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ABSTRACT

An important task in computer vision is object localization
and recognition within images and video. Achieving real-
time object localization and recognition on low-power de-
vices is especially relevant in the context of wearable tech-
nologies. Indeed, wearable devices have a reduced size and
cost and limited computational power leading to a challenging
scenario for classical computer vision algorithms. This paper
improves the Hough Forest approach with several contribu-
tions: a faster computation of the features and a faster evalua-
tion of the learned model with minimal loss in accuracy. Our
method is characterized by a low computational requirement
and allows real-time detection on a wearable device.

Index Terms— Object detection, Wearable device, Wear-
able computing, Hough Forest

1. INTRODUCTION

Recently computer vision algorithms dedicated to wearable
devices have risen the interest of the multimedia and pat-
tern recognition community. Many scenarios are enabled by
such computational devices such as summarization for life-
logging [1, 2], assistance to visually impaired people [3], self-
localization [4] and user interest profiling.

All of these applications have two important require-
ments: they have a hard real-time constraint and they require
to run for extended periods of time. On one hand very pow-
erful and small devices are available in the retail market
nowadays [5, 6] therefore the real-time requirement can be
addressed by simply boosting the computational power of
wearable devices. However, the speed requirement conflicts
with the running time duration. Indeed, wearable devices
need to be compact and run on battery. Even with recent de-
velopments in high efficiency batteries [7] it is extremely hard
to pack many milli-ampere hour (mAh) in a small portable
object, hence it is difficult to have a powerful wearable device
running for a long period of time.

Object detection is a central problem in computer vision
since it enables many high level tasks such as scene under-
standing, multimedia mining and automatic image annota-
tion. In the ego-centric vision literature, object detection is
commonly used to understand actions from the user perspec-

tive. As an example detecting people is a very important task
since it is the main stage of an egocentric processing pipeline
to solve most high level tasks such as social behavior under-
standing [8, 9].

In wearable vision the most common scenarios involve
occlusion and truncation of objects. Occlusion happens when
an object is placed behind some fixed element of a scene or
another object. Truncation happens when camera pose is such
that not the whole object can be observed; this is often the
case when trying to detect people at a close range. Moderate
occlusion can be handled by part based models [10] or with
an explicit occluder modelling [11]. For pedestrian detection
occlusion can be managed by training multiple occlusion spe-
cific classifiers [12].

Recently Gall et al. proposed Hough Forests for object
detection [13]. Their method differs from many other object
detection algorithms since it does not apply a sliding window
approach. Being a local patch based method, it is more ro-
bust to occlusion than holistic methods. Techniques like [12]
are accelerated using GPU, integral channel features [14] and
training many classifier per scale to avoid image rescaling and
feature recomputation [15] but are often tailored to pedestrian
detection. Deformable part models (DPM) [10] are more ver-
satile but expensive to run. Hough Forests have been recently
shown to scale and perform comparably to DPM [16] but are
not still fast enough to be run on embedded hardware.

In this paper we propose a Fast Hough Forest method
for object detection that improves the running time of Hough
Forests with respect to [13] by 60× on laptop and embed-
ded boards with very little loss in accuracy. Our method runs
at 10 FPS on a 2.3GHZ i5-2467M laptop and at 3 FPS on
a SPEAR 1340 A9 ARM 600MhZ on a single thread. We
show a detailed quantitative comparison on a standard pedes-
trian detection benchmark and qualitative results for an upper
body classifier aimed at wearable vision tasks.

2. HOUGH FOREST FOR DETECTION

In this section we introduce the concepts of Hough Transform
and Hough space and the combination with Random Forests,
namely the Hough Forest, that we will use for person and up-
per body detection. We give details on the ensemble learning
algorithm used to train Random Forests and how it is adapted



Fig. 1. Challenging frames from a sequence showing the method robustness under pose variation, self-occlusion, truncation
and blur. Full video, processed on a i5-2467M laptop can be viewed at http://goo.gl/04mtO2 . Note that UpperBody
detection can be performed accurately with fewer scales with respect to pedestrian detection thus increasing the framerate
to ∼ 25 FPS.

to train Hough Forests in order to use the forest as an object
detector.

The Hough Forest approach shows interesting robustness
properties in challenging conditions that are frequent in wear-
able scenarios. The fact that cameras are not handled by users
means that the field-of-view may not present a proper object
framing leading to object truncation, i.e. partial visibility of
the object. Moreover since the camera is usually attached to
the user head-gear, glasses or dress, motion blur may be gen-
erated by sudden user body motion like standing up or turn-
ing.

Object occlusion can happen because an object is oc-
cluded by another, e.g. pedestrian detection in crowds, or
can be caused by the articulated nature of the object to be
detected. In the case of people detection in wearable vision,
both phenomena are present. In Figure 1 we show our up-
per body detector dealing with some of these issues. One
can observe that correct detections are obtained even when
the person is truncated (because on the side of the frame),
occluded (by an arm or a desk lamp), or when the image is
blurry due to the ego-motion.

In the following we briefly review Random Forests and
Hough Forests with a discussion on the main algorithm bot-
tlenecks. In Section 3 we will show how to remove these
bottlenecks.

2.1. Hough Transform and Hough space

The Hough Transform [17] is a feature extraction method to
find the presence of a given class of shapes in an image by a
voting procedure. Originally, the Hough Transform was ap-
plied to detect the presence of lines in images by accumulat-

ing evidence of the presence of a given line parametrized by
its minimal distance to the origin r and the angle θ between
this segment of length r and the x-axis. The accumulation
and voting procedure is done over each pixel and takes place
in this (r,θ) space [17]. The method hence relies on the ac-
cumulation of local evidence (such as gradient information)
computed on the neighborhood of each pixel, to determine in
the end the presence of the target shape. It was further ex-
tended to detect any shape by the Generalized Hough Trans-
form [18]. The name Hough space is now commonly used to
refer to any method that relies on the accumulation of votes
from local samples to infer the presence of a higher level con-
cept (object, person...).

2.2. Random Forest

A Random Forest is a machine learning technique that uses
multiple Decision Trees as a single ensemble classifier. In
the case of object detection, given a set of training samples
labeled as positive or not, a decision tree is learnt by split-
ting recursively the initial set into subsets by maximizing the
information gain on a set of randomly generated splitting cri-
teria. Formally, denoting S0 all initial samples available, the
tree learning procedure will try to split at each inner node i at
level k the current set of samples Si, where i ∈ {2k−1, 2k},
into two subsets SiL and SiR based on the output of a split-
ting function f(τ). In each node, several randomly generated
splitting criterions T = {τ} are evaluated based on the infor-
mation gain they provide. Without loss of generality, consid-
ering that the class labels c ∈ {0, 1}we define the information
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gain Gi at node i as:

Gi(τ) = H(Si)−
∑

j∈{L,R}

|Sij |
|Sij |

H(Sij), (1)

where H(S) is the class entropy in set S:

H(Si) = −
∑

c∈{0,1}

p(c|S) log p(c|S) (2)

The splitting criterion τ giving the maximum information
gain is selected. This splitting procedure is carried on un-
til the maximum depth or the minimum number of samples
by node is reached. Each tree of the forest is learnt sepa-
rately, potentially with different initial training samples. At
test time, a sample goes down each tree and the leaves class
distribution are used to estimate the class of the test sample.

2.3. Hough Forest

A Hough Forest is a Random Forest applied to obtain a voting
map in the Hough space localizing objects in a discriminative
manner. Differently from random forests the training data are
tuples: (Ii, y, di) consisting of background and foreground
image patches Ii, their label y and their displacement di with
respect to the centroid of the object they belong to. Displace-
ment is undefined for background patches. Object detection
with Hough Forests is performed classifying each patch us-
ing the forest and casting votes in the Hough voting space
proportionally to the likelihood of each leaf. The main dif-
ference with respect to Random Forests at training time is the
node split evaluation.

Gall et al. [13] propose, in addition to maximizing the in-
formation gain Gi, to minimize the displacement uncertainty
defined as:

U i =
∑
k∈Pi

(dk − dP ) (3)

where dP is the mean offset of patches belonging to the object
in the set of patches Pi at node i. Alternating between Gi

and U i for the node split evaluation, the tree construction will
both minimize the classification error and keep variation in
displacements at leaf nodes low.

Denoting PFl the set of foreground patches that reached a
leaf node l and Pl the set of all patches in l, the foreground
likelihood in l is estimated as |P

F
l |
|Pl| . Furthermore, each leaf

node l will retain a set of displacements Dl that are used dur-
ing the voting procedure.

Detection with Hough Forests is performed similarly as
with Random Forests. After feature channels have been com-
puted for the whole image. Patches are densely sampled and
fed to each tree in the forest. For a patch centered at x falling
in leaf l, the value |P

F
l |
|Pl| is added to the Hough Voting V map

in each displacement location:

V (x− dj) = V (x− dj) +
|PFl |
|Pl|

(4)

with dj ∈ Dl. Finally to obtain the actual object locations,
peaks are sought in V (x). A Gaussian filtering is performed
before the maxima location step. A Multi-scale Hough Forest
is obtained by resizing, or upscaling if needed, the image and
performing the above procedure for each image size.

2.4. Complexity analysis

We can break timing of detection with Hough Forests in four
main operations: feature computation, forest trees traversal,
voting and non-maxima suppression. Non-maxima suppres-
sion and tree traversal have a negligible cost with respect to
feature computation and voting.

As it can be seen from Figure 3, the vanilla voting algo-
rithm takes more than ten times the feature computation time.
Voting time depends quadratically on the sampling stride and
linearly in the amount of votes casted per leaf.

Extracting many feature channels to obtain as much dis-
criminative information as possible has also a cost. These
two elements are the main bottlenecks; in the following we
show how we can render the voting algorithm computation-
ally cheap and drastically reduce the feature computation time
using a smaller and improved feature set.

3. SPEEDING UP DETECTION WITH HOUGH
FOREST

In this section we explain how we speed up the detection pro-
cess with a Hough Forest while maintaining a similar level of
accuracy. We worked on the training procedure, reducing the
computational cost of votes, and local patches sampling.

3.1. Training

Once any object detector has been trained, some negative
samples may still be given a high score by the classifier.
These samples are usually referred to as hard negatives. Hard
negative mining is a technique to improve classifiers or en-
sembles of classifiers. Gall et al. train the forest as an
ensemble of trees applying a bagging paradigm. The first 5
trees are trained with the whole dataset and the subsequent
ones are trained on the example on which the classifier fails
(false positives and false negatives) by batches of 5 trees. In
the end, they obtain a forest of 15 trees. To reduce the amount
of trees we also apply hard negative mining and iteratively
add to the negative samples newly found false positives. In-
stead of adding more trees to the forest we keep only 5 trees
and retrain them with the improved negative set. This has
clearly a 3× speed-up at runtime reducing the number of
trees that must be evaluated.



Fig. 2. Example of voting maps obtained on a sample pedestrian image (left) without clustering (center) and after clustering
votes in the leaves (right).

3.2. Reducing votes with clustering and leaf selection

After the training is complete, each leaf will contain a prob-
ability of a patch reaching that leaf belonging to an object to
be detected and set of displacements that localize it. There
are two elements of redundancy in this structure. First, leaves
with low probability will cast very low votes in the Hough
space. Second, when a leaf has many patches its displace-
ments are often clustered around few locations. Since Hough
Forests leaves can be thought as a discriminatively trained
codebook all the leaves belonging to the same word (object
part) will have similar displacements.

Considering the first issue we can safely remove low prob-
ability leaves to drastically reduce the amount of votes to be
casted. We set the discarding probability to 0.5.

Regarding the second issue, we synthesize all the votes
by clustering the displacements at each leaf. With this simple
idea it is possible to reduce and limit the complexity of the
voting procedure. Once the clusters are computed, for each
leaf the centroids µk of each cluster ck ∈ Cl are stored. The
fast voting procedure is now performed casting votes at the
average location of the cluster µk with a weight equal to the
leaf likelihood multiplied by the number of elements in the
cluster:

V (x− µk) = V (x− µk) + |ck|
|PFl |
|Pl|

(5)

where |ck| is the cardinality of cluster ck ∈ Cl.
With this approximation we obtain coarser voting maps

but with identical peak locations as can be seen in Figure 2.

3.3. Patch subsampling

We also use patch subsampling to reduce the amount of votes
to be casted. The method proposed by Gall et al. relies on a
dense sampling of the image, meaning that for every pixel of
the image features are extracted from its local neighborhood.
There is little to no changes from one pixel to another and
hence there is an amount of useless computation since two

neighbor pixels are very likely to vote with the same fore-
ground probability for the same displacement vectors. There-
fore, we investigate applying subsampling with factors of 2, 4
and 8 to further speed up the detection process while analyz-
ing the potential loss in accuracy.

4. FEATURES FOR OBJECT DETECTION

In order to obtain high accuracy Gall et al. used a diverse
set of features channels: 3 Lab image channels, the absolute
values of the first and second image derivatives and 9 HOG
like channels. They use the max/min pooled versions of this
16 channels yielding 32 channels in total. This pooling is per-
formed over regions of 5×5 in order to increase the invariance
of channels under noise. For efficiency they do not compute
an actual orientation histogram but apply a Gaussian blur with
a 5× 5 kernel on each channel thus approximating a HOG.

To reduce the feature computation time, we seek first a
reduction in feature size. In this work we propose to use an
actual histogram of orientations of the image gradient com-
puted on 9 bins. To keep the evaluation of these 9 channels
efficient we use the Integral HOG (IHOG).

We obtain gradient images Ix and Iy with a Sobel filter-
ing and compute 9 orientations intensity channels quantizing
Iθ = arctan

(
Iy
Ix

)
. We then compute integral images for each

orientation image. When we evaluate a histogram of orienta-
tions for a given patch, this can be done with 4× 9 additions
independently of the patch size. The approximation computed
by Gall et al. using the Gaussian blur requires 5×5×9 kernel
evaluations and summations. Roughly speaking we reduce
the amount of operations by a factor of 4. The final speed-up
will be lower since the integral image computation represents
an additional cost in the channel computation.

This approach has two advantages. First it allows to re-
duce the redundant computation of many overlapping patches
and avoids kernel evaluations. Second it avoids using an ap-
proximation of the HOG, potentially leading to better perfor-
mance. In our case we can have the same performance as [13]



but reducing the features from 32 to 9. To further speed-up the
method, Iθ is computed with the aid of a pre-computed look-
up-table (LUT) avoiding floating point operations to compute
the arctan(·) function.

5. EXPERIMENTS

We tested our algorithm on the TUD Pedestrians dataset [19].
The dataset is composed of 400 training frames and 250 test
720 × 576 frames. We followed the same data split as [13]
in order to obtain the fairest comparison. In the following ex-
periments, we first detail the speed-up effect of each proposed
improvement. Then we show how each of our speed enhanc-
ing techniques affect the detection accuracy. We evaluate the
accuracy with precision/recall curves and also give the equal
error rate (EER) value.

5.1. Speed-up analysis

All the proposed methods concur in consistently reducing the
time complexity of our method. We selected the best trade-
off speed/accuracy for each proposed improvements and eval-
uated the speed-up from the baseline (B) Hough forest ap-
proach.

In Figure 3 it is clear that the voting is taking more than
90% of the processing time in the approach from [13]. Ap-
plying the Foreground Selection (F) to the baseline full (B)
forests halves the time. Moreover, using our more compact
forest (S) we can reduce by a factor of 3 the computation with
respect to the full forest. Combining this two ideas we go
from ≈ 6s per image to less than 1s (S+F). Applying clus-
tering (C) alone halves the computational cost of voting. Us-
ing also patch sub-sampling (P) the voting step is now clearly
dominated by the features computation time. Switching to
our features based on Integral HOG (I) using the LUT we
reach a processing time of only 0.1s. This represents a 60X
speed-up over (B) which is the algorithm proposed in [13].
Our final model applies Foreground Selection, uses 2 pixels
subsampling and 8 clusters per leaf.

5.2. Impact on accuracy

As a first experiment we compare the hard-example mining
of [13] with our own that keeps the forest compact and remove
low probability leaves. It can be seen from Figure 4 (left)
that there is no significant drop in performance. The curves
are almost overlapped and the EER only slightly decreases
from 0.89 to 0.87. Hence without significant loss of accuracy,
this enables a 6X speed-up with regardes to the performance
of [13], see column S+F in Figure 3.

The sampling step as explained in section 3.3 affects
the timing quadratically. Unfortunately sampling votes too
coarsely affects the accuracy a lot. We can see from Figure 4
(center) that sampling with a stride of 2 pixels is equivalent
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Fig. 3. Evolution of processing time per image applying the
techniques proposed in the paper. B: Baseline [13]; F: Fore-
ground selection; S: Smaller forest; C: Clustering of displace-
ments votes; P: Patch Subsampling; I: Integral HOG features.
We obtain a 60X speed-up total with respect to [13].

to full dense sampling, while for a sampling step of 4 we
loose 3 precision-recall EER points, going further to 8 pixels
stride detection precision-recall EER drops to less than 0.60.
Hence, only the subsampling every 2 pixels is viable for the
speed-up/accuracy trade-off.

The foreground selection obtains a consistent speed-up
but the voting procedure is still aggravating. We individu-
ated the redundancy of casted location votes as a source of
inefficiency. In Figure 4 (right) we show how using 8 clusters
per leaf does not affect the accuracy at all; we start to lose ac-
curacy using very coarse clustering like 2 with the maximum
loss using the extreme case of a single vote per leaf.

6. DISCUSSION

In this paper, we have presented an object detection method
based on Hough Forest targeted for the constraints of low
powered wearable devices. We have shown how our method
can speed up the detection process enabling real time process-
ing even on a low computational power board. A thorough
analysis of the computation cost for this family of algorithms
has been performed. This analysis shed light on the main
computational bottlenecks: voting and feature computation.
We propose a better, faster and more compact features set and
an improved voting algorithm that retain high accuracy with
a final 60X speed up.
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