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Local Pyramidal Descriptors for Image
Recognition
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Abstract—In this paper, we present a novel method to improve the flexibility of
descriptor matching for image recognition by using local multiresolution pyramids
in feature space. We propose that image patches be represented at multiple
levels of descriptor detail and that these levels be defined in terms of local spatial
pooling resolution. Preserving multiple levels of detail in local descriptors is a way
of hedging one’s bets on which levels will most relevant for matching during
learning and recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and
show that its use in four state-of-the-art image recognition pipelines improves
accuracy and yields state-of-the-art results. Our technique is applicable
independently of spatial pyramid matching and we show that spatial pyramids can
be combined with local pyramids to obtain further improvement. We achieve
state-of-the-art results on Caltech-101 (80.1%) and Caltech-256 (52.6%) when
compared to other approaches based on SIFT features over intensity images.
Our technique is efficient and is extremely easy to integrate into image
recognition pipelines.

Index Terms—Object categorization, local features, kernel methods

1 INTRODUCTION

OBJECT class recognition in images has been steadily gaining
importance in the computer vision research community. Among
the many image representation strategies, models based on local
features that capture the most distinctive and dominant structures
in the image have been widely used and demonstrate excellent
performance. Feature-based representations of images typically
consist of a set of local features extracted from patches around
salient interest points or over regular grids [1], [2]. The Bag-of-
Words (BOW) pipeline and its variants appeal to the analogy
of text representation and retrieval [1] through use of frequency
statistics of visual word occurrence as an image descriptor. Visual
words are usually determined using k-means clustering on a sam-
ple of local features. Once local image features are mapped to
dictionary words, a pooling stage accumulates local visual word
frequency statistics into a global, histogram-based representation
of the image suitable for recognition with classifiers such as
support vector machines. A plethora of techniques have been pro-
posed to improve the spatial pooling, feature quantization, and
kernel classification stages of the BOW pipeline.

In this paper we propose a strategy for building local feature
descriptors that capture local information at multiple levels of
resolution. Our key idea, illustrated in Fig. 1 for SIFT features,
is to define a local feature that, instead of being composed of a
single resolution descriptor, is a multi-resolution set of descrip-
tors. This allows us to capture the appearance of a local patch at
multiple levels of detail and to maintain distinctiveness, all while
preserving invariance at each level of resolution. Our approach
can be applied to any descriptor that can be naturally structured
as a multi-resolution set. Local image descriptors are typically
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computed through a common pipeline starting from raw image
patches and applying a sequence of transformations that ends
in a local spatial pooling of image measurements [3]. The spa-
tial pooling stage is parameterized by the number, location and
size of pooling regions. We can pyramidize any descriptor with
such a stage simply by varying the size and density of pool-
ing regions. Apart from SIFT [4], descriptors that incorporate a
spatial pooling stage are HOG [5], GLOH [6], DAISY-like descrip-
tors [3] and SIFT-like color descriptors [7], among others. Our
approach is complementary to both spatial pyramids and multi-
scale local descriptor sampling. We demonstrate how our local
pyramidal descriptors improve image classification results for the
standard BOW approach, as well as for three successful and
more recent encoding techniques: the Efficient Match Kernel [8],
Locality-constrained Linear Coding [9] and Fisher vector models
of image classification [10].

In the next section we review work from the literature related to
our approach and in Section 3 we define a multiresolution pyra-
midal SIFT descriptor (the P-SIFT descriptor) which we use in
our general image categorization framework based on the Sum
Match Kernel. This framework is used in Section 4 where we show
how to incorporate pyramidal features into four state-of-the-art
image recognition pipelines that can be thought of as approxima-
tions of the Sum Match Kernel approach. We show that each of
these models lends itself well to incorporation of multiresolution
descriptors and in Section 5 that use of P-SIFT descriptors results
in state-of-the-art performance on the Caltech-101 and Caltech-256
datasets.

2 RELATED WORK

A natural way to compute similarity between two images repre-
sented as sets of local features is the The Sum Match Kernel [11].
The intuition behind it is to incorporate information about all
pairs of feature descriptors between the two sets. The Sum Match
Kernel is interesting from a theoretical perspective, but in prac-
tice is computationally onerous as its calculation is quadratic
in the number of features per image. Especially given the cur-
rent trend towards large scale problems in image retrieval, it
is important to adopt image representations and to use kernels
that scale well in the number of images. Many state-of-the-art
image recognition approaches, including the BOW model itself,
are based on direct, efficient approximations of the Sum Match
Kernel. Parsana et al. [12] proposed the neighborhood kernel that
integrates feature co-occurrence and spatial information of local
features. Although these approaches yield state-of-the-art results,
they have space and time complexity that is quadratic in the num-
ber of images and neighborhood size. To make the computation
of such kernels more efficient, Bo et al. [8] recently proposed the
Efficient Match Kernel (EMK) that maps local features to a low
dimensional feature space and then constructs set-level features
by averaging the resulting feature vectors.

Improvements to feature coding have focused primarily
on better representations and/or reconstructions of local fea-
tures, often using more than a single vocabulary descriptor.
Zhang et al. [13] proposed an image classification framework
that leverages non-negative sparse coding and sparse matrix
decomposition. Similarly, Wang et al. [9] presented the Locality
Constrained Linear Coding (LLC) technique that substitutes vec-
tor quantization. LLC utilizes a locality constraint to project each
descriptor onto a local coordinate system and has been shown
to improve over the BOW model when used in conjunction
with max-pooling. Approaches like LLC are of particular inter-
est because the representation yields state-of-the-art recognition
results using linear SVMs, which is important for efficiency and
scalability. Liu et al. [14] performed an in depth analysis of soft-
assignment of local features to visual words. They show that
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Fig. 1. Pyramidal SIFT descriptor is a set of three SIFT descriptors that describe
the patch at different levels of detail.

soft-assignment, considering only the k-nearest words for coding,
can be comparable to more complex LLC and sparse-coding tech-
niques. Perronin et al. [10] proposed Fisher vectors as a global
image representation based on the pooled gradients of local fea-
ture log-likelihoods with respect to the parameters of a generative
model.

In the classic BOW histogram of visual word occurrences the
relationships between local features are completely lost. It can-
not account for the proximity of one word to another, the spatial
configuration in which they appear, or their global coordinates
in the image. To embed spatial information into the BOW rep-
resentation, Lazebnik et al. [15] introduced the Spatial Pyramid
Matching (SPM) kernel. It works by partitioning the image into
increasingly finer sub-regions, computing the BOW histograms of
local features in each sub-region, and concatenating the histograms
to form the final representation of the image. Yang et al. [16]
proposed an extension of the SPM approach which, instead of tra-
ditional k-means quantization, computes a spatial pyramid image
representation based on sparse codes of SIFT features.

Rather than quantize sets of image features down to a his-
togram representation, some researchers have investigated alter-
native ways to compare differently-sized sets of local features.
Grauman and Darrel [17] proposed the Pyramid Matching Kernel
(PMK) that finds an approximate correspondence between two
sets of feature points. Informally, their method takes a weighted
sum of the number of matches that occur at each level of res-
olution, which are defined by placing a sequence of increasingly
coarser grids over the feature space. At any resolution, two feature
points match if they fall into the same cell of the grid. Matches
at finer resolutions are weighted more than those at coarser
ones. Boiman et al. [18] proposed a trivial nearest neighbor-based
approach, the Naive-Bayes Nearest-Neighbor classifier (NBNN),
which employs nearest neighbor distances in feature space. NBNN
computes direct image-to-class distances without descriptor quan-
tization. Removing the quantization step yielded a significant
improvement in classification accuracy. This approach was later
extended by Tuytelaars et al. [19] who introduced a kernelized ver-
sion of NBNN. Duchenne et al. [20] proposed a graph-based image
representation whose nodes and edges represent the regions asso-
ciated with a coarse image grid and their adjacency relationships,
respectively. The problem of matching two images is formulated as
an energy minimization problem in a multi-label Markov Random
Field.

3 PYRAMIDAL SIFT DESCRIPTORS FOR
RECOGNITION

In this section we describe how we represent an image using local
descriptor pyramids. We also describe a general framework for

Bag Of Features (BOF) image representation and classification in
terms of the Sum Match Kernel framework.

3.1 The P-SIFT Descriptor
We consider SIFT descriptors [4] in an image I sampled on a reg-
ular grid. For a patch of size S per side we define the relative
centers of the N2 pooling region centers (e.g. in Fig. 1 the medium
SIFT corresponds to N = 4) as the Cartesian product R = C × C,
where

C =
{(

i − 1
2

)(
S
N

)
− S

2
| i = 1, . . . , N

}
. (1)

For a feature site s on the regular grid, the local pooling centers
Rs = {s + c | c ∈ R} are thus defined by the feature location s and
the offsets defined by Eq. (1).

We define Iθ = arctan
(

Iy,σ

Ix,σ

)
where Ix,σ and Iy,σ are Gaussian

derivatives of image I at scale σ in the x and y directions, respec-
tively. Iθ is quantized to 8 angles and for each pooling region
(identified by its center r ∈ Rs), an orientation histogram is com-
puted. When binning each angle, the contribution of pixel p in the
patch centered at site s is weighted by its gradient magnitude at
scale σ and a truncated triangular window:

w(p, r, s) = ||∇σ I(p)|| · max
(

0, 1 − ||p − r − s||
S/2

)
. (2)

The pyramidal SIFT (P-SIFT)1 descriptor is constructed by vary-
ing the pooling resolution N that controls the number and size of
each subregion used to compute each histogram. A P-SIFT consists
of multiple SIFT descriptors that describe the patch at different
levels of detail. We set the derivative scale σ according to the
patch scale and number of pooling regions N2 similarly to [21].
Fig. 1 illustrates the construction of a P-SIFT descriptor consisting
of three levels of resolution. The image feature (a circular edge) is
captured at three levels of detail: for N = 2 (referred as coarse SIFT)
practically indistinguishable from a corner, at N = 4 (medium
SIFT) the circular structure begins to appear, and at N = 6 (fine
SIFT) the circular structure is evident.

From now on we assume that an image I is represented as a
set of local features X:

X = {x1, x2, . . . , xn} , (3)

where each local feature descriptor is a multiresolution P-SIFT
descriptor consisting of L SIFT descriptors extracted at pooling
resolutions Nl ∈ {N1, . . . , NL} for l = 1, . . . , L:

xi =
(

x1
i , x2

i , . . . , xL
i

)
, for i ∈ {1, . . . , n} . (4)

Each primitive descriptor xl
i is a SIFT descriptor computed at the

l-th pooling resolution Nl.

3.2 The Sum Match Kernel over Pyramidal Descriptors
Here we show how the P-SIFT descriptor described in the previous
section can be integrated into the Sum Match Kernel framework.
Let X and Y be two images represented as Bags of Features. The
normalized Sum Match Kernel is defined as:

KS(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

k(x, y), (5)

where | · | is the cardinality of a set and k(x, y) is a kernel
expressing the similarity between two local descriptors.

When x and y are P-SIFT descriptors, where each descriptor is
an ordered tuple of L SIFT descriptors as described in Section 3,
our local kernel over P-SIFT descriptors is defined as a weighted

1Source at: http://www.micc.unifi.it/seidenari/projects/p-sift/
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Fig. 2. Example of multi-resolution matching of patches (yellow rectangles) from face images of two subjects. (a) Query patches and test image. (b-d) Coarse, medium
and fine P-SIFT responses on test image. (e) Pyramidal kernel over P-SIFT responses.

sum of the similarities of the descriptors at each level of the local
pyramid:

k(x, y) =
L∑

l=1

wlkl(x, y), (6)

where wl is the weight corresponding to local pyramid level l
and kl(x, y) is a resolution-local kernel expressing the similarity
between the primitive descriptors x and y at the l-th level of reso-
lution. The similarity at each level in the local pyramid is weighted
according to the description resolution at the corresponding level.
If the L descriptors are arranged in ascending order of resolution,
we define the weight at level l as wl = 2l−L. This weighting scheme,
inspired by [15], [17], proved effective in preliminary experiments
and is devised so that similarities at finer resolutions where fea-
tures are most distinct are weighted more than those at coarser
ones. Uniform and reversed weighting resulted in lower accuracy.

The final form of the normalized Sum Match Kernel over
pyramidal features then becomes:

KS(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

L∑
l=1

wlkl(x, y). (7)

To give some intuition about the behavior of our pyramidal
kernel, in Fig. 2 we show an example of multi-resolution match-
ing using the local kernel described in equation (6) over local
descriptors from two face images taken from Caltech-101. In this
example we use the local kernel kl(x, y) = exp(−γ ||xl − yl||2) to
measure similarity at each level of the local pyramid. The first col-
umn shows two patches selected from a face image that are used
as queries and, enclosed, a test image. The remaining columns
show the similarity between the query patches and the dense, local
patches from a test image at various levels of descriptor resolu-
tion. Observe that the two selected patches have different degrees
of distinctiveness. In fact, while the eye patch has a strong distinc-
tive character, the other patch can be approximated simply as an
oblique edge. This difference in distinctiveness is also confirmed
by the matching results using coarse, medium and fine descriptors.
Indeed, for the eye patch we obtain a precisely localized response
for patches around the same eye with the finest descriptor. The
other query patch only matches with the same part of the face at
the medium level.

It is also interesting to note that for the eye query patch in Fig. 2,
the medium level descriptor matches the left eye of the query
image with both eyes in the test face image, which is a desirable
property for image classification. The coarser descriptor instead
matches patches with more translation (see again the eyes). This
invariance comes at the cost of additional correspondences even
with objects in the background that are completely unrelated to

the query patch. The local pyramidal kernel is able to integrate
information across multiple levels of resolution. The left eye is
matched with both eyes in the test image, though it matches the
left eye more strongly than the right.

The use of the normalized Sum Match Kernel defined in Eq. (5)
comes at a high computational cost. Kernel evaluation is quadratic
in the number of local features per image and linear in the number
of resolution levels per local feature.

4 IMAGE RECOGNITION WITH P-SIFT DESCRIPTORS

In this section we show how to incorporate pyramidal features
into four image recognition approaches that use different, efficient
approximations of the normalized Sum Match Kernel to compare
images. P-SIFT can be integrated in each of these frameworks at
a cost that only adds complexity that is linear in the number of
resolution levels.

4.1 Pyramid Codebooks for BOW Models
Pyramidal descriptors can be directly applied in the Bag of Words
framework. Let V = {v1, . . . , vD} be a set of visual words. In
the BOW approach each local feature is quantized into a |D|
dimensional binary vector μ(x) = [μ1(x), . . . , μD(x)]�. In this
embedding, μi(x) is equal to 1 if the x is associated to the visual
word vi and 0 otherwise. Descriptor x is associated to the nearest
visual word vi. For a linear classifier, the kernel function is:

KBOW(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

μ(x)�μ(y)

= 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

δ(x, y) (8)

where δ(x, y) = 1 when x and y are associated to the same visual
word and 0 otherwise.

Using a pyramidal descriptor we can define a dictionary at each
resolution level and we obtain the following kernel:

KBOW(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

L∑
l=1

wlδl(x, y) (9)

where δl(x, y) is equal to 1 when the feature vectors x and y
at resolution l are associated to the same visual word from the
vocabulary of resolution level l, and 0 otherwise. This formulation
allows us to inject the idea of pyramidal descriptors into a standard
bag of words framework. The BOW approach is computationally
cheap, compared to the normalized Sum Match Kernel, although
the patch representation is based on a coarse approximation to
the Sum Match Kernel and therefore linear embeddings retain
less information with respect to more sophisticated reconstruction
approaches [8], [9], [13].
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4.2 Fisher Vectors over P-SIFT Descriptors
The Fisher vector technique uses a probability density function uλ

that models the generative process behind the descriptors appear-
ing in an image X [10]. The Fisher kernel between X and Y is
defined as:

KFV = GX�
λ F−1

λ GY
λ , (10)

where Fλ is the Fisher information matrix of uλ and GX
λ is the

gradient of the log-likelihood of the data X with respect to the
parameters λ of the generative model:

GX
λ = ∇λ log uλ(X). (11)

Using the Cholesky factorization of F−1
λ = L�

λ Lλ and defining GX
λ =

LλGX
λ we can rewrite (10) as an inner product:

KFV(X, Y) = GX�
λ GY

λ . (12)

Assuming that descriptors in X are independent, and thus uλ(X) =∏
x∈X uλ(x), the Fisher vector of image X is a normalized sum of

gradients at each point x ∈ X with respect to the model parameters
λ:

GX
λ =

∑
x∈X

Lλ∇λ log uλ(x), (13)

The Fisher vector approach works well because it embeds the
original descriptors in a high-dimensional space amenable to linear
classification. We can interpret the Fisher kernel in equation (10)
as a Sum Match Kernel over P-SIFT descriptors:

KFV(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

L∑
l=1

kl(xl, yl), (14)

where the local kernel at pooling resolution level l is defined as:

kl(x, y) = (Lλl∇λl log uλl (x))�(Lλl∇λl log uλl (y)), (15)

where λl are the parameters of the generative model at resolution
level l. We use a mixture of Gaussians for each uλl and take gra-
dients with respect to the means and diagonal covariance of the
mixtures at each resolution level l.

4.3 Efficient Match Kernels over P-SIFT Descriptors
Plugging in a radial-basis kernel as the local kernel used for com-
paring descriptors of corresponding resolutions into Eq. (7), we
obtain the following Sum Match Kernel:

K(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

L∑
l=1

2l−Le(−γ ||rl−sl||2). (16)

We can define an efficient kernel between sets based on our
pyramidal descriptors that approximates Eq. (16). Our approxi-
mation is achieved by generalizing the Efficient Match Kernel [8]
to multiresolution local features.

Let φ(·) represent the infinite dimensional feature map corre-
sponding to the kernel k(x, y) from Eq. (16). That is:

k(x, y) =
L∑

l=1

wlkl(x, y)

=
L∑

l=1

2l−Le(−γ ||rl−sl||2)

= [φ1(x), . . . , φL(x)]�[φ1(y), . . . , φL(y)] (17)

The feature maps φl(·) are infinite dimensional due to the use of
the exponential kernel. We proceed estimating a finite-dimensional
approximation to these embeddings by reconstructing them as
linear combinations of learned basis vectors.

Fig. 3. Difference between power normalization of the entire sum (a) and power
normalization of terms (b). (a)

(
ed1 + ed2

)q
. (b) eqd1 + eqd2 .

We approximate the embedding for each resolution level φl(x)

by solving the following minimization problem:

v̄l(x) = arg min
v

||φl(x) − Hlv||2 (18)

where Hl = [φl(zl
1) . . . φl(zl

Dl
)] is a basis of vectors in the infinite

dimensional feature space induced by the feature map φl. The vec-
tors zl

i constitute a visual vocabulary of Dl SIFT descriptors for
resolution level l.

Solving (18) and replacing φl(·) with Hlv̄l(·) we have

kl(x, y) = φl(x)�φl(y) ≈ kzl (x)K−1
zl kzl (y), (19)

where Kzl is the Gramian of kl(·, ·) on the Dl visual words at level
l and kzl (x) is a vector of kernel evaluations between a feature x at
level l and the basis elements for the same level zl

i for i ∈ {1, . . . Dl}.
Using the Cholesky decomposition of K−1

zl = G�l Gl and substi-
tuting the approximations of Eq. (19) into Eq. (17) we obtain the
final approximate pyramidal kernel:

k̂(x, y) = [
√

w1G1kz1 (x) . . .
√

wLGLkzL (x)]�

[
√

w1G1kz1 (y) . . .
√

wLGLkzL (y)]. (20)

The Sum Match Kernel and its approximations perform well in
terms of recognition, but has the drawback that every similarity
between pairs of features kl(x, y) contributes equally to the overall
feature set similarity of Eq. (7). The result can be that many weakly
similar feature pairs drown out the relatively few strongly similar
ones. To address this, we perform a power normalization on scale-
local similarity comparisons in order to accentuate highly-similar
pairs, while minimizing the influence of weakly similar ones. For
some q > 1, the Sum Match Kernel becomes:

KEMK(X, Y) = 1
|X|

1
|Y|

∑
x∈X

∑
y∈Y

L∑
l=1

wlkl(x, y)q. (21)

Using this type of power normalization effectively makes the fea-
ture selective in that if any of the levels of resolutions match well
between the descriptors x and y, the overall kernel will reflect this.
This property is illustrated in Fig. 3 where we show the difference
in behavior when the power is taken inside or outside the sum of
scale-local kernels. For any positive integer q the power normal-
ized kernel is still Mercer since it can be written as a product of
Mercer kernels.

4.4 Locality Constrained Coding of P-SIFT Descriptors
Locality-constrained Linear Coding (LLC) is a technique that
encodes local feature descriptors using an overcomplete basis or
dictionary. Each descriptor is represented by reconstructing it with
a sparse combination of words from a visual vocabulary. Coding
of feature descriptors using LLC works particularly well when
integrating global information into kernel computations through
max-pooling of codes over larger regions [9]. It can also be thought
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of as an approximation of the Sum Match Kernel representa-
tion, one that uses local information to code features and that
incorporates non-local information through max-pooling.

In the classical sparse coding approach, sparsity is enforced
through an �1 regularization term. In LLC, both sparsity and
locality are obtained by constraining the reconstruction for each
descriptor to use only its k nearest neighbors. Formally, the code
c(x) = [c1(x), . . . , c|V|(x)] for a descriptor x is computed as the
solution of the following optimization problem:

c(x) = arg min
c

||x − Bx,kc||2 + λ||c||2

s. t. 1�c = 1,
(22)

where Bx,k is the local basis constructed by the k nearest visual
words of descriptor x from dictionary V.

To incorporate max-pooling into the matching between two
LLC-encoded images, we can formulate the local kernel as fol-
lows. Given two descriptors x and y from two images X and Y,
we form the max-pooled local kernel:

kl(x, y) =
|V|∑
i=1

ci(x)ci(y)μi(x)μi(y), (23)

where

μi(x) =
{

1 if ci(x) ≥ ci(x′) ∀x′ ∈ X
0 otherwise.

(24)

Each ci(·) is a single dimension of an LLC code, while the μi(·) act
as selector functions that ensure that the corresponding ci(·) con-
tributes to the kernel if and only if it is the maximum in dimension
i over all local features in the image.

As with the other approaches above, we can extend the local
kernel kl to take into account the different resolutions of each
descriptor:

k(x, y) =
L∑

l=1

wlkl(xl, yl). (25)

For each l ∈ {1 . . . L} we define the max-pooled LLC codes for
resolution level l:

	l(X) =
[

max
x∈X

cl
1(x

l), . . . , max
x∈X

cl
|Dl|(x

l)

]
, (26)

where Dl is size of the visual vocabulary for resolution l. Defining
the complete linear embedding as the concatenation of all levels:

	(X) = [	1(X),	2(X), . . . , 	L(X)] , (27)

it results from Eq. (25) and Eq. (26) that the similarity between
two images X and Y represented by pyramidal descriptors is:

KLLC(X, Y) =
∑
x∈X

∑
y∈Y

k(x, y) (28)

=
∑
x∈X

∑
y∈Y

L∑
l=1

wlkl(xl, yl) (29)

= 	(X)�	(Y). (30)

From this we see that pyramidal, max-pooled LLC image repre-
sentations can be compared using the local kernel formulation of
Eq. (25), or equivalently as the scalar product between concate-
nated, pyramidal embeddings as in Eq. (30).

5 EXPERIMENTAL RESULTS

We evaluated the performance of our pyramidal descriptors on
Caltech-101 and Caltech-256. For both datasets we resize images
so that their longest dimension is 300 pixels [22]. We compute

Fig. 4. Reconstruction error as a function of the base dimensionality for three levels
of descriptor resolution on Caltech-101. Red dots highlight the dimensionality of
the bases selected.

P-SIFT descriptors at three patch sizes (24, 32 and 40 pixels) over
a dense regular grid with a spacing of 6 pixels. The extracted pyra-
midal descriptor for a given patch size consists of a set of SIFT
descriptors at three different spatial pooling resolutions: 2×2, 4×4
and 6× 6. Spatial pyramids are used to partition the whole image
using configurations 1 × 1, 2 × 2 and 4 × 4. In the following SP0
refers to the first pyramid level with no spatial partitioning, SP1 to
the concatenation of the first and second, and SP2 for all three. We
use linear SVMs for classification [23] and all classification accura-
cies reported are the average over five independent training and
test set splits.

To determine the appropriate size for the visual vocabular-
ies of each resolution level (i.e. to balance the trade-off between
reconstruction accuracy and memory consumption), we evaluated
codebook quality by analyzing errors computed using the EMK
approximation in Eq. (18). We used a subsample of 150k SIFT
descriptors and ran k-means to learn vocabularies over a range of
sizes. In general, as can be seen in Fig. 4, the reconstruction error
is high when a limited set of visual words is used, but decreases
rapidly with increasing vocabulary size. We also observed that
reconstruction error at the coarse level is less than that at finer
levels, mainly due to the higher distinctiveness of fine descriptors.
The error typically saturates and after a point there is no advan-
tage in increasing vocabulary size. Based on this error analysis,
and considering the dimensionality of the final image descrip-
tor, we selected 1,000, 2,000 and 2,500 visual words for coarse,
medium and fine levels, respectively, for Caltech-101. For Caltech-
256 we found 3,000, 4,000 and 4,500 visual words to be appropriate
sizes. We use these vocabulary sizes for all experiments on the P-
EMK, P-BOW and P-LLC approaches. For Fisher vectors we used
PCA as recommended in [10] and used 20, 60 and 80 principal
components, and 64, 128 and 256 Gaussians for the respective
dictionaries.

Caltech-101 [24] consists of 9,144 images from 101 object cate-
gories plus one background category. The number of examples per
category varies from 31 to 800 images. Object categories exhibit
color and shape variation, but objects are all centered and have
no viewpoint diversity. We train models on 15 or 30 randomly
selected images per category and test on the remaining images.
Caltech-256 [25] consists of 30,607 images from 256 object cate-
gories plus background. Each class contains at least 80 images.
Caltech-256 is challenging due to high variations in object size,
location and pose. To evaluate classification performance we fol-
low the standard setup: 30 or 60 images were randomly selected
from all the categories for training, and the remaining images were
used for testing.

5.1 The Contribution of Multi-Resolution Descriptors
To visualize how our multi-resolution representation improves
classification accuracy, we generated object-centric relevance
maps. We first train individual classifiers at each of the three
single levels of resolution. Then, for each test image cor-
rectly recognized by all three learned classifiers, we iteratively
remove each patch descriptor and compute the variation of the
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Fig. 5. Classes benefitting most (a) and least (b) from pyramidal representation. For each class we show sample images and below the classifier responses calculated
for each resolution level computed from Eq. (31) and averaged over the entire training set for that class. Classifier responses are ordered from coarse to fine.

distance from the learned margin:
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(31)

where x̂ is the removed patch and βC is the learned hyperplane
for the correct class C.

A negative variation is a cue of relevance of that particular
patch, while a positive variation indicates that removing the patch
improves the confidence for the correct class. Values of 
f

(
x̂
)

are
accumulated at the locations of patches x̂. A final relevance map
for a class is obtained by cropping the object using the ground-
truth annotations and averaging over all cropped and resized
relevance maps for an object category. The final relevance map
size is the average size of the annotated examples. In Fig. 5 we
show the three classes with the best (Fig. 5(a)) and worst (Fig. 5(b))
improvement in accuracy compared to a classifier trained using
standard SIFT and EMK. We can observe that, for classes with the
highest improvement in accuracy, each resolution has a distinct
spatial relevance pattern. For classes with lower improvement the
relevance maps are quite similar, which means that all levels con-
centrate on representing the same parts. It should be noted that
classes with lower improvement are easier and exhibit less intra-
class variation. The individual relevance maps in Fig. 5(a) show
that this intra-class variation is captured by the different resolu-
tion levels of our descriptor, each focusing on a different global
object layout.

We performed another set of experiments to quantify how each
level of resolution contributes to improving classification accu-
racy. First, we tested the classification performance of our method
obtained by adding each resolution level in turn to the descriptor.
Table 1 summarizes classification accuracy on Caltech-101 for three
spatial pyramid levels using 30 training images per class. We can
observe that, although the coarser level is quite descriptive, the use
of more discriminative information considerably increases perfor-
mance. In fact, without the spatial pyramid the improvement is
about six percentage points (from 59.35% to 65.45%).

The best single-resolution performance is obtained using the
medium resolution descriptor, which corresponds to the stan-
dard SIFT descriptor. The coarse and the fine descriptors lose few
percentage points because the coarse descriptors are not discrimi-
native enough while the fine ones are too discriminative. However,
the accuracy achieved from our pyramidal descriptors is higher.
This is due to the fact that the pyramidal descriptor has several
levels of distinctiveness that are used adaptively by the pyramidal

kernel. From Table 1 we see that both spatial and feature pyramids
contribute to improved classification accuracy. Starting from just
the coarse resolution descriptor and three levels of spatial pyra-
mid, adding the medium and fine resolutions yields an increase
of about three percentage points in classification accuracy.

5.2 Pyramidal Descriptors for Image Recognition
In this experiment we compare the extension of the BOW model
with pyramidal descriptors (see Section 4.1) and a standard BOW
on Caltech-101. We used linear and nonlinear2 SVM classifiers with
30 training images per category. In Table 2 we report the accuracy
for the three spatial pyramid levels SP0, SP1 and SP2 described
above. The codebook size for Linear and Hellinger BOW is fixed
to 4,000, as we observed that the performance tends to saturate
beyond this. For the extended bag-of-words we use 1,000, 2,000
and 2,500 as the codebook size for the coarse, medium and fine
levels, respectively. In both the linear and non-linear cases, the P-
SIFT descriptor consistently outperforms the corresponding multi-
scale SIFT baseline at all pyramid levels. These results show that
using pyramidal SIFT descriptors and pyramidal dictionaries can
improve the standard BOW model.

In Table 2 we also show a comparison of the baseline meth-
ods (BOW, EMK, LLC and FV) and their pyramidized versions
with single- and multi-scale sampling. In rows indicated with “3S”
we sample standard SIFT at patch sizes 24, 32 and 64 so that the
pooling region sizes are comparable to those in single-scale P-SIFT
at patch size 32. Similarly, in rows indicated with “7S” we sam-
ple standard SIFT at patch sizes 16, 24, 32, 40, 48, 64 and 80 to
obtain pooling regions comparable to multi-scale sampling of P-
SIFT descriptors at patch sizes 24, 32 and 40 (indicated with “M”
in Table 2).

Sampling multiple patch sizes is beneficial in all cases, and
LLC benefits so much from it likely due to the max-pooling stage
unique to it among tested methods. Note that single-scale P-EMK,
P-LLC and P-FV already outperform both multi-scale BOW base-
lines for nearly all spatial pyramid configurations. The best results
are consistently achieved with multi-scale descriptor sampling and
our local, pyramidized descriptor. EMK, LLC and FV better pre-
serve local feature representation and indeed exhibit better results,
and the improvement of P-SIFT is even more dramatic for EMK
and LLC when the spatial pyramid is not used. This suggests that

2All experiments with non-linear kernels use the Hellinger kernel K(x, y) =∑
i
√

xiyi which improves histogram comparison by discounting small contribu-
tions to dimensions with large magnitudes [10].
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TABLE 1
Accuracy at Different Descriptor and Spatial Pyramid

Resolution Levels on Caltech-101

our technique improves feature matching and that this improve-
ment is less noticeable when spatial pyramids avoid confusion by
imposing geometric constraints on local feature matching.

5.3 Comparison to the State-of-the-Art
We compare our results with several existing approaches that
use comparable image representations (dense sampling of SIFT
descriptors) on both Caltech-101 and Caltech-2563. In Table 3 we
report a comparison between our P-SIFT based approaches and
the state-of-the-art. P-EMK, P-LLC and P-FV all perform compa-
rably, with P-FV outperforming all methods. For completeness,
at the bottom of Table 3 we include results from more com-
plex approaches that incorporate many cues and learn optimal
feature combinations [26], [27], or that use global alignment ker-
nels [20]. Though not strictly comparable with our approach, we
do outperform more complex techniques such as [20] and [28]
on Caltech-256. Note also that our P-SIFT features can be consid-
ered complementary to these approaches and integrating multiple
descriptor resolutions into them should yield improved results.

6 CONCLUSIONS

In this paper we described an approach to image recognition
using multi-resolution, pyramidized local feature descriptors. Our
P-SIFT descriptor uses three levels of local pooling resolution to
construct a discriminative, local feature representation for image
classification. We further showed how our image representation
can be used within the BOW, EMK, LLC and Fisher vector tech-
niques to improve classification performance. The P-SIFT feature
is simple and easy to implement, and it naturally complements a
range of image coding and classification techniques.

The performance of the P-SIFT descriptor for image classifi-
cation is comparable to the state-of-the-art on Caltech-101 and
exceeds the state-of-the-art on Caltech-256. Our approach, using
only SIFT descriptors over intensity images, linear classifiers
and no global feature alignment, outperforms significantly more
complex methods, especially on Caltech-256.

P-SIFT features can be incorporated into a BOW pipeline at
marginal cost. The increase in complexity is linear in the number
of resolution levels introduced and the size of the vocabularies of
each level. On Caltech-101, for example, our final image descriptor
dimensionality is only 5,500 after incorporating multiple levels of
resolution. Thus our representation is comparable in size with the
typical 4,000 visual words needed to obtain state-of-the-art results
using the vanilla BOW approach. This little added complexity and
the good performance with linear SVMs are key contributions
considering the recent trend toward large scale image recognition.

The pyramidized local descriptors that we propose are com-
plementary to many existing image representation and coding
techniques. We demonstrated this with the BOW, EMK, LLC and
Fisher vector approaches in this work, but the P-SIFT descriptor
could be used in more complex image representation and match-
ing frameworks which perform global alignment of image features

3More results at http://zybler.blogspot.com/2009/08/ and
http://zybler.blogspot.com/2009/10/

TABLE 2
Accuracy of Baseline Encoding Methods and Their Pyramidized

Versions (P-*) on Caltech-101

before recognition. We expect similar performance gains when
combined with more complex image matching techniques.
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