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In this paper we deal with the problem of predicting action progress in videos. We argue that this is an
extremely important task since it can be valuable for a wide range of interaction applications. To this end
we introduce a novel approach, named ProgressNet, capable of predicting when an action takes place in a
video, where it is located within the frames, and how far it has progressed during its execution. To provide
a general definition of action progress, we ground our work in the linguistics literature, borrowing terms
and concepts to understand which actions can be the subject of progress estimation. As a result, we define a
categorization of actions and their phases. Motivated by the recent success obtained from the interaction of
Convolutional and Recurrent Neural Networks, our model is based on a combination of the Faster R-CNN
framework, to make frame-wise predictions, and LSTM networks, to estimate action progress through time.
After introducing two evaluation protocols for the task at hand, we demonstrate the capability of our model
to effectively predict action progress on the UCF-101 and J-HMDB datasets.
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1 INTRODUCTION
Humans are not only able to recognize actions and activities, but they can also understand how far
an action has progressed and make important decisions based on this information. From simple
choices, like crossing the street when cars have passed, to more complex activities like intercepting
the ball in a basketball game, an intelligent agent has to recognize and understand how far an
action has advanced at an early stage, based only on what it has seen so far. If an agent has to act
to assist humans, it can not wait for the end of the action to perform the visual processing and act
accordingly (Fig. 1 shows an example sequence for this phenomena). Therefore, the ultimate goal
of action understanding should be the development of an agent equipped with a fully functional
perception action loop, from predicting an action before it happens, to following its progress until
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2 F. Becattini et al.

Fig. 1. The ability to estimate action progress is essential for interaction. In 1977 progress estimation allowed
the boxer Muhammad Ali to dodge 21 punches in 10 seconds: https://youtu.be/nxZ-J7xit5Y. In the movie
“Young Frankenstein” instead, the monster is not able to estimate progress and react accordingly: https:
//goo.gl/muYbCb

it ends. This is supported also by experiments in psychology showing that humans continuously
understand the actions of others in order to plan their goals [11]. Consequently, a model that is able
to forecast action progress would enable new applications in robotics (e.g. human-robot interaction,
realtime goal definition) and autonomous driving (e.g. avoid road accidents).
Broadly speaking, our work falls into the area of predictive vision, an emerging field which is

gaining much interest in the recent years. Several approaches have been proposed to perform
prediction of the near future, be that of a learned representation [29, 55], a video frame [37, 56], or
directly the action that is going to happen [10, 31]. However, we believe that fully solving action
understanding requires not only to predict the future outcome of an action, but also to understand
what has been observed so far in the progress of an action. As a result, in this paper we introduce
the novel task of predicting action progress, i.e. the prediction of how far an action has advanced
during its execution. In other words, considering a partial observation of some human action, in
addition to understanding what action and where it is happening, we want to infer how long this
action has been executed for with respect to its duration. As a simple example of application, let
us consider the use case of a social robot trained to interact with humans. The correct behaviour
to respond to a handshake would be to anticipate, with the right timing, the arm motion, so as to
avoid a socially awkward moment in which the person is left hanging. This kind of task cannot be
solved unless the progress of the action is estimated accurately.

Some closely related problems have been recently addressed by the computer vision community.
First of all, predicting action progress is conceptually different from action recognition and detection
[14, 60, 61, 64], where the focus is on finding where the action occurred in time and space. Action
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Am I done? Predicting action progress in videos 3

completion [18–20, 59, 63, 64] is indeed a related task, where the goal is to predict when an action can
be classified as complete to improve temporal boundaries and the classifier accuracy on incomplete
sequences. However, this is easier than predicting action progress because it does not require to
predict the partial progress of an action. Action progress prediction is an extremely challenging
task since, to be of maximum utility, the prediction should be made online while observing the
video. While a thick crop of literature addresses action detection and spatio-temporal localization
[12, 13, 23, 26, 34, 43, 58, 61, 65], predicting action progress is more closely related to online action
detection [6, 22, 28, 49, 60]. Here the goal is to accurately detect, as soon as possible, when an
action has started and when it has finished, but they do not have a model to estimate the progress.
Some similarities are shared with the task of activity recognition [30, 53] where the goal is to detect
which high-level phase is currently in progress in a long procedure composed by multiple actions.
Differently, action progress focus on such actions which can be made of one or many movements
but can be detected by visual means only. That is harder than activity recognition where the phases
represent states of a process and can also be inferred by using a knowledge base or by the objects
that are in use.

Not every action has a progress to be estimated. For instance, there are actions which are instan-
taneous (such as hitting a ball) or which do not have a clear goal given the available information
(such as walking without a precisely defined destination). Thus, a classification of addressable
actions is needed to successfully model action progress. Unfortunately, such a formal classification
is a still an open research subject, but there is a building evidence in neuroscience that language is
strongly linked to actions and is correlated to similar grammars [3, 41, 52]. As a result, in this work
we take inspiration from the linguistics literature which extensively discuss the topic of actions and
the category of verbs used to refer to them. We propose a unified view of the problem discussing
how progress can be estimated according to the corresponding verb classification.
In summary, in this paper we propose ProgressNet, a model for action progress prediction of

multiple actors using a supervised recurrent neural network fed with convolutional features. The
main contributions of this work are the following:

• We define the new task of action progress prediction, which we believe is a fundamental
problem in developing intelligent planning agents. We take inspiration from linguistics
literature to classify which actions are suitable for the task. We also design and present an
experimental protocol to assess performance.

• Given that actions are often composed of sub action phases, we propose two formal models
of action progress. A simple model which considers actions in their entirety and one which
introduces a sequence of sub phases.

• We present a holistic approach capable of predicting action progress while performing spatio-
temporal action detection. ProgressNet can be naturally fitted into any online action detector
model. To encourage precise prediction of progress, we also contribute a novel Boundary
Observant loss which penalizes prediction errors on temporal boundaries.

2 RELATEDWORK
Human action understanding has been traditionally framed as a classification task [1, 44]. However,
in recent years, several works have emerged aiming at a more precise semantic annotation of
videos, namely action localization, completion and prediction.

Frame level action localization has been tackled extending state-of-the art object detection
approaches [45] to the spatio-temporal domain. A common strategy is to start from object proposals
and then perform object detection over RGB and optical flow features using convolutional neural
networks [14, 43, 46]. Gkioxari et al. generate action proposals by filtering Selective Search boxes

, Vol. 1, No. 1, Article . Publication date: March 2019.



4 F. Becattini et al.

with motion saliency, and fuse motion and temporal decision using an SVM [14]. More recent
approaches, devised end-to-end tunable architectures integrating region proposal networks in their
model [4, 13, 23, 26, 34, 43, 46, 47, 49, 64]. As discussed in [46], most action detection works do not
deal with untrimmed sequences and do not generate action tubes. To overcome this limitation,
Saha et al. [46] propose an energy maximization algorithm to link detections obtained with their
framewise detection pipeline. Another way of exploiting the temporal constraint is to address
action detection in videos as a tracking problem, learning action trackers from data [58]. To allow
online action detection, Singh et al. [49] adapted the Single Shot Multibox Detector [33] to regress
and classify action detection boxes in each frame. Then, tubes are constructed in real time via an
incremental greedy matching algorithm. Considering that actions may have different temporal
scales, in [34], the authors go beyond predetermined temporal scales and propose to use Gaussian
kernels to dynamically optimize them.
Approaches concentrating in providing starting and ending timestamps of actions have been

proposed [8, 12, 21, 32, 40, 47, 61]. Heilbron et al. [21] have recently proposed a very fast approach
to generate temporal action proposals based on sparse dictionary learning. Yeung et al. [61] looked
at the problem of temporal action detection as joint action prediction and iterative boundary
refinement by training a RNN agent with reinforcement learning. In Shou et al. [47] a 3D convolu-
tional neural network is stacked with Convolutional-De-Convolutional filters in order to abstract
semantics and predict actions at the frame-level granularity. They report an improved performance
in action detection frame-by-frame, allowing a more precise localization of temporal boundaries.
More recently, this line of research evolved into the stricter problem of locating an action having
only a video-level label available [8, 32, 40, 64]. Zhao et al. [64] introduced an explicit modelization
of starting, intermediate and ending phases via structured temporal pyramid pooling for action
localization. They show that this assumption helps to infer the completeness of the proposals.
In [32, 40], the action-context separation is explicitly considered. The idea is that parts of the
video where an action has not taken place can be used as context of the instance, modeled with
an end-to-end [32] or probabilistic [40] approach, to better separate the temporal edges. Escorcia
et al. [8] specialize on localizing human actions by considering actor proposals derived from a
detector for human and non-human actors intended for images. They use an actor-based attention
mechanism, which is end-to-end trainable. A distinct line of research considers explicitly the
temporal dimension [23, 26] either using 3D ConvNets on tubes [23] or exploiting multiple frames
to generate a tube [26]. However, all these methods do not understand and predict the progress of
actions, but only the starting and ending points. Differently from them, we explicitly model and
predict action progress during the entire action and not only the starting and ending boundaries.

Orthogonal approaches to ours, that implicitly model action progress cues can be found in action
anticipation [2, 6, 22, 35] and completion [18–20, 51, 59, 63, 64]. The former aims at predicting
actions before they start or as soon as possible after their beginning, the latter instead binarizes
the problem by predicting if an ongoing action is finished or not. Early event detection was first
proposed by Hoai et al. [22]. In [22], a method based on Structured Output SVM is proposed to
perform early detection of video events. To this end, they introduce a score function of class
confidences that has a higher value on partially observed actions. In [28], the same task is tackled
using a very fast deep network. Interestingly, the authors noted that the predictability of an action
can be very different, from instantly to lately predictable. In [35] an LSTM is used to obtain a
temporally increasing confidence to discriminate between similar actions in early stages while
Aliakbarian et al. [2] combine action and context aware features to make predictions when a very
small percentage of the action is observed. In [18] RGB-D data is used to discriminate between
complete and incomplete actions and [51] tries to detect missing sub activities to timely remind them
to the user. More recently, Heidarivincheh et al. [19] presented an LSTM-based architecture which
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Fig. 2. Proposed Architecture. On the left (highlighted in orange), we show the classification and localization
data flows for tube generation. On the right (highlighted in yellow), our ProgressNet. Region (ROI FC6) and
Contextual features (SPP FC6) from the last convolutional map are concatenated and then fed to a Fully
Connected layer (FC7). Two cascaded LSTMs perform action progress prediction.

is able to predict the frame’s relative position of the completion moment by either classification or
regression. This problem was also further addressed by the same authors in a weakly supervised
setting [20].
The growing area of predictive vision [37, 55–57] is also related to action progress prediction.

Given an observed video, the goal is to obtain some kind of prediction of its near future. Vondrick
et al. [55] predict a learned representation and a semantic interpretation, while subsequent works
predict the entire video frame [37, 56]. All these tasks are complementary to predicting action
progress since, instead of analyzing the progress of an action, they focus on predicting the aftermath
of an action based on some preliminary observations. A few recent works have addressed tasks
that are very close to action progress prediction. Neumann and Zisserman [39] framed the problem
of future event prediction by defining a number of representations and loss functions to detect if
and when a specific event will occur. To this end, they attempt to predict and regress the time to
event probability which is highly related to predicting action progress. In [16] a residual action
recognition model is used to estimate the progress of human activities to implicitly learns a temporal
task grammar with respect to which activities can be localized and predicted.
Finally, a few preliminary attempts to estimate activity progress have been presented in the

medical domain [42, 53] aiming at predicting remaining surgery durations or anatomical motions.
Nonetheless, these approaches are limited to predicting which action is in progress while doing
a durative activity made by a sequence of actions, without explicitly predicting how much each
action is completed.

3 ACTION PROGRESS
In addition to categorizing actions (action classification), identifying their boundaries spanning
through the video (action detection) and localizing the area where they are taking place within the
frames (action localization), our goal is to learn to predict the progress of an ongoing action. We
refer to this task as action progress prediction.

Providing a definition of action progress is not trivial. In the following we analyze the problem
thoroughly and propose two definitions to model progression: (i) a linear interpretation which
is versatile and can be applied to any sequence annotated for action detection; (ii) a phase-based
interpretation where actions are precisely split into sub-events and manually annotated to obtain a
richer representation that captures non-linear dynamics.

In order to obtain a clear and well reasoned taxonomy of actions and a comprehensive representa-
tion of action progress, we borrow a few concepts from verb and action classifications in linguistics.
These classifications are helpful to understand for which actions progress may be defined and thus
to derive appropriate models. According to [54], verbs can be classified into four categories: those
that express activity, accomplishment, achievement and state. For our goal, we are not interested
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Punctual Durative
Telic Achievement (to release) Accomplishment (to drown)
Atelic Semelfactive (to knock) Activity (to walk)

Changeless - State (to know)
Table 1. Comrie’s categories of verbs. [5]

in stative verbs, which are used to describe the truth of a certain property (e.g. "someone knows
something" describes the state of knowledge and "to know" is considered a stative verb) and we are
instead interested in the remaining categories since they all describe actions. About actions, in [5]
a distinction is made between punctual and durative actions and whether actions have a defined
goal or not (referred to as telic and atelic, respectively) (see Tab. 1). A logic test to identify telic
from atelic actions is the following: SUBJECT was VERB-ing until something happened and he/she
stopped VERB-ing. Did he/she VERB?

Example:
• Mark was walking until Bill made him fall. Did Mark walk? Yes → Atelic
• Susan was shooting a basketball until Anne made her fall. Did Susan shoot the ball? No→
Telic

Progress can be defined clearly when the action implies a change of state on the actor. Therefore,
durative telic actions are the most appropriate for our task, since they have a duration in time and
a goal that clearly implies a change of state. Punctual actions, being telic or atelic, do not progress
since they do not have a clear time extent i.e. they happen instantaneously.
Durative actions can possibly be decomposed in phases. Phases might have a different classifi-

cation from the whole action. There are certain activities that are atelic if looked as a whole but
can be decomposed in telic phases. Walking for instance can be reformulated as a sequence of
movements of legs and feet: rise right foot, move leg, land right foot, rise left foot and so on. All
these sub actions are telic-durative while the whole action of walking is atelic-durative. Similarly,
telic actions might contain phases with an atelic nature. For instance, the execution of the telic
action Pole Vault always has the same structure, made of telic and atelic phases: running (atelic -
durative), sticking the pole in the ground (telic - punctual), jumping over the bar (telic - durative),
touching ground (telic - punctual), standing up (telic - durative).

For the scope of our research there are two main problems that make it hard to develop a model
of action progress. The first is the intrinsic difficulty of annotating temporal boundaries, for any
type of action [48]. The second is the difficulty of splitting durative actions into phases, collecting
prior information regarding their structure or subparts. From a computer vision point of view is
hard to correctly annotate every single step of a walking action and it can be considered even
harder to train a classifier to effectively recognize all single short spanned events of such kind.
Based on these considerations we have developed two distinct models of progression that are

suited for distinct cases: (i) a linear interpretation that applies to actions regarded as a whole;
(ii) a phase-based interpretation where actions are precisely split into sub-events and manually
annotated to obtain a richer representation that captures non-linear dynamics. Both interpretations
are built upon the concept of action tube [14, 46], i.e. a sequence of bounding boxes spanning from
a starting frame fS to an ending frame fE and enclosing the subject performing the action. It is
important to tie the definition of progress with a specific action tube, rather than a full sequence,
since there might be more than an agent performing an action in the same frame with different
progress ratios. We predict the progress values online, frame-by-frame, by only observing the past
frames of the tubes from tS to the current frame ti .
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Fig. 3. Linear progress vs. Phase-based progress. Each rectangle represents a frame in an action tube. Different
colors correspond to different phases. Blue rectangles represent punctual phases, which act as boundaries for
durative phases. In the phase-based definition, progress is defined in order to align phase boundaries across
different executions of the same action.

3.1 Linear progress
We provide a first definition of action progress with a linear interpretation. Given a frame fi
belonging to an action tube in [tS , tE], action progress can be interpreted as the fraction of the
action that has already passed. Therefore, for each box in a tube at time ti , we define the target
action progress as:

pi =
ti − tS
tE − tS

∈ [0, 1], (1)

This definition is versatile and can be applied to any sequence annotated for action detection.
A similar linear modeling of action evolution has been previously used in action anticipation [2]
and in action synchronization [7] with encouraging results. Although simple, a key advantage of
this definition is that it does not require to define any prior information regarding the structure
or subparts of an action, making it applicable to a large set of actions. As a result, we can learn
predictive models from any dataset containing spatio-temporal boundary annotations. This means
that the task of action progress in its linear interpretation does not require to collect additional
annotations for existing datasets, since the action progress values can be directly inferred from the
temporal annotations. This is a major strength, also considering the intrinsic difficulty of annotating
action temporal boundaries [48]. While this model is best suited for durative telic actions, in the
experimental section we show that it is also reasonable in many cases, including durative atelic
actions.

3.2 Phase-based progress
Despite the simplicity and effectiveness of adopting a linear interpretation of progress, certain
actions may indeed exhibit dilations or contractions in the execution rate, yielding to a nonlinear
progression. This behavior is observable when the action can be broken down into a sequence of
sub-phases that defines its structure.
Additionally, in certain cases the structure is clear and sequential while in other cases it is not.

Usually telic actions exhibit this structure. On the other hand, atelic actions, such as Dancing, may
be defined by a random sequence of moves with no identifiable structure, which can even follow
cyclic or erratic patterns.
The phase-based progress formulation provides a better definition of action progress. In this

approach, we first split a durative action into phases, manually annotating their temporal boundaries.
We note that each phase, let it be telic or atelic, is always delimited by a punctual action that denotes
a transition from one phase to another. Therefore we represent durative actions as a sequence of
telic or atelic phases, separated by punctual actions. An important advantage of exploiting punctual
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8 F. Becattini et al.

actions is that they are unambiguous and easy to annotate, since they define a precise instant in
time in the development of the action (a single frame) and there is no need to specify their telicity
or atelicity. This yields also to a a precise annotation of durative phases since punctual ones act as
temporal boundaries.

After identifying phases, we need to assign a progress value to each frame in an action tube. We
base our phase-based progress formulation on the fact that each instance of a punctual phase should
have the same progress value. Since punctual phases act as boundaries for durative actions, which
might exhibit high variability in duration and execution speed, this makes the overall resulting
progress non linear.

To establish appropriate ground truth progress values, we first build a prototype action for each
class, where the length of each durative phase is averaged across all instances in the training set. A
generic instance of an action can be interpreted as a deformation of the prototype, where durative
phases are compressed or dilated (i.e. slowed down or accelerated) with respect to their expected
duration. According to this, we label the action prototype with the linear interpretation of progress
(Eq. 1), thus defining ground truth progress for punctual phases, since these are shared across
instances. Once punctual phases have been labeled, we can label durative phases knowing that their
values must span over a well defined interval [pS ,pE ] given by the progress of the two punctual
boundaries.
To assign a progress value pi to frames belonging to durative phases, we adopt the following

criteria, depending if the phase is telic or atelic:
• pi =

i
Ni
+ pS for telic phases

• pi =
(pS+pE )

2 for atelic phases
where i is the index of the frame within the current phase, Ni the prototype duration of the

current phase. This corresponds to a linear progress for telic phases, which are usually executed
uniformly since they represent events with a simple structure (rising hands, a jump, a kick of a ball).
On the other hand, atelic phases can exhibit more complex behaviors with lack of structure. Since
it is hard to establish a clear progression of states in atelic phases, we simply assign the expectation
of progress inside the interval, based on the value of its boundaries.

It has to be noted that whereas the progress of prototype phases is defined linearly, the resulting
progress values for real action tubes are in fact non linear (piecewise linear). Aligning the progress
of each action tube in order to have the same value in correspondence of punctual phases is a form
of action synchronization, where the execution rate of each phase is normalized in order to have
the same speed. Executions of an action with a slow phase will therefore exhibit a slower growth
of progress compared to other executions where the same phase happens quickly.

This definition of progress is more expressive than the linear interpretation, allowing us to model
more complex dynamics. To better understand the advantage of adopting the phase-based progress,
in Fig. 3 a comparison is shown between the two types of annotations. When there is variability
in the execution of a phase, progress values in the linear interpretation may become unaligned,
yielding to an imprecise representation.
At the same time, the phase-based progress requires a demanding annotation process, since

each action has to be divided into phases and all the boundaries need to be manually annotated. In
Section 5.1 the annotation procedure for the UCF-101 dataset is detailed. The collected annotations
will be released upon publication.

4 PROGRESSNET
The whole architecture of our method is shown in Fig. 2, highlighting the first branch dedicated to
action classification and localization, and the second branch which predicts action progress. We
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Am I done? Predicting action progress in videos 9

believe that sequence modelling can have a huge impact on solving the task at hand, since time is a
signal that carries a highly informative content. Therefore, we treat videos as ordered sequences
and propose a temporal model that encodes the action progress with a Recurrent Neural Network.
In particular we use a model with two stacked Long Short-Term Memory layers (LSTM), with 64
and 32 hidden units respectively, plus a final fully connected layer with a sigmoid activation to
predict action progress. Since actions can be also seen as transformations on the environment
[57], we feed the LSTMs with a feature representing regions and their context. We concatenate
a contextual feature, computed by spatial pyramid pooling (SPP) of the whole frame [17], with a
region feature extracted with ROI Pooling [45]. The two representations are blended with a fully
connected layer (FC7). The usage of a SPP layer allows us to encode contextual information for
arbitrarily-sized images. We named this model ProgressNet.

Our model emits a prediction pi ∈ [0, 1] at each time step i in an online fashion, with the LSTMs
attention windows that keep track of the whole past history, i.e. from the beginning of the tube of
interest until the current time step. We rely on an action detector [46] to obtain scored boxes at
each frame. Such frame-wise action detectors are derived from object detector frameworks and
fine-tuned on action bounding boxes. Features are extracted from the last convolutional feature
map of such models by re-projecting each linked box onto it through ROI Pooling. Each tube is
evaluated online independently in parallel.

We use ReLU non linearities after every fully connected layer, and dropout to moderate overfitting.
Our approach is online and does not require complete tubes to perform predictions at test time.
The only requirement of ProgressNet is to obtain a sequence of linked bounding boxes forming the
tube. Both online and offline solutions to this problem have been proposed [46, 49]. It has also to
be noticed that ProgressNet adds a computational footprint of about 1ms per frame on a TITAN XP
Pascal GPU, making it feasible to work in real time.

4.1 Learning
We initialize the spatio-temporal localization branch of our network, highlighted in orange in Fig. 2,
using a pre-trained action detector such as [46, 49] while the remaining layers are learned from
scratch. To train our ProgressNet we use ground truth action tubes as training samples.
To avoid overfitting the network, we apply the two following augmentation strategies. First,

for every tube we randomly pick a starting point and a duration, so as to generate a shorter or
equal tube (keeping the same ground truth progress values in the chosen interval). For instance,
if the picked starting point is at the middle of the video and the duration is half the video length,
the corresponding ground truth progress targets would be the values in the interval [0.5, 1.0].
This also forces the model to not assume 0 as starting progress value. Second, for every tube we
generate a subsampled version, reducing the frame rate by a random factor uniformly distributed in
[1, 10]. This second strategy helps in generalizing with respect to the speed of execution of different
instances of the same action class.
To encourage the network to be more precise on temporal boundaries of durative phases, we

introduce a Boundary Observant (BO) loss. The idea is that phase boundaries (i.e. the punctual
actions) do not have ambiguity and less error should be allowed on them. On the contrary, interme-
diate parts are less certain and a higher error can be tolerated. We present our BO loss in a general
form, considering actions composed by multiple phases. The linear interpretation is a simpler case
of phase-based progress with a single durative phase, delimited by the start and the end of the
whole action.

Given a prediction p̂i and a target value pi , for each phase k of an action spanning across
an interval [lk ,uk ], we define a potential ek (pi , p̂i ) with unitary cost for predictions that exceed
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Fig. 4. Comparison between the L2 (left) and the Boundary Observant (right) loss functions. Predicted values
and ground truth targets are on the two axes. It can be seen that the Boundary Observant loss is stricter
against errors on the action boundaries. The Boundary Observant loss depends on the structure of each
action, penalizing errors close phase boundaries. Examples for a few action classes are shown.

the boundaries, decreasing it towards zero as the target gets closer to the center of the interval
mk = (lk + uk )/2:

ek (pi , p̂i ) = min

[
1,
(
pi −mk

rk
√
2

)2
+

(
p̂i −mk

rk
√
2

)2]
(2)

The potential is derived from the circle equation (x − xc )2 + (y − yc )2 = r 2 of center (xc ,yc ) and
radius r . Since we want ek = 1 on the boundaries, we scale the circle to be circumscribed to the
square of side uk − lk , i.e. the circle with radius rk

√
2 centered inmk where rk = (uk − lk )/2.

The potentials are computed for each phase and pooled together by a minimum operator. The
Boundary Observant loss is then obtained by weighing the error with an L1 loss and averaging
across samples:

LBO =
1
N

N∑
i

min
k

{ek }
��pi − p̂i

�� (3)

Compared to the L2 loss for regression, the BO loss penalizes errors on the boundaries more
than in intermediate parts, since we want to precisely identify when the phase starts and ends. At
the same time, it avoids the trivial solution of always predicting the intermediate value p̂ = 0.5.
Fig. 4 shows the difference between the two loss functions, where predicted values are on the x
axis and targets on the y axis. Whereas the L2 loss function is always the same, BO adapts to the
structure of the action and its phases. Note from the definition of progress that only values in [0, 1]
can be expected.
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Action Punctual Durative Punctual Durative Punctual Durative Punctual Durative Punctual Durative Punctual
Basketball Start Rising ball Shoot ball Lowering hands End
BasketballDunk Start Jumping Dunk Landing End
Biking Start Cycling End
CliffDiving Start Waiting Start jump Diving Land in water Swimming End
CricketBowling Start Running Start charge Charging shot Shoot ball Stop running End
Diving Start Approaching Start jump Jumping Dive Somersaulting Stretch body Falling Land in water Swimming End
Fencing Start Fencing End
FloorGymnastics Start Standing Start running Running Jump Somersaulting Land Rising arms Arms up Standing End
GolfSwing Start Standing Start charge Charging Max charge Shooting Hit ball Rising club Top elevation Waiting End
HorseRiding Start Riding End
IceDancing Start Dancing End
LongJump Start Running Jump Jumping Land Standing up End
PoleVault Start Running Pole down Jumping Over bar Falling End jump Standing up End
RopeClimbing Start Climbing End
SalsaSpin Start Dancing End
SkateBoarding Start Skateboarding End
Skiing Start Skiing End
Skijet Start Skijet End
SoccerJuggling Start Juggling End
Surfing Start Surfing End
TennisSwing Start Opening Open Hitting ball Hit ball Closing Closed Moving End
TrampolineJumping Start Jumping End
VolleyballSpiking Start Running Start jump Jumping Hit ball Landing Land Moving End
WalkingWithDog Start Walking End

Table 2. Action phases annotated for the UCF-101 dataset. Punctual phases are denoted in blue, telic in green
and atelic in orange.

We initialize all layers of ProgressNet with the Xavier [15] method and employ the Adam [27]
optimizer with a learning rate of 10−4. We use dropout with a probability of 0.5 on the fully
connected layers.

5 EXPERIMENTAL SETTING
In this section we discuss the experimental setting to evaluate action progress prediction for spatio-
temporal tubes and propose two evaluation protocols. We introduce some simple baselines and
show the benefits of our approach.
We experiment on the J-HMDB [25] and UCF-101 [50] datasets. J-HMDB consists of 21 action

classes and 928 videos, annotated with body joints from which spatial boxes can be inferred. All
the videos are temporally trimmed and contain only one action. Since clips are all very short, all
actions can be considered to be telic. We use this dataset to benchmark action progress prediction
with a linear interpretation. UCF-101 contains 24 classes annotated for spatio-temporal action
localization. It is a more challenging dataset because actions are temporally untrimmed and there
can be more than one action of the same class per video. Moreover, it contains video sequences
with large variation in appearance, scale and illumination. We use this dataset to predict action
progress both with the linear and the phase-based interpretations of progress, which required to
manually identify and annotate all sub-phases of the actions in the dataset. Section 5.1 details the
annotation process and which phases have been used. We adopt the same split of UCF-101 used
in [43, 46, 58, 62].
Note that larger datasets such as THUMOS [24] and ActivityNet [9] do not provide bounding

box annotations, and therefore can not be used in our setting.

5.1 Phase annotation
We annotated phases for all actions in the UCF-101 dataset [50]. Punctual events are manually
identified and used as boundaries for durative phases. We specify whether a durative phase is telic
or atelic to assign the proper progress values as defined in Section 3.2.
We observe that the original annotations have imprecise temporal boundaries for our task.

For instance, there is a different amount of waiting before a golf swing or a dive. We believe
that such durative atelic phases are tied to the known difficulties [38] in clearly identifying the
temporal boundaries of an action where Pre-actional phases may be present. Hence, by annotating
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Fig. 5. Mean Squared Error obtained by three formulations of our model (ProgressNet Static, ProgressNet L2
and ProgressNet) on the J-HMDB dataset. Random and constant 0.5 predictions are reported as reference.

punctual events, the annotator has unambiguous instructions about which frame to annotate and
the uncertainty is reduced. We split every action in the dataset as in Table 2. To easily identify
phases and facilitate the annotation process, we use verbs in their -ing form to denote durative
phases and in the infinitive form for punctual ones.
The annotators were asked to identify punctual actions (i.e. select the corresponding frame)

for each action tube, starting from the original spatio-temporal annotations1. Durative phases are
automatically labeled since they are defined by two punctual boundaries. We have identified a total
of 27,120 phases, 15,789 of which are punctual and 11,331 durative.

5.2 Metrics
In order to evaluate the task of action progress prediction, we introduce two evaluation metrics.

Framewise Mean Squared Error. This metric tells how well the model behaves at predicting action
progress when the spatio-temporal coordinates of the actions are known. Test data is evaluated
frame by frame by taking the predictions p̂i on the ground truth boxes Bi and comparing them with
action progress targets pi . We compute mean squared error MSE = | |p̂i − pi | |2 across each class.
Being computed on ground truth boxes, this metric assumes perfect detections and thus disregards
the action detection task, only evaluating how well progress prediction works.

Average Progress Precision. Average Progress Precision (APP) is identical to framewise Average
Precision (Frame-AP) [14] with the difference that true positives must have a progress that lays
within a margin from the ground truth target. Frame-AP measures the area under the precision-
recall curve for the detections in each frame. A detection is considered a hit if its Intersection over
Union (IoU) with the ground truth is bigger than a threshold τ and the class label is correct. In our
case, we fix τ = 0.5 and evaluate the results at different progress marginsm in [0, 1]. A predicted
bounding box B̂i is matched with a ground truth box Bi and considered a true positive when Bi
has not been already matched and the following conditions are met:

IoU (B̂i ,Bi ) ≥ τ , |p̂i − pi | ≤ m (4)

where p̂i is the predicted progress, pi is the ground truth progress andm is the progress margin.
We compute Average Progress Precision for each class and report a mean (mAPP) value for a set of
m values.

5.3 Implementation Details
In practice, we observed that on some classes of the UCF-101 dataset it is hard to learn accurate
progress prediction models. These are action classes like Biking or WalkingWithDog that are
1We used the revised annotations available at https://github.com/gurkirt/corrected-UCF101-Annots
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Fig. 6. t-SNE visualizations of ProgressNet’s hidden states of the second LSTM layer on the J-HMDB test set.
Each point corresponds to a frame colored with its ground truth progress, quantized with a 0.1 granularity.
On the left, the states of 4 classes are shown separately, while in the right all the test frames are shown
together.

completely atelic and even for a human observer is hard to guess how far the action has progressed.
Therefore we extended our framework by adopting a curriculum learning strategy. First, the model
is trained as described in Sect. 4.1 on classes that have at least a telic phase2. Then, we fix all
convolutional, FC and LSTM layers and fine-tune the FC8 layer that is used to perform progress
prediction from the last LSTM output on the whole UCF-101 dataset. This strategy improves the
convergence of the model.

6 EXPERIMENTS
In this section we report the experimental results on the task of predicting action progress. We first
present an analysis of ProgressNet using a linear progress formulation and then using phase-based
progress. Since ProgressNet is a multitask approach, we start by measuring progress estimation
on perfectly localized actions, i.e. discarding possible action localization errors. In addition we
perform several ablation studies, underlining the importance of the Boundary Observant loss and
the behavior of our method on partially observed action tubes. We then test the method on real
detected tubes with the full model and finally report a qualitative analysis which shows some
success and failure cases.

6.1 Linear Progress
Action progress on correctly localized actions. In this first experiment we evaluate the ability

of our method to predict action progress on correctly localized actions in both time and space. We
take the ground truth tubes of actions on the test set and compare the MSE of three variants of our
method: the full architecture trained with our Boundary Observant loss (ProgressNet), the same
model trained with L2 loss (ProgressNet L2) and a reduced memoryless variant (ProgressNet Static).

The comparison of our full model against ProgressNet L2 is useful to understand the contribution
of the Boundary Observant loss with respect to a simpler L2 loss. To underline the importance

2This subset consists of the following classes: Basketball, BasketballDunk,CliffDiving,CricketBowling,Diving, FloorGymnastics,
GolfSwing, LongJump, PoleVault, TennisSwing, VolleyballSpiking.
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J-HMDB UCF-101
Random 0.166 0.166
0.5 0.084 0.083
ProgressNet Static 0.079 0.104
ProgressNet L2 0.032 0.052
ProgressNet 0.026 0.049

Table 3. Mean Square Error values for action progress prediction on the UCF-101 and J-HMDB datasets.
Results are averaged among all classes.

0.0:0.1 0.1:0.2 0.2:0.3 0.3:0.4 0.4:0.5 0.5:0.6 0.6:0.7 0.7:0.8 0.8:0.9 0.9:1.0
0
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0.2
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Random 0.5 ProgressNet Static ProgressNet L2 ProgressNet BO

Fig. 7. MSE breakdown grouped by progress intervals for the J-HMDB dataset. Similar results are obtained
with UCF-101.

of using recurrent networks in action progress prediction, in the variant ProgressNet Static we
substitute the two LSTMs with two fully connected layers that predict progress framewise.
In Tab. 3 we report the MSE results for a linear progress on both the J-HMDB and UCF-101

datasets. In addition to the variants of our models, we provide two baselines: random prediction
and constant prediction. The random prediction provides us with a higher bound on the MSE
values. For the constant prediction, we always predict the progress expectation p̂ = 0.5 for every
frame, which is a trivial solution that obtains good MSE results. Both are clearly far from being
informative for the task.
We first observe that the MSE values are consistent among the two datasets, with ProgressNet

models ahead of the other methods. ProgressNet and ProgressNet L2 obtain a much lower error than
ProgressNet Static and the baselines. This confirms the ability of our model to understand action
progress. In particular, the best result is obtained with ProgressNet, proving that our Boundary
Observant loss plays an important role in training the network effectively. ProgressNet Static has
an inferior MSE than the variants with memory, suggesting that single frames for some classes can
be ambiguous and a temporal context can help to accurately predict action progress. In particular,
observing the class breakdown for J-HMDB in Fig. 5, we note that the static model gives better
MSE values for some actions such as Swing Baseball and Stand. This is due to the fact that such
actions have clearly identifiable states, which help to recognize the development of the action. On
the other hand, classes such as Clap and Shoot Gun are hardly addressed with models without
memory because they exhibit only few key poses that can reliably establish the progress.
In Fig. 6 we show t-SNE [36] embeddings of the hidden states of the second LSTM layer. Each

point is a frame of the test set of J-HMDB and is colored according to its true action progress. We
report both the embeddings for the whole test set and for 4 classes separately. In all figures we note
that progress increases radially along trajectories from points labeled with 0.1. This suggests that
ProgressNet has learned directions in the hidden state space that follow action progress.
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Error at different progress points. To understand when our model is more prone to errors,
with respect to the action progression, in Fig. 7 we show a breakdown of the error by dividing the
MSE obtained in the previous experiment according to the ground truth progress. It can be seen
how action progress is harder at the boundaries and how our Boundary Observant loss helps in
mitigating this difficulty.

Expected length and partially observed tubes. Despite the simple progress model, our ap-
proach is not just predicting incrementing linear values over an expected tube length. To show that
we are able to understand the action progress even on truncated or generally incomplete tubes, we
test an additional baseline where progress is estimated as the ratio between the frame ID in the
tube and the expected length of the predicted class (estimated on the training videos).

This baseline obtains on UCF-101 an MSE of 0.112, which is only lower than Random (0.166) and
is largely outperformed by our method. Moreover we show how it suffers on partially observed
tubes. In Fig. 8 we report MSE values for ProgressNet and the expected length baseline varying
the observation window of the tubes. ProgressNet largely outperforms the baseline except when
observing a small portion of the tube at the beginning of the action.

Fig. 8. MSE on partially observed tubes of UCF-101. Each block depicts an experimental setting with a
different tube fraction, picking the beginning and the end in [0, 0.25, 0.5, 0.75, 1.0]. The first value is the MSE
of ProgressNet (PNet) while the second one of the expected length baseline (EL). ProgressNet wins in 8 out of
10 cases.

Action progress with the full pipeline. In this experiment, we evaluate the performance of
action progress while also performing the spatio-temporal action detection with the entire pipeline.
Differently from the previous experiment, we test the full approach where action tubes are generated
by the detector. In Fig. 9, we report the mAPP of ProgressNet (trained with BO loss), ProgressNet
Static and the two baselines Random and 0.5 on both the UCF-101 and J-HMDB benchmarks. Note
that the mAPP upper bound is given by standard mean Frame-AP [14], which is equal to mAPP
with marginm = 1. In the p̂ = 0.5 baseline, this upper bound is reached withm = 0.5.

It can be seen that ProgressNet has mAPP higher than the baselines for stricter progress margin.
This confirms that our approach is able to predict action progress correctly even when tubes are
noisy such as those generated by a detector. ProgressNet Static exhibits a lower performance than
ProgressNet, confirming again that the memory is helpful to model action progress.

Architecture of the Network. We trained ProgressNet with just the first LSTM layer and report
an increase of MSE to 0.081 on the UCF-101 dataset. This performs on par with the 0.5 baseline
(0.083) and providing good results only on actions with simple dynamics (i.e. Diving, GolfSwing).
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Fig. 9. mAPP on the UCF-101 and J-HMDB datasets.

All Telic Atelic
ProgressNet Static 0.142 0.197 0.132
ProgressNet L2 0.024 0.045 0.008
ProgressNet 0.021 0.037 0.010

Table 4. Mean Squared Error values on UCF-101 with phase-based progress. Results are shown averaged over
all classes as well as considering only telic actions or atelic actions.

6.2 Phase-based progress
We trained ProgressNet also using phase-based annotations on UCF-101. Labeling actions with a
phase based progress, allows us to provide a better characterization of the evolution of the action.

Action progress on correctly localized actions. In Tab. 4 we report the MSE obtained by the
three variants of our method. Again, ProgressNet Static obtains a much higher error than the
versions equipped with LSTMs and using the Boundary Observant loss slightly improves the
capability of the network over an L2 loss. Interestingly, the biggest gain is observed on telic actions
(i.e. actions with at least a telic phase), whereas atelic action do not seem to be affected by the
BO loss. This is due to the fact that purely atelic actions do not have well defined boundaries. In
fact in the case of UCF-101 the boundaries of atelic actions often correspond with starting and
ending frames of the videos. To better underline the importance of the Boundary Observant loss
for telic actions, a class-wise comparison of ProgressNet with L2 and BO losses is shown in Fig. 10.
It can be seen that most actions improve considerably when the model is forced to perform well on
boundaries.

Since the Boundary Observant loss forces training to penalize errors more on phase boundaries,
we investigate the behavior of the model on punctual phases. Since such phases are always de-
fined within a single frame, we measure the average number of frames ∆f between the frame fk
representing the punctual phase and the frame with the closest predicted progress p̂:

∆f =
1
K

K∑
k=1

| fk − argmin
i
(pk − p̂i )| (5)

This metric highlights the temporal offset between the punctual phase and when its progress is
estimated by the model. Also in this case, as can be observed in Fig. 11, a comparison with the L2

, Vol. 1, No. 1, Article . Publication date: March 2019.



Am I done? Predicting action progress in videos 17

Basketball
 BasketballDunk

CliffDiving
 CricketBowling

Diving
 FloorGymnastics

GolfSwing
 LongJump

PoleVault
 TennisSwing

VolleyballSpiking
0

0.01

0.02

0.03

0.04

0.05

0.06
ProgressNet L2 ProgressNet BO

Fig. 10. MSE values with phase-based progress for telic actions, comparing ProgressNet trained with the L2
and BO losses.
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Fig. 11. Temporal offset between real and predicted progress for punctual phases, measured in number of
frames.

loss highlights the importance of the Boundary Observant loss. The model largely benefits from
the usage of the loss, with the temporal lag of the predictions ∆f being reduced to under a second
(25 frames) in almost all cases.

Action progress with the full pipeline. When testing ProgressNet with the full pipeline, i.e.
evaluating also how well the localization branch performs in conjunction with progress estimation,
we can see that predictions are closer to the ground truth compared to the same model trained with
the linear progress formulation. This hints to the fact that phase-based progress reduces annotation
ambiguity and therefore aids the optimization of the model. This trend can be observed in Fig.
12, where the mAPP for ProgressNet and ProgressNet Static, along with the Random baseline, is
reported varying the margin threshold. Interestingly, even the static version of the model is able to
perform better than its counterpart with linear progress labels (see Fig. 9), suggesting once again
that the model is able to better understand the visual cues that are part of the development of the
action.

6.3 Qualitative analysis
We inspect the results of ProgressNet trained with linear annotations and with phase-based anno-
tations. Fig. 13 shows some qualitative results with the two models on the UCF-101 dataset. It is
interesting to notice how in some of the examples with the linear model, the predicted progress
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Fig. 12. mAPP on the UCF-101 using phase-based annotations.

does not have a decise linear trend. Instead, it appears to follow the visual appearance of the action,
changing its trend when there is a change in the semantics of the action. It appears that the model
trained with the linear model has discovered to some extent the states that are made explicit with
the phase-based annotations. For instance, the running phases in the first (LongJump) and third
row (PoleVaults) clearly exhibit a different trend compared to the final parts of the actions, where
the predictions increase more steadily towards completion. This behavior becomes evident when
action phases are taken into account by the model. It can be seen that in the three examples the
predicted progress curves change their slope when entering into a different phase.

7 CONCLUSION
In this paper we introduced ProgressNet, a model that can predict spatio-temporal localization of
actions and at the same time understand their evolution by predicting progress online. We proposed
two interpretations on progress: first, a linear one which has the advantage of being simple and
applicable to any action detection dataset without any manual annotation; second, a phase-based
interpretation which is more complex and requires a detailed manual annotation but at the same
time provides a much richer and precise description of the ongoing action. To offer an appropriate
study of action progress, we grounded our findings in the linguistics literature and terminology
to characterize actions. In addition to our model, we proposed a Boundary Observant loss which
helps to avoid trivial solutions by taking into account punctual phases that are present in the
execution of the action. Experiments on two datasets showed that the proposed model is able to
obtain promising performance.
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