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Figure 1: The system comprised of the transmitter and receiver. The transmitter detects the parts of the image which are
important to the perception of a viewer and assign more bandwidth to them. The receiver runs the artifact removal algorithm
which recover the missing details accordingly.

ABSTRACT
We have seen a rise in video based user communication in the last
year, unfortunately fueled by the spread of COVID-19 disease. Effi-
cient low-latency delay of transmission of video is a challenging
problem which must also deal with the segmented nature of net-
work infrastructure not always allowing a high throughput. Lossy
video compression is a basic requirement to enable such technology
widely. While this may compromise the quality of the streamed
video there are recent deep learning based solutions to restore
quality of a lossy compressed video.

Considering the very nature of video conferencing, bitrate alloca-
tion in video streaming could be driven semantically, differentiating
quality between the talking subjects and the background. Currently
there have not been any work studying the restoration of semanti-
cally coded video using deep learning. In this work we show how
such videos can be efficiently generated by shifting bitrate with
masks derived via computer vision and how a deep generative ad-
versarial network can be trained to restore video quality. Our study
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shows that the combination of semantic coding and learning based
video restoration can provide superior results.
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1 INTRODUCTION
The era of day-to-day videoconferencing has dawned. Stimulated
in the recent years by developments in networking like the 5G
and modern video codecs, it has seen a dramatic increase with the
global spread of COVID-19. People constrained at home by the
emergency, talk shows and meetings have all adopted the use of
videoconferencing as main media of communication. As a result,
global networks have been profoundly impacted with an excessive
traffic that they were not prepared to receive. To transmit or store a
raw video, it must be compressed to reduce bandwidth and storage
requirements. This happens at the cost of the perceived quality
which strongly depends on the amount of available bandwidth
and the compression algorithm. While video coding algorithms
are designed to reduce perceptual quality loss using a model of
the human visual system, they do not know video semantics or
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cues on which information is more important to a human viewer.
When dealing with specialized tasks, such as video conferencing,
the usual bitrate allocation of modern video codecs may not favor
the right portion of the frame (e.g. face and upper body of the
speaker). The background has so little relevance in this context
that some commercial solutions provide features to blur [1] or
completely replace the background with a virtual one [2]. For this
reason, by combining state-of-the art computer vision techniques
with saliency based bitrate allocation, it is possible to drive codecs
bitrate to favor content based on semantics and not just on low-
level features such as frequency content of the signal. User studies
on videos crafted as such have shown little or no effect on the user
experience [45].

An obvious solution to reducing bandwidth for transmission is
to dramatically cut the quality of compressed video thus reducing
bitrate. On the one hand this will “allow” the video call to run
smoothly without any delay, on the other hand, the reduced quality
in the perceived video will make the user experience, in certain
cases, almost unbearable. Recently, solutions to improve image and
video quality have been proposed, also running in real-time on
tablets and smartphones [14–16]. With these algorithms in play
it is possible to increase quality and resolution of inbound highly
compressed and subsampled videos.

In this work we provide the following contributions:

• We design a system for streaming talking humans efficiently,
combining semantic coding of a source video with a deep
learning based image restoration process.

• We provide an extensive evaluation using both full-reference
and no-reference image assessment metrics, showing that
our GAN trained on semantically coded video is able to
improve the overall quality better than a generic image en-
hancement network.

Currently, to the best of our knowledge, learning based image en-
hancement methods have not been applied onto videos which have
been semantically encoded. Moreover we show that our system is
able to provide comparable quality for videos talking humans with
a third of the bandwidth.

2 PREVIOUS WORK
Semantic video coding is regarded as a straightforward solution for
bandwidth requirements. The basic idea is to identify objects which
are more perceptually relevant for the viewer and improve their
appearance increasing bit allocation adaptively. We can frame two
main lines of research: visual saliency [4, 26] and object [12, 45]
based video coding. In the former approach some function of the
image is computed pixelwise irrespectively of the semantic content
of the image. Such function measure the relevance of frame regions
and is used to modulate bitrate. Object based video instead assumes
some form of segmentation has been applied to obtain masks of
relevant objects. This approach requires using robust object seg-
mentation which are nowadays deployable at high efficiency [8, 18].

Video and image restoration. Recently, learning based image en-
hancement has been proposed [9, 10, 13, 14, 21, 28, 29, 39, 44, 46].
Such approaches, learn deep convolutional architectures to trans-
form images corrupted by artifacts into high quality ones.

The first work employing CNNs for compression artifact removal
is [10]. Their network design is specialized for JPEG compression,
while more recent works [9, 39] employ general purpose architec-
tures all sharing some common features such as residual learning
and skip connections bringing the benefit of allowing several layers
of representation and propagating information from earlier layers
to the final reconstruction directly. Interestingly, most perceptu-
ally satisfying results are obtained using Generative Adversarial
Networks [14]. In [13, 14] Galteri et al. show that GAN based im-
age restoration can be performed on various encoders even in an
agnostic setting by predicting coding parameters. All of the above
algorithms have never been used in conjunction with semantic
video coding. In this work we present GAN models to increase
quality of semantically coded faces.

Video and image compression. Semantic video coding approaches
can be used in very different domains, such as airplane cockpits [30],
sport videos [6], drone videos [41], vehicles [3], and surveillance
videos [5]. Some preliminary effort has been made to perform video
and image coding using neural networks [36, 37]. These approaches
are currently not deployable with satisfying visual results due to
an unbearable computational footprint. Moreover, fully learned
compression, requires the standardisation and diffusion of a novel
technology thus raising a high market barrier to entry. This can be
mitigated if the decoding end of the pipeline is kept to standard.
As partially reviewed in [35] there are two main strategies to im-
prove video quality while still relying on standardized encoding
solutions: pre-processing based and post-processing based. As an
example, Talebi et al. [40] proposed an hybrid approach to improve
the quality of compressed images. Instead of relying on a deep
network for encoding and decoding they learn a deep network for
pre-processing images before standard JPEG compression. Train-
ing objective minimize entropy and image distortion jointly for a
given JPEG quality factor. In this work we are the first to apply
state-of-the-art GAN based image restoration to video that have
been compressed with a semantic cue, thus intervening on both
ends of the coding pipeline, which is still based on standard video
codecs.

Quality metrics. It is important to also consider how images
appear at the end of the encoding-decoding pipeline. In our sce-
nario a reference image is available allowing to also perform Full-
reference image quality assessment. The recent work from Blau and
Michaeli [7] has shown that there is a rate-distortion-perception
trade-off showing that optimizing the statistical similarity of source
and decoded images will increase the signal distortion rate. This
is in line with the copious amount of results that shows how im-
ages ranked higher by humans obtains a lower score according
to SSIM and PSNR metrics. For these reasons a lot of work has
been dedicated to obtain more reliable metrics for image quality
assessment [23, 32, 33, 48]. In our work we will rely on modern
LPIPS metric as a full-reference evaluation and BRISQUE for a
no-reference image quality assessment.

3 THE PROPOSED METHOD
Our approach is based on the idea that a compression artefact
removal method can restore videos with a better perceived visual
quality by exploiting semantically encoded video. We first describe
how the semantic video encoding is performed on the transmitter.



Then, we report the GAN-based video restoration approach to
improve the perceptual visual quality on the receiver party.

3.1 Semantic video encoding
The main idea of semantic video encoding is to allocate more bits to
the regions that depict semantic content of interest for the viewer,
to the detriment of background. Ideally, the amount of bits should
be enough to maximize the perceptual quality of the objects of
interest for a viewer. Semantic video encoding is related to saliency
based video encoding [26, 27] as they both consider regions that
should be stored with a higher amount of data. Nonetheless they
aim at different targets. Semantic encoding aims at transferring the
high level semantic content that is of most interest of the viewer,
regardless of any other element of background. The saliency based
encoding, instead, has no specific knowledge of objects of the scene.
It aims at transferring the content which is most probably observed
by the eyes of a viewer, regardless of its importance.

To perform the encoding, we construct a semantic mask for
each frame where we label each pixel as foreground (i.e. pixels of
regions that are allottedmore bits) or background. Depending on the
domain, the foreground may be different. In our considered context
of a video conference application, the foreground is the speaking
person, more specifically its face. Hence, we employ the popular
BiSeNet [47] image segmentation method, trained on CelebAMask-
HQ [25] to perform face parsing. We label each pixel detected as a
part of face and neck as foreground, the remainder as background.

The final video is encoded using a h.264 encoder which has been
modified to allot a predetermined 𝑃 percentage of a given bitrate
to an input mask. We employ the implementation of [26] which
uses a non-trivial estimation of macroblock sizes with respect to
the quantization of parameter of h.264 constant quantizer.

3.2 Video restoration
Most restoration approaches based on deep learning tackle the
artifact removal problem trying to minimize the squared pixel-
wise Euclidean distance between a reference raw frame 𝐼 and the
generated output 𝐼𝑅 from a compressed input 𝐼𝐶 . However, this
kind of training strategy leads to feeble restored images as they
appear often blurry and lacking important details. Besides, the h.264
encoder typically contains a strong loop de-blocking filter at the
end of the compression pipeline, which leads to producing blurry
frames, so that using an MSE based neural network to restore the
images is even less effective.

Generative Adversarial Networks have been broadly used for both
restoration and enhancement tasks to solve the aforementioned
issues. The GAN framework tries to estimate a model distribution
that approximate a target distribution, and it comprises two dis-
tinct entities, a generator and a discriminator. In this setup, the
aim of the generator is to produce the model distribution given
some noisy input and the role of the discriminator is to discern
the model distribution from the target one. The two networks are
trained one after another while gradually the distance between the
model distribution and the generator decreases.

Since we do not want to generate completely novel images from
the model distribution, but we rather want to restore some distorted
data, we need to condition the training procedure of the GAN

accordingly. Therefore, we feed the discriminator with real samples
𝐼 |𝐼𝐶 and fake samples 𝐼𝑅 |𝐼𝐶 where the operator ·|· defines the
channel-wise concatenation of the inputs.

Architectures. The architecture of our generator is based on [13],
which is composed mostly of residual blocks and convolutional
layers, with no Batch-Normalization. Differently from [13] we train
the network to learn the residual image, hence there is a skip-
connection between the input image and the restored output. Using
this scheme we reduce the overall training time and improve its
stability. We choose both input and output values to be in the [0, 1]
range. We employ the most common architecture for our discrimi-
nator, a sequence of convolutional layers followed by LeakyReLU
activation, with a final output dense layer.

Losses. Following the results of [42] we choose the Relativis-
tic GAN [20] instead of the standard GAN setup to get better re-
construction outputs. Here, the key idea is to drive the discrim-
inator to estimate the probability that a ground truth image 𝐼

is relatively more realistic than a generated one 𝐼𝑅 . We define
𝐷 (𝐼 , 𝐼𝑅) = 𝜎 (𝐶 (𝐼 ) − E𝐼𝑅

[
𝐶 (𝐼𝑅)

]
) as the output of the relativistic

discriminator, where 𝜎 , 𝐶 (.) and E𝐼𝑅 [.] stand for the sigmoid acti-
vation, the dense layer output of the discriminator and the average
for all reconstructed images in the mini-batch, respectively. The
discriminator loss is defined as:

𝐿𝐷 = − E𝐼 [𝑙𝑜𝑔(𝐷 (𝐼 , 𝐼𝑅))]

− E𝐼𝑅 [1 − 𝑙𝑜𝑔(𝐷 (𝐼𝑅, 𝐼 ))]
(1)

and the adversarial loss for the generator as:

𝐿𝐴𝑑𝑣 = − E𝐼 [1 − 𝑙𝑜𝑔(𝐷 (𝐼 , 𝐼𝑅))]

− E𝐼𝑅 [𝑙𝑜𝑔(𝐷 (𝐼𝑅, 𝐼 ))]
(2)

Following the contribution ofmany perceptual-driven approaches
[11, 17, 19, 24] to improve the visual quality of restored outputs, we
use a loss based on perceptual similarity in our adversarial training.
We minimize the distance between images by projecting 𝐼 and 𝐼𝑅
on a feature space with a differentiable function 𝜙 and taking the
L1 distance between the two different representations:

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = E(𝐼 ,𝐼𝑅)
[
| |𝜙 (𝐼 ) − 𝜙 (𝐼𝑅) | |

]
(3)

In this work we implement the VGG-19 network to extract the
feature representations, adopting the output taken from the fourth
convolutional layer of the fifth block before the ReLU activation.
For convenience we name the standard perceptual loss based on
the VGG-19 network as 𝐿𝑉𝐺𝐺 .

We define a more effective perceptual loss by realizing that our
data to be reconstructed is not homogeneous. As amatter of fact, the
semantic encoding partitions the image in two regions that differs
from content (background/faces) and quality (low-quality/high-
quality). Therefore, the network needs to learn the reconstruction
of different parts according to separate objectives using the semantic
masks computed by the face parser. We define𝑀 as the foreground
binary mask and𝑀 as the background mask that is computed by
the logical negation of𝑀 .

We keep the VGG loss for the background, but we limit its com-
putation to the parts of the image where 𝑀 values are not zero.



Figure 2: Examples of frames restored using the two losses: Left) GAN with VGG perceptual loss; Right) GAN with combined
VGG background and VGG-Face foreground loss. Note how the mouth (especially lower lip) and the nasolabial folds are more
detailed and with less artifacts; the zoomed area of the hairs of the right image has more details and natural texture. See
supplementary materials for higher quality image.

We name the perceptual loss based on the VGG-19 network for the
background as 𝐿𝐵 :

𝐿𝐵 = E(𝐼 ,𝐼𝑅)
[
| |𝑉𝐺𝐺 (𝐼 ⊙ 𝑀) −𝑉𝐺𝐺 (𝐼𝑅 ⊙ 𝑀) | |

]
(4)

where ⊙ stands for element by element multiplication. Since the
foreground is composed of human faces, we choose to adopt a
different extractor to handle this specific category of features. The
logical choice is to extract such features from a pre-trained network
that has processed millions of face images, that is VGG-Face [34].
As VGG-Face is based on VGG-16 backbone, we extract the output
taken from the third convolutional layer of the fifth block before the
ReLU activation for the loss computation. Under these assumptions,
we define the perceptual loss constrained to the foreground as:

𝐿𝐹 = E(𝐼 ,𝐼𝑅)
[
| |𝑉𝐺𝐺𝐹𝑎𝑐𝑒 (𝐼 ⊙ 𝑀) −𝑉𝐺𝐺𝐹𝑎𝑐𝑒 (𝐼𝑅 ⊙ 𝑀) | |

]
(5)

The total loss for the generator is:

𝐿𝐺 = 𝐿𝐵 + 𝐿𝐹 + 𝜆𝐿𝐴𝑑𝑣 (6)

where 𝜆 is a fixed coefficient to balance the contribution of the
adversarial loss.

Training Details. In all our configurations we extract 8 random
256 × 256 patches from the training data with random left-right
flipping. During the training phase we use Adam [22] as optimizer
for both generator and discriminator with momentum 0.9 and a
learning rate of 10−4 for the first 10 epochs. We halve the learning
rate every other 10 epochs for an overall amount of 40. We have
trained our reconstruction models with PyTorch and a NVIDIA
Titan Xp GPU.

4 EXPERIMENTAL RESULTS
4.1 Dataset
We have used Deep Fake Detection dataset [38], that is composed
of 363 high resolution and high quality videos depicting different
activities performed by 28 actors; we have used the raw (compres-
sion rate factor 0) versions of the original sequences (∼ 200GB size).
We have then selected 55 videos of actions in which the actor is
talking while facing the camera as in a setup of a video conference
(i.e. “podium speech" and “talking against wall" scenes) for an over-
all size of ∼ 40 GB and a duration of ∼ 40 minutes. The first 22
identities have been used for training and the last 6 for testing.

4.2 Video quality metrics
Since we are dealing with image compression and restoration tasks,
a reference image is available to perform evaluation. Full-reference
image quality assessment uses a reference version of an image to
compute a similarity. The popular SSIM (Structural SIMilarity) [43]
is a metric of structural similarity that is more consistent than MSE
and PSNR with perceived quality. The SSIM index varies between
-1 and 1, where 1 indicates perfect structural similarity, while 0
indicates no structural similarity. However, it must be noted that, as
reported in [23], many existing image quality algorithms like SSIM
are unreliable on GAN generated content, since images generated
by GANs may appear quite realistic and similar to an original, yet
may match it poorly based on simple pixel comparisons; metrics
based on “naturalness" are more suitable in this case. Nevertheless,
we report results using this metric due to its widespread use.

Differently from SSIM, BRISQUE (Blind/Referenceless Image
Spatial Quality Evaluator) [31] is a no-reference metric, thus it
does not require a reference image to evaluate the quality of the



compressed version. BRISQUE evaluates natural scene statistics
to quantify losses of “naturalness" due to distortions like those
introduced by compression. A smaller BRISQUE score indicates
better perceptual quality. We report results using this metric as a
way to measure the naturalness of an image, that may be associated
in our use case to how natural looks a face and its features.

Finally, we have used the recent LPIPS (Learned Perceptual Im-
age Patch Similarity) [48] metric, a novel full-reference metric that
evaluates the distance between image patches, based on deep fea-
tures; the authors have shown that LPIPS outperforms traditional
metrics like SSIM by a large margin in a two alternative forced
choice (2AFC) test, that asks which of two distorted images is more
similar to a reference. Higher LPIPS score means that two patches
are more different perceptually, a lower score means they are more
similar. We report results using this metric to evaluate the quality
of reconstruction w.r.t. the high quality version of videos using a
metric that is able to capture better distortions as perceived by the
human visual system. Typically LPIPS measures are in contrast with
SSIM, i.e. distortions that look more similar for SSIM are considered
distant in LPIPS.

The SSIM and LPIPS full-reference metrics have been computed
comparing the compressed and reconstructed frames to the frames
obtained from the raw (CRF 0) videos; BRISQUE has been computed
directly on patches of the compressed and reconstructed frames,
since it does not require any comparison. Measures have been
computed considering only patches obtained from automatically
detected faces and from patches over the whole frame.

4.3 Semantic video coding
In the first set of experiments we evaluate the effect of semantic
video coding at varying bitrate and with different percentages of
bitrate allocation to the semantically relevant parts of the frame,
i.e. face parts. The quality of the compressed videos is evaluated on
the patches within the bounding box of the detected faces and over
the whole frame.

Table 1 and Table 2 report quality metrics for videos compressed
with relatively high bitrates of 1000 kb/sec. The value reported
in the first column reports the percentage of the bitrate allocated
to the semantically salient regions, i.e. the mask generated by the
segments of the face; when the value is 0 then no semantic video
coding is used and the standard h.264 coding is used. Tab. 1 values
have been computed on patches of the face, while values of Tab. 2
have been computed over the whole frame. It can be observed
that as the percentage of bitrate allocated to semantically salient
regions increases all the metrics improve when considering the
quality of faces. Considering the whole frame the best LPIPS results
are obtained for a saliency allocation of 15%, and second best for
a value of 25%. Instead, the best BRISQUE and SSIM results are
obtained without using saliency, as the encoder has enough bitrate
available to encode in high quality all the frame and is free to
allocate bandwidth wherever necessary; it must be also considered
that there are many more patches belonging to the background
than to the face and that the background is relatively uniform.

Table 3 and Table 4 report quality metrics for a more challenging
setup, where videos are compressed with relatively low bitrates
of 400 kb/sec, resulting in an overall dimension of a third of the

Table 1: Qualitymetrics for higher bitrate videos (1000Kbps);
metrics computed on face patches only. Best results high-
lighted in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)
0 0,052 32,95 93,45 301.616
10 0,043 29,61 94,15 269.932
15 0,038 27,73 94,59 268.788
25 0,034 25,58 94,91 267.308

Table 2: Qualitymetrics for higher bitrate videos (1000Kbps);
metrics computed on whole frame. Best results highlighted
in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)
0 0,417 60,18 97,37 301.616
10 0,413 62,14 97,22 269.932
15 0,408 63,11 97,05 268.788
25 0,411 63,73 96,71 267.308

previous one. As in the previous tables, we include a version that
does not use semantic coding, i.e. the percentage of bitrate allo-
cated to semantically salient regions is 0. Tab. 3 values have been
computed on patches of the face, while values of Tab. 4 have been
computed over the whole frame. As it can be expected the values
are worst than those obtained for higher bitrates reported in the
two previous tables. Also in this case, using saliency improves im-
age quality computed on the face patches, but it must be noted
that in this more challenging scenario also the BRISQUE metric is
better with saliency when evaluating over the whole frame; only
the older SSIM metric is better without saliency, but only by a very
small value. Overall coding with a 15-25% bitrate assigned to salient
regions provides the best results when coding at lower bitrates.

Table 3: Quality metrics for lower bitrate videos (400Kbps);
metrics computed on face patches only. Best results high-
lighted in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)
0 0,078 38,02 91,32 117.540
10 0,068 35,44 92,24 118.288
15 0,063 33,92 92,62 118.596
25 0,061 32,34 92,73 118.968
35 0,062 31,45 92,58 119.204
45 0,063 30,67 92,46 119.308

4.4 Improving video quality
In this set of experiments we evaluate the quality of the proposed
quality improvement method described in Sect. 3.2, applied both to
videos compressed semantically and without semantic compression.
Similarly to the first set of experiments, visual quality is computed
on the patches within the bounding box of the detected faces and
over the whole frame. In these experiments the dimension of files
is not reported since the proposed approach performs quality im-
provement when decoding frames, so the size of the files is the



Table 4: Quality metrics for lower bitrate videos (400Kbps);
metrics computed on whole frame. Best results highlighted
in bold, second best are underlined.

% sal. BR LPIPS BRISQUE SSIM Dim. (KB)
0 0,411 64,79 96,60 117.540
10 0,412 65,01 96,40 118.288
15 0,410 64,74 96,17 118.596
25 0,409 64,24 95,66 118.968
35 0,416 64,50 95,11 119.204
45 0,421 64,97 94,56 119.308

same of those reported in the previous section. Table 5 reports
quality metrics computed over face patches, while Table 6 results
have been obtained computing them over the whole frame. Quality
improvement has been applied to the low bitrate versions of videos
(400 kb/s), since they are the more challenging and this setup is
more relevant for the video chat domain. The tables report also the
variation w.r.t. the corresponding metrics of Tab. 3 and Tab. 4.

Comparing the values of Tab. 5 with those of Tab. 3, shows
that the proposed approach greatly improves image quality of the
faces; the GAN is able to add realistic face details and the LPIPS
values are now in the same range of those of videos encoded at
1000 kb/s, showing that using our proposed approach is possible to
encode at less than half the bitrate while keeping the same quality.
It is interesting to note that the proposed approach reduces the
difference in LPIPS score between semantic coding and standard
coding: this means that the proposed restoration is effective even
if no semantic coding is used. Similarly to Tab. 3 using a 15-25%
allocation for semantic saliency results in the best performance in
terms of LPIPS full-reference metrics. Considering Tab. 6, the best
values of the more reliable LPIPS metric are obtained on videos
compressed using saliency. Comparing Tab. 6 with Tab. 4, shows
that also in this case metrics are improved, although with a lesser
extent than when considering faces only. It is interesting to note
that BRISQUE metric improves greatly, with a ratio similar to that
of faces only. We explain this due to the fact that the GAN-based
approach adds “natural" details to the background in the image.

As expected, and noted in other works that applied generative
approaches to image quality improvement like [13, 23], the SSIM
metric shows a small decrease in both cases. This is due to the fact
that GANs “hallucinate" details, thus signal-based full-reference
metrics are unable to account for the improvements. As an example
consider a GAN that restores “naturally looking" hairs in positions
that are slightly off-set w.r.t. their actual position in the raw videos:
the SSIM metric would result in a lower value, while a metric like
LPIPS correctly results in an improvement.

Table 7 reports results obtained using the GAN approach that
combines VGG background and VGG-Face foreground loss. Quality
metrics computed over face patches, and comparing them with
those of Tab. 5 we can observe that reference metrics are improved,
with the reliable LPIPS and the older SSIM. Instead BRISQUE, al-
though greatly improving with respect to the compressed video has
a smaller reduction with respect to the other GAN approach. This
can be explained by the fact that this GAN is able to better recover
details that are more similar to the uncompressed frames, thus the

Table 5: Quality metrics for improved versions of lower
bitrate videos (400Kbps); metrics computed on face
patches only. Best results highlighted in bold, second
best are underlined. Changes w.r.t. compressed versions
(Tab. 3) reported in parentheses, +/- stands for improve-
ment/deterioration.

% sal. BR LPIPS BRISQUE SSIM
0 0,047 (+40,00%) 15,44 (+59,38%) 89,04 (-2,49%)
10 0,042 (+38,24%) 13,55 (+61,77%) 89,85 (-2,59%)
15 0,040 (+36,25%) 12,90 (+61,95%) 90,18 (-2,64%)
25 0,041 (+32,79%) 12,12 (+62,51%) 90,23 (-2,70%)
35 0,044 (+29,03%) 11,69 (+62,82%) 90,04 (-2,74%)
45 0,046 (+27,45%) 11,25 (+63,31%) 89,82 (-2,86%)

Table 6: Quality metrics for improved versions of lower bi-
trate videos (400Kbps); metrics computed on whole frame.
Best results highlighted in bold, second best are underlined.
Changes w.r.t. compressed versions (Tab. 4) reported in
parentheses, +/- stands for improvement/deterioration.

% sal. BR LPIPS BRISQUE SSIM
0 0,406 (+1,1%) 24,01 (+62,9%) 95,19 (-1,46%)
10 0,405 (+1,8%) 24,39 (+62,5%) 95,07 (-1,38%)
15 0,408 (+0,4%) 24,79 (+61,7%) 94,93 (-1,29%)
25 0,406 (+0,7%) 24,93 (+61,2%) 94,57 (-1,14%)
35 0,403 (+3,2%) 25,08 (+61,1%) 94,17 (-0,99%)
45 0,410 (+2,6%) 24,53 (62,2%) 93,69 (-0,92%)

Table 7: Quality metrics for improved versions of lower bi-
trate videos (400Kbps), using the loss that combines VGG
background and VGG-Face foreground losses; metrics com-
puted on face patches only. Best results highlighted in bold,
second best are underlined. Changes w.r.t. compressed ver-
sions (Tab. 3) reported in parentheses, +/- stands for improve-
ment/deterioration.

% sal. BR LPIPS BRISQUE SSIM
0 0,046 (+40,69%) 18,31 (+51,83%) 89,23 (-2,28%)
10 0,041 (+39,37%) 16,24 (+54,16%) 90,07 (-2,35%)
15 0,039 (+37,81%) 15,39 (+54,63%) 90,41 (-2,38%)
25 0,040 (+34,20%) 14,45 (+55,33%) 90,47 (-2,43%)
35 0,042 (+31,52%) 13,86 (+55,93%) 90,29 (-2,47%)
45 0,045 (+29,37%) 13,26 (+56,76%) 90,07 (-2,59%)

reference-based score is better, while adding less high frequency
details that make the image appear more “natural" according to
BRISQUE algorithm. Overall, results show that using an allocation
of 15-25% of the bitrate to the salient regions results in the best
performance.

4.4.1 Qualitative examples. All the figures and Fig. 2 are reported
in higher quality in the supplementary materials. Readers are sug-
gested to refer to them in order to better appreciate the differences.

All the figures are frames from videos compressed at 400 kb/s
and compare different versions of the same frame. In Figure 3 the
left image shows a frame compressed using standard h.264; many



details have compression artifacts, such as the eyes and the hairs,
that have lost their finer structure. The bottom lip shows some
ringing artifacts in the mouth, there are blockiness artifacts on the
skin of face and neck. Also the background shows false colors and
bands, e.g. in the upper left part. The middle image shows a frame
compressed using h.264 and saliency, assigning 15% of bitrate to
the parts of the image containing face, hair and neck. In this case
the eyes are more detailed, especially the left one, the skin of the
face has less blocking artifacts and hairs are more detailed. The
right image shows a frame reconstructed from the middle image
using the proposed GAN approach. It can be noticed that mouth is
more detailed, the skin of face and neck is smoother and with even
less blockiness, hairs are more detailed, especially the tip near the
arms; also many artifacts in the background have been eliminated
(e.g. in the upper left part). In Figure 4 the left image shows a frame
compressed using standard h.264; similarly to Fig. 3 finer details
like eyes, eyebrows, facial hair and hair have lost details. The skin
has blockiness artifacts both in the face and arms, and the shirt has
the same issues. The middle image shows a frame compressed using
h.264 and saliency, assigning 15% of bitrate to the parts of the image
containing face, hair and neck. This results in a smoother skin, more
details for eyes and hair. The skin of the arms is still blocky, and the
background has about or even more artifacts than the top image.
The right image shows a frame reconstructed from themiddle image
using the proposed GAN approach. Hair are more detailed, and
also facial hair and eyebrows. The arms have a smoother skin, the

shirt has more details and artifacts in the background have been
reduced. In Figure 5 the left image shows a frame compressed using
standard h.264; many features of the face have been distorted by
compression artifacts, such as the eyes mouth and teeth. Hairs show
blockiness artifacts, wall and dress have posterization effects. The
middle image shows a frame compressed using h.264 and saliency,
assigning 15% of bitrate to the parts of the image containing face,
hair and neck. In this case the eyes and mouth are more detailed,
the skin of the face has less blocking artifacts and hairs are more
detailed. The right image shows a frame reconstructed from the
middle image using the proposed GAN approach. It can be noticed
that cheeks are smoother, hairs have more details, the posterization
of dress and wall has been eliminated.

5 CONCLUSIONS
In this work we have evaluated the improvement in perceptual
video quality that can be obtained by combining two approaches:
semantic video coding by the transmitter and GAN-based compres-
sion artefact removal by the receiver. The method has been applied
to videos that simulate the use case of video chats, coding semanti-
cally salient parts like face and neck with a predefined percentage
of the total bitrate. Experimental results show that each approach,
when applied alone improves objective quality metrics like LPIPS
and BRISQUE that evaluate perceptual quality and naturalness of
images. The experiments show also that the combination of both
approaches results in increased improvements, and the it is possible
to obtain a perceptual quality similar to that obtained using three

Figure 3: Examples of frames compressed with: Left) standard h.264; Mid) h.264 and saliency (15%); Right) saliency and pro-
posed GAN improvement. Details like, eyes, mouth, skin, hair and even tiles in the background are progressively improved.



Figure 4: Examples of frames compressed with: Left) standard h.264; Mid) h.264 and saliency (15%); Right) saliency and pro-
posedGAN improvement. Note howdetails like, eyes,mouth, skin, hair, shirt and background tiles are progressively improved.

Figure 5: Examples of frames compressed with: Left) standard h.264; Mid) h.264 and saliency (15%); Right) saliency and pro-
posed GAN improvement. Note how details like, eyes, mouth, skin, hair, dress and wall are progressively improved.

times the bandwidth. Using a GAN-based approach allows not only
to eliminate compression artefacts but also to recreate plausible
natural details like hair and facial features.
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