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Abstract—Recognizing human actions in 3-D video sequences
is an important open problem that is currently at the heart
of many research domains including surveillance, natural inter-
faces and rehabilitation. However, the design and development
of models for action recognition that are both accurate and effi-
cient is a challenging task due to the variability of the human
pose, clothing and appearance. In this paper, we propose a new
framework to extract a compact representation of a human
action captured through a depth sensor, and enable accurate
action recognition. The proposed solution develops on fitting a
human skeleton model to acquired data so as to represent the
3-D coordinates of the joints and their change over time as a
trajectory in a suitable action space. Thanks to such a 3-D joint-
based framework, the proposed solution is capable to capture
both the shape and the dynamics of the human body, simul-
taneously. The action recognition problem is then formulated
as the problem of computing the similarity between the shape
of trajectories in a Riemannian manifold. Classification using
k-nearest neighbors is finally performed on this manifold tak-
ing advantage of Riemannian geometry in the open curve shape
space. Experiments are carried out on four representative bench-
marks to demonstrate the potential of the proposed solution in
terms of accuracy/latency for a low-latency action recognition.
Comparative results with state-of-the-art methods are reported.

Index Terms—3-D human action, activity recognition,
Riemannian shape space, temporal modeling.

I. INTRODUCTION

IMAGING technologies have recently shown a rapid
advancement with the introduction of consumer depth

cameras (RGB-D) with real-time capabilities, like Microsoft
Kinect [1] or Asus Xtion PRO LIVE [2]. These new
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acquisition devices have stimulated the development of various
promising applications, including human pose reconstruction
and estimation [3], scene flow estimation [4], hand gesture
recognition [5], and face super-resolution [6]. A recent review
of Kinect-based computer vision applications can be found
in [7]. The encouraging results shown in these works take
advantage of the combination of RGB and depth data enabling
simplified foreground/background segmentation and increased
robustness to changes of lighting conditions. As a result, sev-
eral software libraries make it possible to fit RGB and depth
models to the data, thus supporting detection and tracking of
skeleton models of human bodies in real time. However, solu-
tions which aim to understand the observed human actions
by interpreting the dynamics of these representations are still
quite limited. What further complicates this task is that action
recognition should be invariant to geometric transformations,
such as translation, rotation, and global scaling of the scene.
Additional challenges come from noisy or missing data, and
variability of poses within the same action and across different
actions. In this paper, we address the problem of modeling and
analyzing human motion from skeleton sequences captured
by depth cameras. Particularly, this paper focuses on build-
ing a robust framework, which recasts the action recognition
problem as a statistical analysis on the shape space manifold
of open curves. In such a framework, not only the geomet-
ric appearance of the human body is encoded, but also the
dynamic information of the human motion. Additionally, we
evaluate the latency performance of our approach by deter-
mining the number of frames that are necessary to permit a
reliable recognition of the action.

A. Previous Work

In recent years, recognition of human actions from the anal-
ysis of data provided by RGB-D cameras has attracted the
interest of several research groups. The approaches proposed
so far can be grouped into three main categories, according
to the way they use the depth channel: 1) skeleton-based;
2) depth map-based; and 3) hybrid approaches. Skeleton based
approaches, estimate the position of a set of joints of a human
skeleton fitted to depth data. Then they model the pose of the
human body in subsequent frames of the sequence using the
position and the relations between joints. Depth map based
approaches extract volumetric and temporal features directly
from the overall set of points of the depth maps in the
sequence. Hybrid approaches combine information extracted
from both the joints of the skeleton and the depth maps. In
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addition to these approaches, there are also some multimodal
methods that exploit both depth and photometric information
to improve results [8]. Following this categorization, existing
methods for human action recognition using depth information
are shortly reviewed below.

Skeleton based approaches have become popular thanks
to Shotton et al. [3]. This describes a real-time method to
accurately predict the 3-D positions of body joints in indi-
vidual depth maps, without using any temporal information.
Results report the prediction accuracy for 16 joints, although
the Kinect tracking system developed on top of this approach
is capable of estimating the 3-D positions of 20 joints of the
human skeleton. In [9], an approach is described to support
action recognition based on the histograms of the position of
12 joints provided by the Kinect. The histograms are projected
using linear discriminant analysis (LDA) and clustered into k
posture visual words, representing the prototypical poses of the
actions. The temporal evolution of these visual words is mod-
eled by discrete hidden Markov models. In [10], human action
recognition is obtained by extracting three features for each
joint, based on pair-wise differences of joint positions: 1) in the
current frame; 2) between the current frame and the previous
frame; and 3) between the current frame and the initial frame
of the sequence. This latter is assumed to correspond to the
neutral posture at the beginning of the action. Since the num-
ber of these differences results in a high dimensional feature
vector, principal component analysis (PCA) is used to reduce
redundancy and noise, and to obtain a compact EigenJoints
representation of each frame. Finally, a naïve-Bayes nearest-
neighbor classifier is used for multiclass action classification.
Recent works address more complex challenges in on-line
action recognition systems, where a trade-off between accu-
racy and latency becomes an important goal. For example,
Ellis et al. [11] target this trade-off by adopting a latency
aware learning (LAL) method for reducing latency when rec-
ognizing human actions. A logistic regression-based classifier
is trained on 3-D joint position sequences to search a single
canonical posture for recognition.

Methods based on depth maps rely on the extraction of
meaningful descriptors from the entire set of points of depth
images. Different methods have been proposed to model the
dynamics of the actions. The approach in [12] employs 3-D
human silhouettes to describe salient postures and uses an
action graph to model the dynamics of the actions. In [13],
the action dynamics is described using depth motion maps,
which highlight areas where some motion takes place. Other
methods, such as spatio-temporal occupancy pattern [14],
random occupancy pattern [15], and depth cuboid similar-
ity feature [16], propose to work on the 4-D space divided
into spatio-temporal boxes to extract features representing the
depth appearance in each box. Finally, in [17], a method is pro-
posed to quantize the 4-D space using vertices of a polychoron
and then model the distribution of the normal vectors for each
cell. Depth information can also be used in combination with
color images as in [18].

Hybrid solutions use strengths of both skeleton and depth
descriptors to model the action sequence. For example, in [19]
a local occupancy pattern around each 3-D joint is proposed.

In [20], actions are characterized using pairwise affinity mea-
sures between joint angle features and histogram of oriented
gradients computed on depth maps.

These RGB-D based approaches also benefit from the large
number of works published in the last two decades on human
activity recognition in 2-D video sequences (see for example
the recent surveys in [21]–[24]). Besides methods in Euclidean
spaces [25]–[27], some emerging and interesting techniques
reformulate computer vision problems, like action recogni-
tion, over non-Euclidean spaces. Among these, Riemannian
manifolds have recently received increased attention. In [28],
human silhouettes extracted from video images are used to
represent the pose. Silhouettes are then represented as points
in the shape space manifold. In this way, they can be matched
using a dynamic time warping, a state-of-the-art algorithm for
sequence comparison. In [29], several experiments on ges-
ture recognition and person reidentification are conducted,
comparing Riemannian manifolds with several state-of-the-art
approaches. Results obtained in these works indicate consid-
erable improvements in discrimination accuracy. In [30], a
Grassmann manifold is used to classify human actions. With
this representation, a video sequence is expressed as a third-
order data tensor of raw pixels extracted from action images.
One video sequence is mapped onto one point on the manifold.
Distances between points are computed on the manifold and
used for action classification based on nearest neighbor search.

B. Overview of Our Approach

A human action is naturally characterized by the evolution
of the pose of the human body over time. Skeleton data con-
taining the 3-D positions of different parts of the body provide
an accurate representation of the pose. These skeleton features
are easy to extract and track from depth maps, and they also
provide local information about the human body. This makes
it possible to analyze only some parts of the human body
instead of the global pose. Even if accurate 3-D joint posi-
tions are available, the action recognition task is still difficult
due to significant spatial and temporal variations in the way
of performing an action.

These challenges motivated the study an original approach
to recognize human actions based on the evolution of the
position of the skeleton joints detected on a sequence of
depth images. To this end, the full skeleton is modeled as
a multidimensional vector obtained by concatenating the 3-D
coordinates of its joints. Then, the trajectory described by this
vector in the multidimensional space is regarded as a signature
of the temporal dynamics of the movements of all the joints.
These trajectories are then interpreted in a Riemannian man-
ifold, so as to model and compare their shapes using elastic
registration and matching in the shape space. In so doing, we
recast the action recognition problem as a statistical analysis
on the shape space manifold. Furthermore, by using an elastic
metric to compare the similarity between trajectories, robust-
ness of action recognition to the execution speed of the action
is improved. Fig. 1 summarizes the proposed approach. The
main considerations that motivated our solution are: 1) the fact
that many feature descriptors typically adopted in computer
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Fig. 1. Overview of our approach. First, skeleton sequences are represented as
trajectories in a n-dimensional space. These trajectories are then interpreted in
a Riemannian manifold (shape space). Recognition is finally performed using
kNN classification on this manifold.

vision applications lie on curved spaces due to the geomet-
ric nature of the problems; 2) the shape and dynamic cues
are very important for modeling human activity, and their
effectiveness have been demonstrated in several state-of-the-
art works [30]–[33]; and 3) using such manifold offers a wide
variety of statistical and modeling tools that can be used to
improve the accuracy of gesture and action recognition.

The main contributions of the proposed approach are as
follows.

1) An original translation and rotation invariant represen-
tation of an action sequence as a trajectory in a high
dimensional space. By concatenating the 3-D coordi-
nates of skeleton joints, data representation encodes the
shape of the human posture at each frame. By model-
ing the sequence of frame features along the action as a
trajectory, we capture the dynamics of human motion.

2) An elastic shape analysis of such trajectories that extends
the shape analysis of curves [34] to action trajectories,
thus improving robustness of action recognition to the
execution speed of actions.

The rest of the paper is organized as follows. Section II
describes the proposed spatio-temporal representation of
actions as trajectories. Section III discusses the Riemannian
framework used for the analysis and comparison of shape
trajectories. In Section IV, we present some statistical tools
applicable on a Riemannian manifold and introduce the super-
vised learning algorithm performed on points of this manifold.
Section V describes the experimental settings, the dataset used
and also reports results in terms of accuracy and latency of
action recognition in comparison with state of the art solu-
tions. Finally, in Section VI, the conclusion is drawn and future
research directions discussed.

II. SPATIO-TEMPORAL REPRESENTATION OF ACTIONS AS

TRAJECTORIES IN ACTION SPACE

Using RGB-D cameras, such as the Microsoft Kinect, a
3-D humanoid skeleton can be extracted from depth images
in real-time by following the approach of Shotton et al. [3].
This skeleton contains the 3-D position of a certain num-
ber of joints representing different parts of the human
body. The number of estimated joints depends on the

software development kit (SDK) used in combination with
the device. Skeletons extracted with the Microsoft Kinect
SDK contain 20 joints, while 15 joints are estimated with the
PrimeSense NiTE. For each frame t of a sequence, the real-
world 3-D position of each joint i of the skeleton is represented
by three coordinates expressed in the camera reference system
pi(t) = (xi(t), yi(t), zi(t)). Let Nj be the number of joints the
skeleton is composed of, the posture of the skeleton at frame
t is represented by a 3Nj dimensional tuple

v(t) = [
x1(t) y1(t) z1(t) . . . xNj(t) yNj(t) zNj(t)

]T
. (1)

For an action sequence composed of Nf frames, Nf feature
vectors are extracted and arranged in columns to build a feature
matrix M describing the whole sequence

M = (
v(1) v(2) . . . v(Nf )

)
. (2)

This feature matrix represents the evolution of the skeleton
pose over time. Each column vector v is regarded as a sample
of a continuous trajectory in R3Nj representing the action in a
3Nj dimensional space called action space. The size of such
feature matrix is 3Nj × Nf .

To reduce the effect of noise that may affect the coordi-
nates of skeleton joints, a smoothing filter is applied to each
sequence. This filter weights the coordinates of each joint with
the coordinates of the same joint in the neighboring frames.
In particular, the amount of smoothing is controlled by a
parameter σ that defines the size Ws = 1 + 2 × σ of a
temporal window centered at the current frame. For each joint
i = 1, . . . , Nj at frame t = 1 + σ, . . . , Nf − σ the new x
coordinate is

xi(t) = 1

Ws

t+σ∑

τ=t−σ

xi(τ ). (3)

The same applies to y and z. The value of σ is selected
by performing experiments on a set of training sequences.
The best accuracy is obtained for σ = 1, corresponding to
a window size of three frames.

A. Invariance to Geometric Transformations of the Subject

A key feature of action recognition systems is the invariance
to the translation and rotation of the subject in the scene. Two
instances of the same action differing only for the position and
orientation of the person with respect to the scanning device
should be recognized as belonging to the same action class.
This goal can be achieved either by adopting a translation and
rotation invariant representation of the action sequence or pro-
viding a suitable distance measure that copes with translation
and rotation variations. We adopt the first approach by nor-
malizing the position and the orientation of the subject in the
scene before the extraction of the joint coordinates. For this
purpose, we first define the spine joint of the initial skeleton
as the center of the skeleton (root joint). Then, a new base B is
defined with origin in the root joint: 1) it includes the left-hip
joint vector

−→
hl ; 2) the right-hip joint vector

−→
hr ; and 3) their

cross product −→nB = −→
hl × −→

hr . This new base is then trans-
lated and rotated, so as to be aligned with a reference base B0
computed from a reference skeleton (selected as the neutral
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(a) (b) (c)

Fig. 2. Invariance to geometric transformations. (a) Two skeletons with dif-
ferent orientations. The skeleton on the left is the reference one. The skeleton
on the right is the first skeleton of the sequence that should be aligned to the
reference skeleton. (b) Bases B0 and B are built from the two corresponding
hip vectors and their cross product. The base B′ corresponds to B aligned
with respect to B0. (c) Resulting skeleton (right) is now aligned with respect
to the first one (left). The transformations computed between these two bases
are applied to all skeletons of the sequence.

pose of the sequence). The calculation of the optimal rotation
between the two bases B and B0 is performed using singular
value decomposition. For each sequence, once the translation
and the rotation of the first skeleton is computed with respect
to the reference skeleton, we apply the same transformations to
all other skeletons of the sequence. This makes the represen-
tation invariant to the position and orientation of the subject in
the scene. Fig. 2(a) shows an example of two different skele-
tons to be aligned. The bases B1 and B2 computed for the two
skeletons are shown in Fig. 2(b), where the rotation required
to align B2 to B1 is also reported. In Fig. 2(c), the two aligned
skeletons are shown.

B. Representation of Body Parts

In addition to enable the representation of the action using
the whole body, the proposed solution also supports the rep-
resentation of individual body parts, such as the legs and the
arms. There are several motivations for focusing on parts of
the body. First of all, many actions involve motion of just some
parts of the body. For example, when subjects answer a phone
call, they only use one of their arms. In this case, analyzing
the dynamics of the arm rather than the dynamics of the entire
body is expected to be less sensitive to the noise originated
by the involuntary motion of the parts of the body not directly
involved in the action. Furthermore, during the actions some
parts of the body can be out of the camera field of view or
occluded by objects or other parts of the body. This can make
the estimation of the coordinates of some joints inaccurate,
compromizing the accuracy of action recognition. Finally, due
the symmetry of the body along the vertical axis, one same
action can be performed using one part of the body or another.
With reference to the action “answer phone call,” the subject
can use his left arm or right arm. By analyzing the whole body
we can not detect such variations. Differently, using body parts
separately, simplifies the detection of this kind of symmetrical
actions. To analyze each part of the body separately, we rep-
resent a skeleton sequence by four feature sets corresponding
to the body parts. Each body part is associated with a feature
set that is composed of the 3-D normalized position of the
joints that are included in that part of the body. Let Njp be the
number of joints of a body part, the skeleton sequence is now
represented by four trajectories in 3 × Njp dimensions instead
of one trajectory in 3 × Nj dimensions. The actual number
of joints per body part can change from a dataset to another

Fig. 3. Curves representing the coordinates of the left arm joint for five
actions. From left to right, side kick, side boxing, and draw circle (three
different instances). Points displayed in bold represent the sample frames
along the curves.

according to the SDK used for estimating the body skeleton.
In all the cases, Njp < Nj and the body parts are disjoint
(i.e., they do not share any joint).

III. SHAPE ANALYSIS OF TRAJECTORIES

An action is a sequence of poses and can be regarded as
the result of sampling a continuous curve trajectory in the
3Nj-dimensional action space. The trajectory is defined by
the motion over time of the feature point encoding the 3-D
coordinates of all the joints of the skeleton (or by all the
feature points coding the body parts separately). According
to this, two instances of the same action are associated with
two curves with similar shape in the action space. Hence,
action recognition can be regarded and formulated as a shape
matching task. Fig. 3 provides a simplified example of action
matching by shape comparison. The plot displays five curves
corresponding to the coordinates of the left hand joint in five
different actions. Three curves correspond to three instances
of the action drawing circle. The remaining two curves corre-
spond to the actions side boxing and side kick. This simplified
case, in which each trajectory encodes the coordinates of just
one joint, makes it clear that similar actions yield trajectories
with similar shapes in the action space.

Fig. 3 also highlights some critical aspects of representing
actions by trajectories. Assuming the actions are sampled at
the same frame rate, performing the same action at two dif-
ferent speeds yields two curves with a different number of
samples. This is the case of the red and blue curves in Fig. 3,
where samples are highlighted by bold points along the curves.
Furthermore, since the first and the last poses of an action are
not known in advance and may differ even for two instances
of the same action, the measure of shape similarity should not
be biased by the position of the first and last points of the
trajectory. In the following, we present a framework to repre-
sent the shape of the trajectories, and compare them using the
principles of elastic shape matching.

A. Representation of Trajectories

Let a trajectory in the action space be represented as a
function β : I → R

n, being I = [0,1] the function domain.
We restrict the domain of interest to the functions β that
are differentiable and whose first derivative is in L

2(I, R
n).
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L
2(I, R

n) is the vector space of all functions f : I → R
n

satisfying
∫

I ‖f (x)‖2dx < ∞. To ANALYZE the shape
of β, we consider its square-root velocity function (SRVF)
q : I → R

n, defined as

q(t)
.= β̇(t)

√
‖β̇(t)‖

(4)

being ‖.‖ the L
2 norm. The quantity ‖q(t)‖ is the square-root

of the instantaneous speed, and the ratio q(t)/‖q(t)‖ is the
instantaneous direction along the trajectory. All trajectories β

are scaled so as to be of length 1. This makes the represen-
tation invariant to the length of the trajectory (the number
of frames of the action sequence). The SRVF was formerly
introduced in [34] to enable shape analysis. As described
in [34], such representation captures the shape of a curve β

and presents some advantages. First, it uses a single function
to represent the curve. Then, as described later, the computa-
tion of the elastic distance between two curves is reduced to
a simple L

2 norm, which simplifies the implementation and
the analysis. Finally, reparametrization of the curves acts as
an isometry. The SRVF has been successfully used for 3-D
face recognition in [35] and for human body matching and
retrieval in [36]. In our approach, we propose to extend this
metric to the analysis of spatio-temporal trajectories.

B. Preshape Space of Trajectories

We define the set of curves

C = {
q : I → R

n| ‖q‖ = 1
} ⊂ L

2 (
I, R

n) (5)

where ‖.‖ represents the L
2 norm. With the L

2 norm on its
tangent space, C becomes a Riemannian manifold called pre-
shape space. Each element of C represents a trajectory in R

n.
As the elements of this manifold have unit L

2 norm, C is a
unit-hypersphere representing the preshape space of trajecto-
ries invariant to uniform scaling. Its tangent space at a point
q is given by

Tq(C) =
{

v ∈ L
2 (

I, R
n) | 〈v, q〉 = 0

}
. (6)

Here, 〈v, q〉 denotes the inner product in L
2(I, R

n).
Geodesics on spheres are great circles, thus the geodesic

path between two elements q1 and q2 on C is given by the
great circle α

α(τ) = 1

sin(θ)
(sin((1 − τ)θ)q1 + sin(θτ )q2) (7)

where θ is the distance between q1 and q2 given by

θ = dc(q1, q2) = cos−1(〈q1, q2〉). (8)

This equation measures the geodesic distance between two
trajectories q1 and q2 represented in the manifold C. In partic-
ular, τ ∈ [0, 1] in (7) allows us to parameterize the movement
along the geodesic path α. τ = 0 and τ = 1, correspond,
respectively, to the extreme point q1 and q2 on the geodesic
path. For intermediate values of τ , an internal point between
q1 and q2 on the geodesic path is considered.

C. Elastic Metric in the Shape Space

As mentioned above, we need to compare the shape
of the trajectories independently of their elasticity. This
requires invariance to reparameterization of the curves. Let
us define the parameterization group �, which is the set of
all orientation-preserving diffeomorphisms of I to itself. The
elements γ ∈ � are the reparameterization functions. For a
curve β : I → R

n, γ ◦ β is a reparameterization of β. As
shown in [37], the SRVF of γ ◦β is given by

√
γ̇ (t)(q◦γ )(t).

We define the equivalent class of q as

[q] =
{√

γ̇ (t)(q ◦ γ )(t)| γ ∈ �
}

. (9)

The set of such equivalence classes is called the shape space
of elastic curves, noted S = {[q] | q ∈ C}. In this framework,
an equivalent class [q] is associated to a shape. Accordingly,
comparison of the shapes of two trajectories q1 and q2, is per-
formed by the comparison of the equivalent classes [q1] and
[q2]. Computation of the geodesic paths and geodesic lengths,
requires to solve the optimization problem for finding the opti-
mal reparameterization that best registers the element q2 with
respect to q1. The optimal reparameterization γ ∗ is the one
that minimizes the cost function H(γ ) = dc(q1,

√
γ̇ (q2 ◦ γ )).

Thus, the optimization problem is defined as

γ ∗ = arg min
γ∈�

dc

(
q1,

√
γ̇ (q2 ◦ γ )

)
. (10)

In practice, dynamic programming is used for optimal
reparameterization over �.

Let q∗
2 =

√
γ̇ ∗(q2 ◦ γ ∗) be the optimal element associated

with the optimal reparameterization γ ∗ of the second curve
q2, the geodesic length between [q1] and [q2] in the shape
space S is ds([q1], [q2]) = dc(q1, q∗

2) and the geodesic path is
given by

α(τ) = 1

sin(θ)

(
sin((1 − τ)θ)q1 + sin(θτ )q∗

2

)
(11)

where θ = ds([q1], [q2]). This distance is used to compare the
shape of the trajectories in a way that is robust to their elastic
deformation.

IV. ACTION RECOGNITION ON THE MANIFOLD

The proposed action recognition approach is based on the
k-nearest neighbors (kNN) algorithm applied both to full-body
and separate body parts.

A. kNN Classifier Using Elastic Metric

Let {(Xi, yi)}, i = 1, . . . , N, be the training set with respect
to the class labels, where Xi belongs to a Riemannian mani-
fold S, and yi is the class label taking values in {1, . . . , Nc},
with Nc the number of classes. The objective is to find a func-
tion F(X) : S �−→ {1, . . . , Nc} for clustering data lying in
different submanifolds of a Riemannian space, based on the
training set of labeled items of the data. To this end, we pro-
pose a kNN classifier on the Riemannian manifold, learned by
the points on the open curve shape space representing trajec-
tories. Such learning method exploits geometric properties of
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the open curve shape space, particularly its Riemannian met-
ric. This relies on the computation of the (geodesic) distances
to the nearest neighbors of each data point of the training set.

The action recognition problem is reduced to nearest neigh-
bor classifier in the Riemannian space. More precisely, given
a set of training trajectories Xi : i = 1, . . . , N, they are rep-
resented by the underlying points qi : i = 1, . . . , N, which
map trajectories on the shape space manifold (see Fig. 1).
Then, any new trajectory Xn is represented by its SRVF qn.
Finally, a geodesic-based classifier is used to find the K-closest
trajectories to qn using the elastic metric given by (8).

B. Statistics of the Trajectories

An important advantage of using such Riemannian approach
is that it provides tools for the computation of statistics of the
trajectories. For example, we can use the notion of Karcher
mean [38] to compute an average trajectory from several
trajectories. The average trajectory among a set of different
trajectories can be computed to represent the intermediate
one, or between similar trajectories obtained from several sub-
jects to represent a template, which can be viewed as a good
representative of a set of trajectories.

To classify an action trajectory, represented as a point on
the manifold, we need to compute the total warping geodesic
distances to all points from training data. For a large number
of training data this can be associated to a high computational
cost. This can be reduced by using the notion of “mean” of
class action, and computing the mean of a set of points on
the manifold. As a result, for each action class we obtain an
average trajectory, which is representative of all the actions
within the class. According to this, the mean can be used to
perform action classification by comparing the new action with
all the cluster means using the elastic metric defined in (8).
For a given set of training trajectories q1, . . . , qn on the shape
space, their Karcher mean can be defined as

μ = arg min
n∑

i=1

ds ([q], [qi])
2 . (12)

As an example, Fig. 4(a) shows the Karcher mean compu-
tation for five training trajectories (q1. . . q5). In the initial step,
q1 is selected as the mean. In an iterative process, the mean
is updated according to elastic metric computation between
all q. After convergence, the average trajectory is given by
qm. Fig. 4(b) shows skeleton representation of the first two
trajectories and the resulting average trajectory in the action
space. As trajectories are built from joint coordinates, we
can easily obtain the entire skeleton sequence correspond-
ing to a trajectory. Fig. 4(b) shows four skeletons for each
sequence.

By computing such average trajectories for each action
class, we implicitly assume that there is only one way to
perform each action. Unfortunately, this is not the case. In
fact, two different subjects can perform the same action in
two different ways. This variability in performing actions
between different subjects can affect the computation of aver-
age trajectories and the resulting templates may not be good

(b)(a)

Fig. 4. Computation of the Karcher mean between five action trajecto-
ries. (a) Representation of the trajectories in the shape space. Applying the
Karcher mean algorithm, the mean is first selected as q1 and then updated until
convergence. Finally, the mean trajectory is represented by qm. (b) Skeleton
representation of corresponding trajectories in the action space. The two top
sequences correspond to points q1 and q2 in the shape space, while the bot-
tom sequence corresponds to the Karcher mean qm computed among the five
training trajectories.

representatives of the action classes. For this reason, we com-
pute average trajectories for each subject, separately. Instead of
having only one representative trajectory per action, we obtain
one template per subject per action. In this way, we keep sep-
arately each different way of performing the action and the
resulted average trajectories are not any more affected by such
possible variations. As a drawback, with this solution the num-
ber of template trajectories in the training set increases. Let Nc

be the number of classes and NStr the number of subjects in
the training set, the number of training trajectories is Nc×NStr.
However, as subjects perform the same action several times,
the number of training trajectories is still lower than using all
trajectories.

C. Body Parts-Based Classification

In the classification step, we compute distances between
corresponding parts of the training sequence and the new
sequence. As a result, we obtain four distances, one for
each body part. The mean distance is computed to obtain a
global distance representing the similarity between the training
sequence and the new sequence. We keep only the k smallest
global distances and corresponding labels to take the decision
and associate the most frequent label to the new sequence.
Note that in the case where some labels are equally frequent,
we apply a weighted decision based on the ranking of the dis-
tances. In that particular case, the selected label corresponds to
the smallest distance. However, one main motivation for con-
sidering the body parts separately is to analyze the moving
parts only. To do this, we compute the total motion of each
part over the sequence. We cumulate the Euclidian distances
between corresponding joints in two consecutive frames for
all the frames of the sequence. The total motion of a body
part is the cumulated motion of the joints forming this part.
We compute this total motion on the resampled sequences, so
that it is not necessary to normalize it. Let jk : k = 1, . . . , Njp ,
be a joint of the body part, and Nf be the frame number of
the sequence, then the total motion m of a body part for this
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sequence is given by

m =
Njp∑

k=1

Nf −1∑

i=1

dEuc

(
jki , jki+1

)
(13)

where dEuc( j1, j2) is the Euclidian distance between the 3-D
joints j1 and j2, and Njp is the number of joints per body
part (i.e., this number can change from a dataset to another
according to the SDK used for the skeleton estimation).

Once the total motion for each part of the body is com-
puted, we define a threshold m0 to separate moving and still
parts. We assume that if the total motion of a body part is
below this threshold, the part is considered to be motionless
during the action. In the classification, we consider a part of
the body only if it is moving either in the training sequence
or the probe sequence (this is the sequence representing the
action to be classified). If one part of the body is motionless
in both actions, this part is ignored and does not concur to
compute the distance between the two actions. For instance, if
two actions are performed only using the two arms, the global
distance between these two actions is equal to the mean of
the distances corresponding to the arms only. We empirically
select the threshold m0 that best separates moving and still
parts with respect to a labeled training set of ground truth
sequences. To do that, we manually labeled a training set of
sample sequences by assigning a motion binary value to each
body part. The motion binary value is set to 1 if the body
part is moving and set to 0 otherwise. We then compute the
total motion m of each body part of the training sequences and
give a motion decision according to a varying threshold. We
finally select the threshold that yields the decision closest to
the ground truth. In the experiments, we notice that defining
two different thresholds for the upper parts and lower parts
slightly improves the accuracy in some cases.

V. EXPERIMENTAL EVALUATION

The proposed action recognition approach is evaluated in
comparison to state-of-the-art methods using three public
benchmark datasets. In addition, we measure the capability of
our approach to reduce the latency of recognition by evaluat-
ing the trade-off between accuracy and latency over a varying
number of actions.

A. Datasets

The three benchmark datasets that we use to evaluate the
accuracy of action recognition differ in the characteristics and
difficulties of the included sequences. This allows an in depth
investigation of the strengths and weaknesses of our solution.
For each dataset, we compare our approach to state-of-the-
art methods. A fourth dataset (University of Central Florida
(UCF)-Kinect) is used for the latency analysis.

1) Microsoft Research (MSR) Action 3-D: This public
dataset was collected at Microsoft research [12] and represents
a commonly used benchmark. It includes 20 actions performed
by ten persons facing the camera. Each action is performed 2
or 3 times. In total, 567 sequences are available. The different
actions are high arm wave, horizontal arm wave, hammer, hand

catch, forward punch, high throw, draw X, draw tick, draw
circle, hand clap, two hand wave, side-boxing, bend, forward
kick, side kick, jogging, tennis swing, tennis serve, golf swing,
and pick up and throw. These game-oriented actions cover dif-
ferent variations of the motion of arms, legs, torso, and their
combinations. Each subject is facing the camera and positioned
in the center of the scene. Subjects were also advised to use
their right arm or leg when actions are performed with a sin-
gle arm or leg. All the actions are performed without any
interaction with objects. Two main challenges are identified:
1) the high similarity between different groupg of actions
and 2) the changes of the execution speed of actions. For
each sequence, the dataset provides depth, color, and skele-
ton information. In our case, we only use the skeleton data.
As reported in [19], ten actions are not used in the experiments
because the skeletons are either missing or too erroneous. For
our experiments, we use 557 sequences.

2) Florence 3-D Action: This dataset was collected at the
University of Florence using a Kinect camera [39]. It includes
nine actions: 1) arm wave; 2) drink from a bottle; 3) answer
phone; 4) clap; 5) tight lace; 6) sit down; 7) stand up; 8) read
watch; and 9) bow. Each action is performed by ten subjects
several times for a total of 215 sequences. The sequences are
acquired using the OpenNI SDK, with skeletons represented
by 15 joints instead of 20 as with the Microsoft Kinect SDK.
The main challenges of this dataset are the similarity between
actions, the human-object interaction, and the different ways
of performing a same action.

3) UTKinect: In this dataset, ten subjects perform ten dif-
ferent actions two times, for a total of 200 sequences [9]. The
actions include: 1) walk; 2) sit-down; 3) stand-up; 4) pick-up;
5) carry; 6) throw; 7) push; 8) pull; 9) wave; and 10) clap-hand.
Skeleton data are gathered using Kinect for Windows SDK.
The actions included in this dataset are similar to those from
MSR action 3-D and Florence 3-D action, but they present
some additional challenges: 1) they are registered from differ-
ent views and 2) there are occlusions caused by human-object
interaction or by the absence of some body parts in the sensor
field of view.

4) UCF-Kinect: This dataset consists of 16 different gam-
ing actions performed by 16 subjects five times for a total
of 1280 sequences [11]. All the actions are performed from
a rest state, including balance, climb up, climb ladder, duck,
hop, vault, leap, run, kick, punch, twist left, twist right, step
forward, step back, step left, and step right. The locations
of 15 joints over the sequences are estimated using Microsoft
Kinect sensor and the PrimeSense NiTE. This dataset is mainly
used to evaluate the ability of our approach in terms of
accuracy/latency for a low-latency action recognition system.

B. Action Recognition Analysis

In order to fairly compare our approach with the state-of-
the-art methods, we follow the same experimental setup and
evaluation protocol presented in these methods, separately for
each dataset.

1) MSR Action 3-D Dataset: For this experiment, we test
our approach with the variations mentioned in Section III
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TABLE I
MSR ACTION 3-D. WE TEST OUR APPROACH WITH ITS DIFFERENT

VARIATIONS (FULL SKELETON, BODY PARTS WITHOUT AND WITH

MOTION THRESHOLDING) AND CLASSIFICATION METHODS [kNN
ONLY, kNN AND KARCHER MEAN (KM) PER ACTION, kNN

AND KARCHER MEAN PER ACTION AND PER SUBJECT]

related to the body parts and Karcher mean. As in this dataset
the subjects are always facing the camera, the normalization
of subjects orientation before computing features is not nec-
essary. The results are reported in Table I. First, it can be
noted that the best accuracy is obtained using the full skele-
ton and the Karcher mean algorithm applied per action and
per subject (92.1%). In this case, we use k = 4 in the classi-
fication process. Note that this improvement of the accuracy
using the Karcher mean is not expected. Indeed, computation
of average trajectories can be viewed as an indexing of avail-
able sequences and should not add information facilitating the
classification task. An explanation of accuracy improvement
can be given for the case of two similar action classes. In that
case, a sequence belonging to a first class can be very similar
to sequences belonging to a second class, and thus selected as
false positive during classification. Computing average trajec-
tories can increase the interclass distance and thus improve the
classification accuracy. For instance, the first two actions (high
arm wave and horizontal high arm wave) are very similar.
Using such average trajectories reduces the confusion between
these two actions, thus improving the accuracy. Second, these
results also show that the analysis of body parts separately
improves the accuracy from 88.3% to 91.1%, in the case where
only the kNN classifier is used. When the Karcher mean algo-
rithm is used in addition to kNN, the values of the accuracy
obtained by analyzing body parts separately or analyzing the
full skeleton are very similar.

Table II reports results of the comparison of our approach to
some representative state-of-the-art methods. We followed the
same experimental setup as shown by Oreifej and Liu [17]
and Wang et al. [19], where the actions of five actors are
used for training and the remaining actions for test. Our
approach outperforms the other methods except the one pro-
posed in [20]. However, this approach uses both skeleton and
depth information. They reported that using only skeleton fea-
tures an accuracy of 83.5% is obtained, which is lower than
our approach.

Furthermore, following a cross validation protocol, we per-
form the same experiments exploring all possible combinations
of actions used for training and for test. For each combination,
we first use only kNN on body parts separately. We obtain an
average accuracy of 86.09% with standard deviation 2.99%
(86.09% ± 2.99%). The minimum and maximum values of

TABLE II
MSR ACTION 3-D. COMPARISON OF THE PROPOSED APPROACH

WITH THE MOST RELEVANT STATE-OF-THE-ART METHODS

(a) (b)

Fig. 5. MSR action 3-D. Confusion matrix for two variations of our approach.
(a) Full skeleton with kNN and Karcher mean per action and per subject.
(b) Body parts with kNN and Karcher mean per action and per subject.

the accuracy are, respectively, 77.16% and 93.44%. Then, we
perform the same experiments using the full skeleton and the
Karcher mean per action and per subject, and obtain an aver-
age accuracy of 87.28% ± 2.41% (mean ± std). In this case,
the lowest and highest accuracy are, respectively, 81.31% and
93.04%. Compared to [17], where the mean accuracy is also
computed for all the possible combinations, we outperform
their result (82.15% ± 4.18%). In addition, the small value
of the standard deviation in our experiments shows that our
method has a low dependency on the training data.

In order to show the accuracy of the approach on individ-
ual actions, the confusion matrix is also computed. Fig. 5
shows the confusion matrix when we use the kNN and the
Karcher mean per action and per subject with the full skeleton
[Fig. 5(a)] and with body parts [Fig. 5(b)].

It can be noted that for each variation of our approach, we
obtained very low accuracies for the actions hammer and hand
catch. This can be explained by the fact that these actions are
very similar to some others. In addition, the way of perform-
ing these two actions varies a lot depending on the subject.
For example, for the action hammer, subjects in the training
set perform it only once, while some subjects in the test set
perform it more than once (cyclically). In this case, the shape
of the trajectories is very different. Our method does not deal
with this kind of variations. Fig. 6 illustrates an example of
this failure case. As action sequences are represented in high
dimension space, trajectories corresponding to only one joint
(the right hand joint) are plotted. Indeed, the trajectories of
four different samples of the action hammer are illustrated,
where only one hammer stroke or two hammer strokes are per-
formed. It can be observed that the shape of the trajectories
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(a)
(d) (c)

(b)

(a)

(b) (c) (d)

Fig. 6. Visualization of a failure case for the action hammer. Sample trajec-
tories of the right hand joint are shown on the left. (a) and (b) One hammer
stroke. (c) and (d) Two hammer strokes. On the right, clustering of action
samples using MDS in a 2-D space is reported for three different classes:
horizontal arm wave (clear blue), hammer (dark blue), and draw tick (green).
The samples of the action hammer are split in two clusters corresponding to
the two different ways of performing the action. The distribution of data of
the hammer cluster is partly overlapped to data of the draw tick cluster.

TABLE III
FLORENCE 3-D ACTION. WE COMPARE OUR METHOD

WITH THE ONE PRESENTED IN [39]

is different in the two cases. In order to visualize samples
of three different classes in a 2-D space, the multidimensional
scaling (MDS) technique [40] is applied using distance matrix
computed on the shape space. These classes are shown in the
right part of the figure: 1) horizontal arm wave (clear blue);
2) hammer (dark blue); and 3) draw tick (green). We can see
that samples of the action hammer are split in two different
clusters corresponding to two different ways of performing the
action. The distribution of data in the hammer cluster is partly
overlapped to data in the draw tick cluster yielding inaccurate
classification of these samples.

2) Florence 3-D Action Dataset: Results obtained for
this dataset are reported in Table III. It can be observed
that the proposed approach outperforms the results obtained
in [39] using the same protocol (leave-one-subject-out cross
validation), even if we do not use the body parts variant.

By analyzing the confusion matrix of our method using
body parts separately [see Fig. 7(a)], we can notice that the
proposed approach obtains very high accuracies for most of the
actions. However, we can also observe that there is some con-
fusion between similar actions using the same group of joints.
This can be observed in the case of read watch and clap hands,
and also in the case of arm wave, drink, and answer phone.
For these two groups of actions, the trajectories of the arms
are very similar. For the first group of actions, in most of the
cases, read watch is performed using the two arms, which is
very similar to the action clap hands. For the second group of
actions, the main difference between the three actions is the
object held by the subject (no object, a bottle, and a mobile
phone). As we use only skeleton features, we cannot detect
and differentiate these objects. As an example, Fig. 8 shows

(a) (b)

Fig. 7. Confusion matrix obtained by our approach on (a) Florence 3-D
action and (b) UTKinect. We can see that similar actions involving different
objects are confused.

(a) (a)

Fig. 8. Example of similar actions from Florence action 3-D dataset.
(a) Drink action where the subject holds a bottle. (b) Phone call action, where
the subject holds a phone.

two different actions, drink and phone call, that in term of
skeleton are similar and difficult to distinguish.

3) UTKinect Dataset: In order to fairly compare our
approach to [9], we follow the same experimental protocol
(leave one sequence out cross validation method). For each iter-
ation, one sequence is used as test and all the other sequences
are used as training. The operation is repeated such that each
sequence is used once as testing. We obtained an accuracy of
91.5%, which improves the accuracy of 90.9% reported in [9].
This shows that our method is robust to different points of view
and also to occlusions of some parts of the body. However, by
analyzing the confusion matrix in Fig. 7(b), we can notice that
lower accuracies are obtained for those actions that include the
interaction with some object, for instance the carry and throw
actions. These actions are not always distinguished by actions
that are similar in terms of dynamics yet not including the
interaction with some object, like walk and push, respectively.
This result is due to the fact that our approach does not take
into account any informative description of objects.

4) Discussion: Results on different datasets show that our
approach outperforms most of the state-of-the-art methods.
First, some skeleton based methods like [10] use skeleton fea-
tures based on pairwise distances between joints. However,
results obtained on MSR action 3-D dataset show that ana-
lyzing how the whole skeleton evolves during the sequence is
more discriminative than taking into consideration the joints
separately. In addition, the method proposed in [10] is not
invariant to the execution speed. To deal with the execution
speed, in [39] a pose-based method is proposed. However, the
lack of information about temporal dynamics of the action
makes the recognition less effective compared to our method,
as shown in Table III. Second, the comparison with depth-
map based methods shows that skeleton joints extracted from
depth-maps are effective descriptors to model the motion of the
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TABLE IV
DISTANCES BETWEEN A WAVE SAMPLE AND TWO SAMPLES OF

THE ACTIONS WAVE AND CLAP ACQUIRED FROM DIFFERENT

VIEWPOINTS. THE COLUMNS “ALIGNED” AND

“NONALIGNED” REPORT THE DISTANCE VALUE

COMPUTED WITH THE INVARIANT

REPRESENTATION OR WITHOUT

IT, RESPECTIVELY

human body along the time. However, results also show that
using strength of both depth and skeleton data may be a good
solution as proposed in [20]. The combination of both data
can be very helpful especially for the case of human-object
interaction, where skeleton based methods are not sufficient
as shown by the experiments on UTKinect dataset.

C. Representation and Invariance

1) Body Parts Analysis: The experiments above show that
using only the moving parts of the body yields an improve-
ment of the recognition accuracy. In addition, it allows the
reduction of the dimensionality of the trajectories and thus
the computational costs for their comparison. As we do not
use the spine of the skeleton, the dimensionality is reduced
at least to 48D instead of 60D. Furthermore, for the actions
that are performed with only one part of the body, the dimen-
sionality is reduced to only 12D (in the case of skeletons with
four joints per limb).

2) Invariance to Geometric Transformations: To demon-
strate the effectiveness of our invariant representation against
translation and rotation, we analyze the distance between
sequences representing the same action class, but acquired
from different viewpoints. To this end, we select two sam-
ples from the UTKinect dataset corresponding to the action
wave, and compute the distance between them with and with-
out our invariant representation. We can see in Table IV that
the distance drops from 1.1 to 0.6 if we use our invariant
representation. We also compute the distance between actions
belonging to similar classes, like wave and clap. It can be
noticed that if we do not use the invariant representation, the
nearest sample to the test sample belongs to the class clap.
However, if the invariant representation is used, the nearest
sample belongs to the class wave, the same as the test sample.

3) Rate Invariant: One main challenge in action recog-
nition is robustness to variations in the execution speed of
the action. Without this invariance, two instances of the same
action performed at different velocities can be miss-classified.
That is why temporal matching between two trajectories is
decisive before computing their distance. The dynamic time
warping algorithm is usually employed to solve this prob-
lem. It is a popular tool in temporal data analysis, which is
used in several applications, including activity recognition by
video comparison [28]. In our case, a special version of this
algorithm is used to warp similar poses of two sequences at
different time instants. Before computing the distance between
two trajectories, we search for the optimal reparametrization

TABLE V
RESULTS OF THE PROPOSED METHOD IN THE CASE THE REGISTRATION

STEP IS CONSIDERED (R) OR NOT (NR)

Fig. 9. Temporal registration for action high throw. From the top: the initial
sequence; the sequence to be registered with respect to the initial sequence;
and the resulting registered sequence. Black lines connect corresponding poses
showing how the sequence has been stretched and bent.

of the second trajectory with respect to the first one. This
registration allows us to compare the shape of two trajectories
regardless of the execution speed of the action. In practice, we
use dynamic programming to find the optimal reparametriza-
tion and perform registration. To show the importance of this
step, we performed the same experiments presented above
for two datasets, but without considering the registration
step before comparison. The obtained results are presented
in Table V.

We can notice that skipping the registration step makes
the accuracy much lower, especially for the MSR action 3-
D dataset, where the accuracy drops of about 20%. In this
dataset, actions are performed at very different speed. Fig. 9
shows an example of the action high throw performed by two
different subjects at different speed: 1) the first row represents
eight frames of a training sequence; 2) the second row repre-
sents the same eight frames of a new sequence performed at
different speed without registration; and 3) the third row rep-
resents the new sequence after registration with respect to the
training sequence. In the reported case, the distance between
sequences decreases from 1.31 (without registration) to 0.95
(with registration).

D. Latency Analysis

The latency is defined as the time lapse between the instant
when a subject starts an action and the instant when the system
recognizes the performed action. The latency can be separated
into two main components: 1) the computational latency and
2) the observational latency. The computational latency is the
time the system takes to compute the recognition task from an
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TABLE VI
AVERAGE COMPUTATIONAL TIME TO COMPARE TWO SEQUENCES OF THE

MSR ACTION 3-D DATASET (THE AVERAGE LENGTH OF SEQUENCES IN

THIS DATASET IS 38 FRAMES). IT RESULTS THAT MORE THAN 60%
OF THE TIME IS SPENT IN THE REGISTRATION STEP

observation. The observational latency represents the amount
of time an action sequence needs to be observed in order to
gather enough information for its recognition.

1) Computational Latency: We evaluate the computational
latency of our approach on the MSR action 3-D dataset. Using
a MATLAB implementation with an Intel Core i-5 2.6 GHz
CPU and a 8 GB RAM, the average time required to compare
two sequences is 50 ms (including trajectories representation
in shape space, trajectories registration, distance computation
between trajectories, and sequence labeling using kNN). For a
given new sequence, the total computational time depends on
the number of training sequences. Indeed, distances between
the new sequence and all other training sequences have to be
computed, and the k shortest distances are used to label the
new sequence. For example, using the 50–50 cross subject pro-
tocol on the MSR action 3-D dataset, and using only the kNN
approach, classification of an unknown sequence requires com-
parison to 266 training sequences. Thus, with our approach,
the system takes 266 ∗ 0.05 = 13.3 s to label a new sequence.
This computational time is large and thus not suitable for
real-time processing. If we use the Karcher mean per class to
have only one representative sequence per class, the number
of training sequences is reduced to 20 and the computational
time decreases to 1 s, which is more adequate for real-time
applications. As shown in Table I, for this dataset we obtain
our best accuracy using Karcher mean per action per subject.
In that case, the resulted number of training trajectories is 91.
Thus, the computational latency becomes 91 ∗ 0.05 = 4.55 s.

2) Observational Latency: To analyze the observational
latency of our approach, we show how the accuracy depends
on the duration of observation of the action sequence. In the
first experiment, the observational latency is analyzed on the
MSR action 3-D dataset, where the accuracy is computed by
processing only a fraction of the sequence. In each case, we cut
the training sequences into shorter ones to create a new training
set. During the classification step, we also cut test sequences to
the corresponding length and apply our method. We performed
experiments using only kNN and also using Karcher mean per
action and per subject. In Fig. 10(a), we can see that an accuracy
closed to the maximum one is obtained even if we use only half
of the sequences. This shows that the computational latency
can be masked by the observational latency in the cases where
sequences are longer than twice the computational latency. In
these cases, the action recognition task can be performed in
real-time. This is particularly convenient for applications like
video games that require fast response of the system before the
end of the performed action to support real-time interaction.

To compare the observational latency of our approach, we
perform experiments on the UCF-Kinect dataset [11], where

Fig. 10. Latency analysis. (a) MSR action 3-D: our approach is performed
using only the kNN (blue curve) and then using the Karcher mean (red curve).
(b) UCF-Kinect. Values of the accuracy obtained by our approach using only
the kNN, compared to those reported in [11]. The accuracy at each point of
the curves is obtained by processing only the number of frames shown in the
x-axis.

TABLE VII
NUMERICAL RESULTS AT SEVERAL POINTS ALONG

THE CURVES IN FIG. 10(b)

the observational latency of other methods is also evaluated.
The same experimental setup as in [11] is followed. To do that,
we use only the kNN and a fourfold cross validation protocol.
Four subjects are selected for test and the others for training.
This is repeated until each subject is used once. Actually, since
there are 16 subjects, four different test folds are built and the
mean accuracy of the four folds is reported. For a fair com-
parison to [11], the obtained accuracy is reported with respect
to the maximum number of frames (and not to a percentage
of sequences). For each step, a new dataset is built cutting
the sequences to a maximum number of frames. The length of
the sequences varies from 27 to 269 frames with an average
length equal to 66.1 ± 34 frames. It should be noticed that, if
the number of frames of a sequence is below the maximum
number of frames used in experiments, the whole sequence is
treated. We compare our results with those reported in [11],
including their proposed approach LAL, and two baseline solu-
tions: 1) bag of words (BoW) and 2) conditional random field
(CRF). The observational latency on this dataset is also evalu-
ated in [20], but following a different evalaution protocol (i.e.,
a 70/30 split protocol instead of the fourfold cross validation
proposed in [11]), so their results are not reported here.

The curves in Fig. 10(b) and the corresponding numerical
results in Table VII show that our approach clearly out-
performs all the baseline approaches reported in [11]. This
significant improvement is achieved either using a small or a
large number of frames [see the red curve in Fig. 10(b)].

We can also notice that only 25 frames are sufficient to
guarantee an accuracy over 90%, while BoW and CRF show
a recognition rate below 68%, and LAL achieves 81.65%. It
is also interesting to notice that using the whole sequences,
we obtain an accuracy of 99.15%, and the same accuracy can
be obtained by processing just 45 frames of the sequence.
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VI. CONCLUSION

An effective human action recognition approach is proposed
using a spatio-temporal modeling of motion trajectories in a
Riemannian manifold. The 3-D position of each joint of the
skeleton in each frame of the sequence is represented as a
motion trajectory in the action space. Each motion trajectory
is then expressed as a point in the open curve shape space.
Thanks to the Riemannian geometry of this manifold, action
classification is solved using the nearest neighbor rule, by
warping all the training points to the new query trajectory
and computing an elastic metric between the shape of tra-
jectories. The experimental results on the MSR action 3-D,
Florence 3-D action, and UTKinect datasets demonstrate that
our approach outperforms the existing state-of-the-art meth-
ods in most of the cases. Furthermore, the evaluation in
terms of latency clearly demonstrates the efficiency of our
approach for a rapid recognition. In fact, 90% action recogni-
tion accuracy is achieved by processing just 25 frames of the
sequence. Thereby, our approach can be used for applications
of human action recognition in interactive systems, where a
robust real-time recognition at low latencies is required.

As future work, we plan to integrate in our framework other
descriptors based on both depth and skeleton information, so
as to manage the problem of human-object interaction. We also
expect widespread applicability in domains such as physical
therapy and rehabilitation.
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