. In this sense, remote identification of targets is and
will be an important mandatory capability for modern au-
tomated surveillance systems. In particular recognizing a
person or a car license plate requires that high resolution
views must be taken before they leave the scene. Using a
large number of static or active cameras that operate coop-
eratively is an expensive and unpractical solution. One way
to cope with this problem is to make better use of the sen-
sor’s capabilities.

We argue that one active pan/tilt/zoom (i.e. a foveal sen-
sor) camera (the slave camera) together with a wide angle
camera (the master camera) and a good strategy for visit-
ing the targets can be used instead. The fixed camera is
used to monitor the scene estimating where targets are in
the surveilled area. The active camera then follows each
target to produce high resolution images. In this config-
uration, we show that the visual signal from the master

camera provides the necessary information to plan the sac-
cade sequence. Moreover, the introduction of an appropri-
ate scheduling policy allows to maximize the number of tar-
gets that can be identified from the high resolution images
collected. Indeed, this is achieved by continuously gazing
at the most appropriate targets, where the appropriateness
strongly depends on the task considered. In fact, tasks may
have conflicting requirements, as in the case where different
tasks would direct the fovea to a different point in the scene.
For systems with multiple behaviors, this scheduling prob-
lem becomes increasingly paramount. It is worth noting that
in our opinion this class of problems has not received suffi-
cient attention by computer vision researchers. In addition,
we identify the following facts that must be considered and
correctly exploited in order to minimize the dead-time used
in gaze redirection and foveal adjustment: (i) foreshorten-
ing is directly related to the time a given target takes to exit
the scene. This is because of the induced perspective effects
that make targets moving farthest from the camera appear
to move slower in the image, while closer targets appear to
move faster albeit having the same speed in 3D. (ii) Gaz-
ing from a closer target to a distant one is generally slower
mainly as a result of a zoom induced delay (as pan and tilt
motions are much faster in comparaison). In the case when
the targets are at similar distances and opposite directions
from the slave camera the gazing depends mainly on the
pan and/or tilt. To summarize, the deadline by which targets
must be observed increases the difficulties of the problem.
The real-time context and the stochastic nature of arrivals
further amplify the computational intractability of the whole
problem.

The most useful body of literature in tackling such a
problem comes from active vision, multiview geometry and
the Dynamic Vehicle Routing Problem (DVRP). In the ac-
tive vision paradigm, visual competences can be categorized
as either purposive (deliberately redirecting processing or
gaze for some higher level request), or reactive (responding
to a visual event or observed motion). In this paper we aim
to achieve purposive zooming where the problem is solved
as a sequential decision making process. To this end, we
propose a novel framework in which the cost of moving the
camera is explicitly taken into account in a computational
model to derive the optimal scanning sequence solution.

The key contributions of the paper are: (1) we propose a
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novel formulation for the remote target identification prob-
lem in terms of saccadic gaze planning, (2) we give a general
framework in which an active camera can be modelled, (3)
we extend previous approaches on PTZ greedy scheduling
proving through simulation that our framework yields better
system performance.

2 Related Work

Recent years (especially after 9/11) have seen a continued
increase in the need for and use of automatic video surveil-
lance for remote identification problems. The few works
addressing this subject do not address the planning prob-
lem or do not fully exploit all the information intrinsically
present in the structure of the problem. In [11] the problem
of deciding which camera should be assigned to which per-
son was addressed and some general approaches are given.
It should also be noted that there is no work except [2] on
objectively evaluating the performance of multi-camera sys-
tems for acquiring high resolution imagery of people. Most
results are presented in the form of video examples or a se-
ries of screen captures without explicit system performance
evaluations. Very little attention is given to the problem of
what to do when there are more people in the scene than
active cameras available.

Many works in literature uses a master/slave camera
system configuration with two [1][2][4][6][12] or more
cameras [3][5][9][11][19]. The remote target identifica-
tion problem is also termed as distant human identification
(DHID). In [1], a single person is tracked by the active cam-
era. If multiple people are present in the scene, the person
who is closest to the position of the previous tracked indi-
vidual is chosen. In [2] the authors use greedy scheduling
policies taken from network the packet scheduling litera-
ture. They are the first to describe the problem formally
and propose a solution. In particular, in this work the au-
thors, albeit mentioning that there is a transition cost mea-
sured in time to be paid whenever the camera switches from
person to person, do not explicitly model this cost in their
problem formulation. The consequence is that their analy-
sis wrongly motivates an empirically determined watching
time instead of at least a single video frame. Moreover the
work is use greedy policies instead of policies with a time
horizon. Also in [3] the authors propose a form of collec-
tive camera scheduling to solve surveillance tasks such as
acquisition of multi-scale images of a moving target. They
take into account the camera latency and model the prob-
lem as a graph weighted matching. In the paper there are no
experimental results and no performance evaluation for the
task of acquiring as many multi-scale images of many tar-
gets as possible in real time. In [6] another similar approach
with a dual camera system was recently proposed in indoor
scenes with walking people. No target scheduling was per-
formed, targets are repeatedly zoomed to acquire facial im-
ages by a supervised learning approach driven by skin, mo-
tion and foreground features detection. In [10] a ceiling

mounted panoramic camera provides wide-field plan-view
sensing and a narrow-field pan/tilt/zoom camera at head
height provides high-resolution facial images. The works
in [7][4] concentrate on active tracking. In both works the
respective authors propose a simple behavior (a policy) with
a finite state machine in order to give some form of continu-
ity when the currently tracked target is changed. In [5] two
calibration methods to steer a PTZ camera to follow targets
tracked by another camera are proposed. The authors give
some criteria of optimization leaving the formal optimiza-
tion as future research. Though performing coarse registra-
tion the methods [5] and [1], generally suffice to bring the
target object within a narrow zoomed field of view.

Another body of literature, concerning the mathematical
optimization framework, comes from the motion planning
literature and in particular from the context of rapid deploy-
ment automation. Specifically, those problems related to
rearranging parts by a robot in an industrial assembly line
setting. A representative work in this context is [13]. In that
work the problem is: givenn identical parts initially located
on a conveyer belt, and a robot arm of capacityk parts, com-
pute the shortest route for the robot arm to grasp and deliver
the parts, handling at most atk a time. A PTZ-camera can
be interpreted as a robot arm, we will use such analogy in
our problem formulation.

The other important work related to our problem is [8],
in which the authors study the problem in which a vehi-
cle moves from point to point (customers) in a metric space
with constant speed, and at any moment a request for service
can arrive at a point in the space. The objective is to maxi-
mize the number of served customers. They analyze several
policies showing that in such a problem lower bounds on
system performance can be obtained analytically. This work
is reminiscent of our problem, albeit rather different mainly
due to the fact that our customers (targets) are moving and
have deadlines. A further important difference is that the
nature of our particular vehicle (a PTZ-camera) does not al-
low us to models the cost of moving from target to target in
the euclidean space.

3 Problem Formulation

In this section we formulate and discuss the three main fea-
tures that characterize this problem: targets motion, arrivals
as a continuous process, and deadlines. Once a subset of
moving target is selected the correct camera tour can be
optimized with the Kinetic Travelling Salesperson Problem
(KTSP). The problem of how choosing the best permutation
subset from the currently tracked targets is an instance of the
Time Dependent Orienteering (TDO) with deadlines.

3.1 Kinetic Travelling Salesperson Problem

As cameras can be calibrated with automatic or manual
methods such as in [5] it is possible to associate to each
point in the plane where targets are moving a vector of PTZ-
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Figure 1: An instance of Kinetic-TSP with four targets. The
shortest-time tour (light line).

camera parameters. According to this, at each point in the
world plane it is possible to issue camera commands in or-
der to bring a moving target in a close up view by giving to
the camera the 3D vector(p, t, z), specifying pan, tilt and
zoom values to be applied. In our formulation we model
the PTZ-camera as an intercepter with restricted resources
(e.g., limited speed in setting its parameter). The dynam-
ics of the targets are assumed known or predictable (i.e., for
each target one can specify its location at any time instant).
The problem is expressed as that of finding a policy for the
PTZ-camera which allows to ”visually hit” (with a saccade
sequence) as many targets as possible in accordance with
the device speed. This allows to cast the problem as a Ki-
netic Travelling Salesperson problem (KTSP) [14]. In fig.1
are shown four targetsA, B, C, D moving on a plane. The
shortest-time tour is shown with the respective interception
points. At each interception point is also shown the time in-
stants of the sequence when the intercepter visually hits the
targets. Formally this problem is formulated as follow:

KTSP : Given a setS = {s1, s2, ..., sn} of moving
targets, eachsi moving with known or predictable motion
xi(t), and given an active camera intercepter starting at a
given position and having maximum speedVptz ≥ Vi ∀i ,
find the shortest-time tour starting (and ending) at the ori-
gin, which intercepts all targets.Vi indicates the imaged
speed of targeti andVptz indicates the maximum speeds of
the pan-tilt-zoom device. The solution is defined as the per-
mutation of the discrete setS that has the shortest travel
time.

It is necessary that the intercepter run faster than the tar-
gets. This is not generally a problem even for slower PTZ-
cameras. By imagining the PTZ-camera as a robot manipu-
lator with two revolute (pan-tilt) and one prismatic (zoom)
joint, it is possible to view the principal axis of the camera

as a robot arm which rotates and move forward to reach a
point in the space. In such settings, due to the typically high
distance at which PTZ-cameras are mounted, the speeds of
the virtual end-effector are generally higher than common
moving targets such as cars or humans.

3.2 Time Dependent Orienteering (TDO)

In a typical surveillance application, targets arrive as a con-
tinuous process, so that we must collect ”demands to ob-
serve”, plan tours to observe targets, and finally dispatch
the PTZ camera. In a such dynamic-stochastic setting there
is a lot of interdependency between the state variables de-
scribing the system. Moreover, tours must be planned while
existing targets move or leave the scene, and/or new tar-
gets arrive. Basically the whole problem can be viewed as
a global dynamic optimization. Since for such a problem
no a-priori solution can be found, an effective approach is
to determine a strategy to specify the actions to be taken as
a function of the state of the system. In practice, we con-
sider the whole stochastic-dynamic problem as a series of
deterministic-static subproblems, with the overall goal of
tracking the time progression of the objective function as
close as possible. In our problem, targets are assumed to
enter the scene at any time from a finite set of locations.
The camera must steer its foveal sensor to observe any target
before it leaves the scene. Assuming with no loss of gener-
ality that the paths of the targets are straight lines and that
targets move at constant speeds, the time by which a target
must be observed by the camera can be estimated. More-
over, real-time constraints may impose bounds on the total
amount of time needed to plan the target observation tour.
According to this, given a fixed reference time, KTSP can
be reformulated as a Time Dependent Orienteering (TDO)
problem [21]. In the classical formulation of the static orien-
teering problem there is a resource constraint on the length
of the tour; the problem solution is the one that maximizes
the number of sites visited. The time dependent orienteer-
ing problem for a single PTZ-camera can be formulated as
follows:

TDO : Given a setS = {s1, s2, ..., sn} of moving
targets, eachsi moving with a known or predictable mo-
tion xi(t) , the deadlinet, and a time-travel functionl :
S × S × N 7−→ IR+ ∪ {0} the salesperson’s tour to in-
tercept a subsetT = {s1, s2, ..., sm} of m targets is a se-
quence of triples:(s1, t

+
1 , t−1 ), (s2, t

+
2 , t−2 ), ...(sm, t+m, t−m),

such that: fori ∈ {1, 2, ..., m}, t+i , t−i ∈ N ∪ {0} with
0 = t+1 ≤ t−1 ≤ t+2 ≤ ... ≤ t+m ≤ t−m ≤ t . The subsetT is
composed by the maximum number of targets interceptable
within the timet, imposed by the real-time constraint.

Orienteering problems are classified as path-orienteering
or cycle-orienteering problems depending on whether the
network to be induced by the set of pairs of consecutive tar-
gets visited is supposed take the form of a path or of a cycle,
respectively. The deadlinet breaks the dynamic problem
into a sequence of static problems. Such a formulation has
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Figure 2: A symbolic scheme representing a saccade from
the targetA to the targetB. Theφi,i+1, ψi,i+1 are respec-
tively the pan and tilt angles as seen from the slave camera
when the camera leaves targetA at timet−i and intercepts
B at timet+i+1.

a great advantage which is computationally helpful. Since
there is no polynomial time algorithms to solve the KTSP,
it is impossible to solve an instance of the KTSP problem
with more than eight or nine targets in a fraction of a sec-
ond, by the exhaustive search. However even if such an al-
gorithm did exist the time needed to switch to all the targets
would be so large that novel targets would not be observed
due to the time needed to complete the tour.So, the brute
force approach enumerating and evaluating all the subsets
permutations perfectly fits with the nature of our dynamic
incremental formulation.

3.3 Deadlines

Based on the tracking predictions targets are put in a queue,
according to their residual time to exit the scene. TDO is
instantiated for the firstk targets in the queue. IfAk is the
set of the permutations of the subsets ofk targets then it can
be shown that:

|Ak| =
k∑

i=0

k!
(k − i)!

(1)

where|Ak| is the cardinality of the setAk. So for exam-
ple with a queue ofk = 7 targets we have|A7| = 13700.
In this case the exhaustive enumeration requires 13700 so-
lutions evaluations. As remarked in the previous section,
solutions with a large number of scheduled targets would
not be practical for an incremental solution, since the time
needed to switch to all the targets would be so large that
novel targets would not be observed due to the time needed
to complete the tour.

The framework is fairly general and more elaborated
policies can be estimated by changing optimization cost
and/or the sorting used in the queue (priority in the queue

can be specified according to some combined quality mea-
sure of the imagery of the targets, for example preferring tar-
gets moving in certain specified directions). Here we want
to maximize the number of targets taken at high resolution.
With the deadlines the TDO becomes a constrained combi-
natorial optimization, where the feasible set can be defined
as follow (see the TDO definition in the previous section):

t−i < tdi , ∀i = 1..|T | (2)

WhereT ∈ Ak is an instance of the permutations of the
subsets, andtdi is the deadline for the target at positioni in
T . That means the the camera must leaves the targeti in T
at timet−i before the target leaves the scene at timetdi .

The TDO solution is calculated by assuming a constant
speed for the pan-tilt-zoom camera motors as specified by
the manufacturer. There is no need for an exact specification
of these speeds, in that they are used only for the prediction
of the cost of the saccadic sequences. In order to keep the
computation tractable the number of target in the queuek
should not be greater than 8 (9 with optimized code). For
example on a Pentium IV 2.0 GHz running Matlab, com-
puting and evaluating the permutations of the subsets of 8
targets takes a fraction of a second.

4 Saccades Planning Geometry

In order to show the advantages of adopting this framework
for our research objective, we consider the classic camera
system in a master/slave configuration [1][2]. In this config-
uration a static, wide field of view master camera is used to
monitor a wide area and track the moving targets providing
the position information to the foveal camera. The foveal
camera is used to observe the targets at high resolution. We
estimate the interception times of a target for each of the
three foveal camera control signals (respectivelytφ, tψ, tz
for pan, tilt, zoom). Since the effects of the three control
signals are independent from each other (i.e. the pan motor
operates independently from the tilt motor) the time needed
to conclude a saccade is dominated by the largest one. The
largest time is taken as the time spent by the foveal camera
to observe the target and is taken into account to derive the
overall time needed to complete the tour in the TDO formu-
lation.

With reference to fig.2 the estimatedtφ, tψ, tz are as-
sumed as the times needed to make the foveal camera gaze
at the target at positioni + 1, leaving the target at posi-
tion i in the sequenceS = {s1, ..., si, si+1, ..., sm} (in
fig.2 the targets at positioni and i + 1 are respectively
indicated asA and B). In other words they represent
the times needed for changing the pan and tilt angles and
zoom respectively byφi,i+1, ψi,i+1 andzi,i+1 (not shown
in the figure) in order to intercept the new target at time
t+i+1 while leaving the old target at timet−i . The time
t? = max{tφi,i+1 , tψi,i+1 , tzi,i+1} is the travel time needed
to change the gaze.
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Figure 3: The geometry of a PTZ camera viewing a world
plane in which the pan axis coincides with the normal of the
plane. Also shown are the anglesφ andψ travelled by the
pan-tilt device gazing from the targetP1 to the targetP2.

By assuming targets moving on a calibrated plane, these
times can be computed, at least in principle, by solving for
t from each of the following equations:

φ(t) = ωφt + φt−i
ψ(t) = ωψt + ψt−i

(3)

Whereφ(t) andψ(t) are time varying functions, represent-
ing the angles between rays from the image points corre-
sponding to the target trajectory w.r.t to a reference ray in
the foveal camera. Theωφ andωψ are, respectively, the pan
and tilt angular speeds and the anglesφt−i

andψt−i
repre-

sent the angle positions at timet−i . By separately solving
the two equations int we estimate the interception timestφ
and tψ, needed to intercept the target through pan and tilt
camera motion. Each of the above equations is non-linear
due to the image formation process. In order to make the
TDO problem solvable, a closed form solution is obtained
by assuming that during the camera interception process, the
target motion is negligible. Now the TDO can be solved by
exhaustive enumeration without an iterative root finder for
the eq.3. With this assumption eq.3 becomes time indepen-
dent and simplifies:

φt+i+1
= ωφt + φt−i

ψt+i+1
= ωψt + ψt−i

(4)

defining the values for

tφi,i+1 =
φt+i+1

− φt−i

ωφ
tψi,i+1 =

ψt+i+1
− ψt−i

ωψ
(5)

In order to keep tractable the estimate of the angles of
the targets as seen by the slave camera we assume that the
PTZ-camera is not mounted oblique w.r.t. the world plane.
The camera pan axis it is approximately aligned with the
normal of the world plane. This is generally the case when
PTZ-cameras are mounted on top of a pole (see fig.3). This
means that during continuous panning while keeping a fixed
angle for the tilt, the intersection of the optical axis with
the 3D plane approximately describes a circle. The princi-
pal axis sweeps a cone surface so its intersection with the

C

C′H

H′

Π
1
′x

1
x 1

X ψ

0
C′

0
′x

Figure 4: How to compute the tilt angleψ between the slave
camera and the world pointX1 ∈ Π.

3D world plane is in general an ellipse with an eccentricity
close to one. In the same sense during continuous tilting
while keeping a fixed angle for the pan, the intersection of
the optical axis with the 3D plane describes approximately
a line. The swept surface is a plane (see fig.3). In such
conditions the tilt angle between a reference ray and the ray
emanating from the image point corresponding to a target
trajectory can be measured once the intrinsic internal cam-
era parameters for the slave camera are known as [15]:

cos(ψ) =
x′1

T
ωx′0√

x′1
T ωx′1

√
x′0

T ωx′0
(6)

whereω = K−TK−1 is the image of the absolute conic an
imaginary point conic directly related to the internal camera
matrix K. While x′1 andx′0 (as also shown in fig.4) are, re-
spectively, the projection of the world pointX1 as seen by
the master camera and transformed throughH′ to the slave
camera, and the projection of the pointC′

0. C′
0 is the or-

thogonal projection of the camera center of the slave cam-
eraC′ onto the world plane. By choosing as reference ray to
represent tilt angles of the ray passing throughC′

0 andC0

as shown in fig.4, the value ofx′0 can be computed directly
using the pole-polar relationship as:

x′0 = ω−1l′∞ (7)

Wherel′∞ is the vanishing line of the planeΠ as seen from
the slave camera and it can be computed by transferring the
vanishing linel∞ in the master camera to the slave cam-
era asl′∞ = H′−Tl∞. The above formula can be applied
becausex′0 coincides with the vanishing point of the direc-
tions normal to the planeΠ (see [16]). Summarizing, in this
configuration the slave camera, in addition to its foveal ca-
pability also uses calibration (in its home position) as angle
measurement device. Internal camera parameters necessary
for the PTZ-camera can be computed very accurately as re-
cently shown in [17] using the method originally described
in [20].

The pan angle of a world point in the plane can be com-
puted directly from the master camera once the world to im-
age homographyH is known and the pointC′

0 is measured
from the master camera. If that point cannot be measured
because it is not visible from the master camera, it can also
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Figure 5: The simulated surveillance scene. The segment
S1 andS2 represent sources where targets originates with a
given statistics.

be computed using the inter-image homographyH′. In fact
since the slave camera is internally calibrated at its home
position, it is possible to obtain its pose and so its camera
center w.r.t. the world reference once the world to image
homographyH′0 is known from the slave camera. This can
be computed as:H′0 = H′H (see fig.4).

The same approach of eq.4 is followed to obtain the
zoom control, once the amount of zoom needed to obtain
the desired close-up is calibrated for each point in the world
plane. A look-up table using an equispaced grid of points
can be used to perform this calibration manually or auto-
matically as shown in [5]. The equation for the estimation
of the time needed for changing the zoom to intercept the
new target can be written similarly as for pan and tilt:

zt+i+1
= vzt + zt−i

(8)

wherevz is the zooming speed andzt−i
is the zooming value

at timet−i , when the target is left andzt+i+1
is the zooming

value at timet+i+1 when the next target is intercepted.

5. Simulation Results
Evaluating different planning strategies using a video
surveillance system installed in a real context is a very com-
plicated task. In fact, while we can easily collect video from
a static camera, and use it for target tracking, it is almost im-
possible to collect all the information needed to plan tours
in a master-slave camera configuration with a foveal slave
camera. To address these difficulties, we have created a
Monte Carlo simulation for evaluating scheduling policies
using randomly generated data. But there is also another
main reason for using randomly generated data. The use of
randomly generated data often enables more in-depth anal-
ysis, since the datasets can be constructed in such a way that
other issues could be addressed. For example the arrival rate
parameter, generally denotedλ, describes the ”congestion”

of the system. This is basically the only important parameter
which is worth of testing in a similar scenario. We stress the
importance of this kind of testing: real data testing cannot
evaluate the algorithm performance in this context.

We performed a Monte Carlo simulation that permits
evaluating the effects of different scheduling policies in a
congestion analysis setting. We used in our simulator a par-
ticular scene in which our framework could be of invaluable
benefit. A large area of approximatively 50x60 meters (half
of a soccer field) is monitored with the slave camera placed
as shown in fig.5 at position(30, 0, 10). The master cam-
era views the monitored area at a wide angle from above
(more suitable for tracking due low occlusion between tar-
get). Arrivals of targets are modelled as a Poisson process.
The scene is composed of two target sources situated at op-
posite positions in the area. Targets originate from these two
sourcesS1 andS2 from initial positions that are uniformly
distributed in given ranges of length10 meters positioned
as shown in fig.5. The starting angles for targets are also
distributed uniformly with the range[−40, 40] degrees. Tar-
get speeds are generated from a truncated Gaussian with a
mean of 3.8 meter/sec and standard deviation of 0.5 me-
ter/sec. (typical of a running person) and are kept constant
for the duration of target motion. Targets follow a linear
trajectory. This is not a restrictive assumption since each
TDO has in this simulation a deadline oft = 5 seconds, and
the probability of maneuvering for targets with a running-
human dynamic in an interval of five seconds is very low.
So the overall performance of the system is not generally
affected. The deadlinet has a role similar to a sampling
time for traffic behavior and can be generally tuned depend-
ing on the speeds of the targets. In our simulated scene it
is quite improbable that a target enters and exits the scene
before five seconds are elapsed.

The used scene can represent a continuous flow of peo-
ple, in a crisis situation. An example is people exiting from
a stadium or from the subway stairs. It can be interesting,
for crime detection purposes, to acquire as many high reso-
lution images of such running people as possible before they
leave the scene.

We assume that all targets have the same size in the scene
(average humans height) and a specific size is fixed at which
the target must be observed by the foveal camera. For pin-
hole cameras, as the focal length of the camera changes, the
pinhole model predicts that the images will scale in direct
proportion to the focal length [18]. By assuming a constant
speed for the zooming motor and a linear mapping of focal
length to zoom it is possible to build a look-up table in the
simulator as: Zoom[x, y] = M · dist(C′,X) wherex and
y are the imaged coordinates of the world plane pointX
as seen by the master camera,C′ is the camera center of the
slave camera andM is the constant factor which depends on
the size at which targets are imaged and on the target size in
the scene. We want to collect human imagery with an im-
aged height of approximatively350 pixels using an image
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Pan Speed Tilt Speed Zoom Speed

deg/sec deg/sec #mag/sec

Sony EVI-D30 80 50 0.6
Sony SNC-RZ30 170 76.6 8.3

Directed Perception 300 300 11.3

Table 1: Off the shelf PTZ-cameras performance. The #mag
means magnification factor per second and is calculated di-
viding the maximum optical zoom (for example 25X) by
the zoom movement time from wide to tele (for example
2.2 seconds).

resolution of720× 576. In fig.6, plots indicate the number
of targets that are observed by the foveal camera (ordinates)
as a function of the arrival rateλ (abscissa) for three dif-
ferent situations. Since there are two sources with the same
arrival rate,λ actually refers to half the number of arrivals
per second. The size of the queue is six elements which
guarantees that the enumeration of all the subsets with their
permutations is generated in a fraction of a second (basically
a negligible time). Performance is measured by running a
scenario in which500 targets are repeatedly generated one
hundred times and the performance metric was estimated by
taking the mean. The metric corresponds to the fraction of
people observed in the scene. In particular we take the mean
(over the experiments) of the number of observed target di-
vided by number of all the targets.

Fig.6(a) shows a comparison of our methods with the ear-
liest deadline first policy studied in [2]; it evident that our
policy, using long term planning plus the cost of moving the
sensor, outperforms a simple greedy strategy. While there
is no need for planning in very modest traffic scenes, traffic
monitoring, in large, wide areas would receive an invalu-
able great advantage of more than40% by adopting the pro-
posed techniques. Fig.6(b) shows experiments conducted
using different speeds for PTZ motors typical of off-the-
shelf active cameras. Three cameras were selected using
their respective performance as indicated by the technical
specification (see tab.1). Using this performance values in
the simulator produce the plots of fig.6(b). Although the
three models are very different in performance, such differ-
ences are less evident for the observing task under test. This
is mostly caused by the camera position w.r.t. the scene
plane; the performance in tilt speed was practically never
employed because of the latency of the other controls w.r.t.
the imaged motion pattern of targets. The control which
delayed most of the saccades, employing the largest setup
time, was the zoom control (mostly caused by the scene
depth). This explains why the two fastest cameras exhibit
similar performances. This type of analysis can be useful
for determining the type of cameras and ultimately the cost
needed to monitor an area with a multi-camera system.

Fig.6(c) shows the performance degradation w.r.t. the
service time (or the watching time)ts. This time is directly
related to the quality of the acquired images and can poten-
tially affect recognition results. The figure also shows that
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Figure 6: Policy performance versus arrival rateλ. (a)
Our methods and simple earliest deadline first policy. (b)
Three different PTZ-camera under test with different pan-
tilt-zoom speed. (b) Performance variation at varying ser-
vice timets (the specified time to watch a target).
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varying ts does not affects the performances in direct pro-
portion.

6. Conclusions
Automated high resolution imaging of targets using PTZ
cameras is an important and mandatory capability for mod-
ern automated surveillance. In such systems, and especially
in the case of wide area surveillance applications, to view
multiple moving targets each camera must share observa-
tion time. We have presented a solution for planning sac-
cade sequences using a single foveal camera in a master-
slave camera system configuration. The system models the
attentional gaze planning, with a novel approach combining
ideas from Dynamic Vehicle Routing Problem (DVRP) and
multiview geometry. Results are presented using a simula-
tor that indicates how many targets are missed as a function
of the arrival rate, camera speed parameters and watching
time. Results have been derived under realistic assumptions
in a challenging scene. We proved that our framework gives
good performance in monitoring wide areas with little extra
effort with respect to other cumbersome approaches coordi-
nating a large number of cameras doing the same task.

The same principles presented here can also be applied
to camera-networks to build large surveillance systems; the
framework is open and may be extended easily in several
different ways; e.g. a real-time face recognition/detection
can be incorporated in the optimization.

One main limitation of the presented method is that it
does not take advantage of persistent motion patterns gen-
erally present in common scenes, for example an intersec-
tion with moving cars. Such knowledge would be of invalu-
able benefit in cases where targets are following pre-defined
paths. Ongoing research will address on-line learning algo-
rithms capable of finding more long-term policies. More-
over, further research can apply supervised machine learn-
ing methods to a simulated data set (as generated by our
approach) to understand the behaviors of complex saccadic
patterns for the task under consideration.

Acknowledgments: The authors would like to ac-
knowledge Luciano Nocera for proofreading the paper.
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