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In this paper, we introduce an original framework for computing local binary like-patterns on 2D mesh
manifolds (i.e., surfaces in the 3D space). This framework, dubbed mesh-LBP, preservers the simplicity and
the adaptability of the 2D LBP and has the capacity of handling both open and close mesh surfaces without
requiring normalization as compared to its 2D counterpart. We describe the foundations and the construction
of mesh-LBP and showcase the different LBP patterns that can be generated on the mesh. In the experimenta-
tion, we provide evidence of the uniform patterns in the mesh-LBP, the repeatability of its descriptors, and its
robustness to moderate shape deformations. Then, we show how the mesh-LBP descriptors can be adapted
to a number of surface local and global analysis including 3D texture classification and retrieval, and 3D face
matching. We also compare the performance of the mesh-LBP descriptors with a bunch of state of the art

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The rapid advancement of the 3D imaging technologies resulted
in a new generation of acquisition devices capable of capturing the
3D objects geometry in the physical three-dimensional space. High-
resolution 3D static scanners as well as devices with 3D dynamic
acquisition capabilities that provide a continuous flow of the 3D ge-
ometry of a scene are now available. In addition to this, the geometric
and RGB information are often captured in a synchronized way. In
this respect, the interest and the widespread use of Kinect-like cam-
eras in consumer and research applications is one of the most evident
advancement in the field.

The geometric information captured by such 3D acquisition de-
vices is typically in the form of a cloud of points, which represent
the three-dimensional coordinates of a set of samples of the 3D ob-
ject surface. However, the direct processing of these point clouds is
not convenient or even possible, so that other representation formats
have been established. Depth images are one of the most commonly
used imaging modality, since they permitted a direct extension to
the depth dimension of many computer vision and pattern recogni-
tion solutions developed for analyzing the photometric information
in 2D images. Though the possibility of a straightforward extension
of 2D techniques is attractive, this modality loses the full 3D geome-
try, by reducing it to a 2.5D projection. The full 3D shape information
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is instead preserved and encoded in a simple, compact and flexi-
ble format by the triangular mesh manifold modality. This is widely
used in many fields, such as animation, medical imaging, computer-
aided design and many others. The recent advances in shape scanning
and modeling have also allowed the integration of both photometric
and geometric information into a single support defined over a 2D
mesh-manifold. However, despite the abundance and the richness
of the mesh manifold modality, the number of solutions for shape
representation that exploit the full 3D geometry of the objects is
still limited, and not comparable with the large variety of methods
available in 2D. Indeed, many effective solutions capable of capturing
discriminative information have been developed for 2D still images
and videos, but their 3D counterpart is often not available.

An example of such successful 2D descriptors is represented by
the local binary pattern (LBP). Since its first formal definition by Ojala
et al. [1,2], the LBP has established itself as one of the most effective
local shape descriptors for image representation. It has been orig-
inally introduced for representing 2D textures in still images, but
its computational simplicity and discriminative power attracted the
attention of the image processing and pattern recognition commu-
nity for other different tasks. Rapidly, LBP has found applications
in visual inspection [3,4], remote sensing [5-7], face recognition
[8-11], facial expression recognition [12], and motion analysis
[13,14]. However, the LBP-based methods developed so far operate
either on photometric information provided by 2D color images or
on geometric information in 2D depth images. The few solutions that
extract surface features directly in 3D (typically in the form of sur-
face normals), resort to the 2D case by converting the 3D extracted
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Fig. 1. (a) Computation of the basic LBP code from the 3 x 3 neighborhood of a central pixel. Each pixel, starting from the upper-left corner is compared with the central pixel to
produce 1 if its value is greater or equal, 0 otherwise. The result is an 8-bit binary code. (b) Example of a central pixel with a circular neighborhood of given radius.

features to depth values, and then use ordinary LBP processing on 2D
images [15-17]. However, to the best of our knowledge, there is no a
framework that allows the computation of LBP on a mesh manifold.
Since LBP requires an ordered support for its computation, the major
factor that contributed in this lack is the absence of an intrinsic order
in the triangular mesh manifold. On the contrary, computation of LBP
on 2D images, either photometric or depth, benefits from the implicit
ordering of the pixels in the 2D image array.

Motivated by these facts, in this paper we address the challenge of
computing LBP on a mesh manifold by proposing an original frame-
work that we call mesh-LBP, which allows the extraction of LBP-like
patterns directly from a triangular mesh manifold, without the need
of any intermediate representation in the form of depth images. With
this framework, we can therefore build on the current 2D-LBP anal-
ysis methods, extending them to mesh manifolds as well as to the
modality that also embeds photometric information into mesh mod-
els. To motivate our solution and to relate it to the state of the art
approaches, next we provide an overview of the LBP literature.

1.1. Related work

According to its original definition [1], the LBP operator assigns
labels to image pixels performing the following steps: given a pixel
(central pixel), firstits 3 x 3 neighborhood is considered, and the gray
value of each pixel in the neighborhood is thresholded with the value
of the central pixel (i.e., each pixel in the neighborhood is regarded
as 1 if its value is greater or equal to the central value, 0 otherwise);
then, the sequence of 0/1 in the neighborhood of the central pixel is
regarded as a binary number according to a positional coding con-
vention and considered as the LBP value of the central pixel. This is
shown in Fig. 1(a), where the upper left pixel in the neighborhood is
regarded as the most significant bit in the final code. This eight bits
number encodes the mutual relationship between the gray levels of
the central pixel and of its neighboring pixels. The histogram of the
numbers obtained in such a way can then be used as a texture descrip-
tor of a region or of an entire image. This operator is distinguished
by its simplicity, efficient computation, and invariance to monotonic
gray-level transformations. Later, the same authors of the basic LBP
proposed an extended version that can operate on circular neighbor-
hood of different radii [2], also allowing sub-pixel alterations (see
Fig. 1(b)).

These initial formulations led subsequently to the definition of
other neighborhood variants, like the oriented elliptic neighborhood
LBP (elongated LBP) proposed by Liao and Chung [ 18], which accounts
for anisotropic information, and the multi-block LBP (MB-LBP) that
compares the averages of the gray level intensity of neighboring pix-
els rather than the value of individual pixels, in order to capture
macrostructural features in the image [19]. Other versions have been
proposed to improve the discriminative power of the descriptor, such
as the improved LBP (ILBP) [20], in which pixel values are compared
with the average of the neighborhood, and the extended LBP (ELBP)
[21] which encodes, in addition to the binary comparison between
pixels values, the amplitude of their difference using additive binary

digits. To improve the robustness of LBP, Tan and Triggs [22] intro-
duced the so-called local ternary pattern (LTP), which substitutes the
original binary code by a three-values code (1, 0 and -1) by means of
a user-defined threshold. This new operator addressed the sensitiv-
ity to noise, though at the cost of losing the invariance to monotonic
gray-level transformations. A fuzzy-logic version of the LTP was pro-
posed later in [23], where a fuzzy membership function substituted
the crisp three-states association used in [22]. A more complete list
and discussion on the many LBP variants appeared in the literature
can be found in [24].

Considering the case of 3D shape analysis, most if not all the LBP-
based approaches have been developed for face recognition appli-
cations. Many of the techniques developed in this context operate
on standard depth images, where the z-coordinate is mapped to a
gray-level value. This format allowed a straightforward application of
the 2D-LBP operator as it was demonstrated in the pioneering work
of Li et al. [25]. Later, Huang et al. [26] proposed a 3D-LBP opera-
tor that also encodes depth differences of neighboring pixels. More
recently, Huang et al. [27] extended the 3D-LBP to a multiscale ex-
tended LBP (eLBP), which consists of several LBP codes in multiple
layers accounting for the exact gray value differences between the
central pixel and its neighbors. Sandbach et al. [15] proposed a local
normal binary pattern (LNBP), which used the angle between nor-
mals at two points, rather than the depth value to obtain the local
binary code. Similar to this, in [16] the surface normals are extracted
in 3D, then the values of the normal components along the direction
of the three coordinate axes are interpreted as depth values, and LBP
is computed on these depth maps reporting the values of the nor-
mal components. The idea of exploiting surface normals is further
extended in [17], where azimuthal projection distance images are
constructed. The azimuthal equidistant projection is able to project
normals onto points in an Euclidean space according to the direction.
Though the projected information is not the depth, depending on the
normals of the 3D surface, 2D LBP are still computed on the projec-
tion images. Fehr and Burkhardt [28] attempted a 3D-LBP definition
specifically tailored for volumetric data by sampling a sphere of a
given radius around a central voxel. The approach is computationally
expensive in that the rotation-invariance had to be addressed with
complex techniques involving spherical correlation in the frequency
domain.

1.2. Paper contribution and organization

The analysis above evidences that the LBP descriptor has attracted
great interest for the analysis of 2D images, mainly for its simple
and efficient computation and for the effective results that can be
achieved relying on the LBP theory. Recently, various attempts have
been made for extending the LBP framework to the case of 3D meshes,
but none of them succeeded in addressing all the issues posed by the
need for a simple and effective processing directly performed on a
mesh-manifold. Indeed, existing solutions address the LBP extraction
on 3D meshes by resorting to the easier 2D case, through the projec-
tion of 3D meshes on 2D depth images or by computing normals or
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normal-related quantities in 3D and mapping them to a 2D map of
values, which is then processed following the conventional LBP ap-
proach.

In this paper, we propose a framework that we call mesh-LBP, for
designing and extracting local binary patterns directly from a mesh-
manifold. In addition to its originality, the proposed framework is
characterized by the following features:

o Effectiveness—The mesh-LBP operates directly on 3D triangular
meshes, thus avoiding any expensive pre-processing, such as reg-
istration and normalization, required to obtain depth images.
Generalization—The ability of handling mesh data, permits the
mesh-LBP to deal with a larger spectrum of surfaces (e.g., closed,
open, self-occluded) as compared to its counterpart defined on
depth images. In addition, geometric and photometric informa-
tion can be managed in a unified framework.

o Adaptability—This framework can be adapted to hold most if not
all the LBP variants proposed in the literature for 2D and depth
images.

Simplicity—The mesh-LBP preserves the simplicity of the original
LBP, not requiring any surface parameterization, apart the stan-
dard mesh arrangement into facets and vertex arrays, while keep-
ing linear computational complexity.

In addition to present the framework for computing mesh-LBP
and show its properties, in this work we propose and experiment
the mesh-LBP as a 3D shape descriptor in several visual recognition
tasks. In particular, we evidence the capability of mesh-LBP to be used
as 3D texture descriptor for classification and retrieval of 3D texture
patches. Furthermore, we successfully applied the mesh-LBP to the
problem of 3D face recognition, showing the potential of the descrip-
tor for this task also in the presence of marked facial expressions.

The rest of the paper is organized as follows: In Section 2, we
introduce the foundations of the mesh-LBP and present its multi-
resolution extension. In Section 3, the properties of mesh-LBP are
investigated, evidencing the robustness of the descriptor to rotations
and irregular tessellations of the mesh, and showing the existence of
uniform and repeatable patterns. Experimental evidence of the po-
tential of the mesh-LBP in different application scenarios that involve
local and global representations, and in comparison to state of the
art solutions is reported in Section 4. Finally, concluding remarks and
future research directions are drawn in Section 5.

2. The mesh-LBP framework

In defining the 2D-LBP framework, a central role is played by the
gridded structure of images, which permits a natural ordering and
traversing of pixels. This intrinsic simplicity in computing LBP on the
image domain has inspired direct extension of LBP to depth images
capturing 3D information, while keeping the image structure. Our ap-
proach is completely different from these previous extensions of LBP
to the 3D domain, since it aims to compute LBP-like patterns directly
onatriangular mesh, rather than from its depth image counterpart. To
this end, the first requirement for extracting mesh-LBP is a scheme for
constructing rings of facets around a central facet and for traversing
them in an ordered fashion.

Let S = (V, F) be the triangular mesh representation of an open or
closed surface, where V and F are, respectively, the set of vertices and
facets of the mesh. In the following, we assume the mesh regular, i.e.,
each vertex has a valence of six. This property requires each vertex is
shared between six facets of the mesh, but we will show later that our
framework can also cope with meshes that do not comply with this
ideal case. Let us consider a convex contour on the mesh, given by the
edges of a set of facets. We start considering the particular case where
the convex contour is constituted by the three edges of an individual
facet (central facet). In Fig. 2(a), this case is shown by the white central
facet, indicated with Fin since it is inside the convex contour given by

Fig. 2. Construction of an ordered ring of facets. (a) Initial Fout facets (colored in blue)
on a convex contour given by the three edges of a central facet (Fin), and the Fgap facets
(colored in yellow) bridging the gap between a pair of consecutive Fout facets; (b) the
1st ring around the central facet given by the union of the Fout and Fgap facets. Facets
of the ring are ordered counter clockwise. (For the interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

its three edges. Then, we consider the facets that share an edge with
the Fin facet (the blue facets surrounding the Fin facet in Fig. 2(a)). We
call these facets Fout facets, as they seem pointing outside the convex
contour defined by Fin.

Let us assume that the Fout facets are initially ordered in a circular
fashion across the contour given by Fin (in Fig. 2(a) the Fout facets are
numbered from 1 to 3 in an anti-clockwise fashion). Given that initial
arrangement, we bridge the gap between each pair of consecutive
Fout facets, that is we extract the sequence of adjacent facets, located
between the two consecutive Fout facets and which share their com-
mon verteX (the vertex on the Fin contour) and are different from Fin.
We call these facets Fgap (see the yellow facets in Fig. 2(a), bridg-
ing the gap between the two consecutive facets fout; and fout, ). The
“Bridge” procedure reported in pseudo-code in Algorithm 1 is used

Algorithm 1 Bridge.

Input: fout;, fout; 1 two consecutive Fout facets sharing a vertex; fin;
facet which shares an edge with fout;

Output: Fgap; set of consecutive fgap facets bridging the gap between
fout; and fout;, 4

procedure BRIDGE(fout;, fout;, 1, fin;)
Fgap; =]
v < vertex shared by (fout;, fout;, 1)
gf < facet adjacent to fout;, different from fin; and containing v
prev < fout;
while gf # fout;, | do
append gf to Fgap;
new_gf < facet adjacent to gf, different from prev and
containing v
prev < gf
gf < new_gf
end while
return Fgap;
end procedure

to compute the Fgap facets. By iterating the process of bridging the
gap between two consecutive Fout facets with the Fgap facets, results
in a ring of facets that are ordered in a circular fashion (see the ring
in Fig. 2(b)). The resulting arrangement of the ring facets inherits the
same direction (clockwise or anti-clockwise) of the initial sequence
of Fout facets. The “GetRing” procedure of Algorithm 2 describes the
ring construction, which is obtained by iterative calls to the “Bridge”
procedure, resulting in a linear time complexity. We dubbed such ob-
tained ordered ring as ordered ring facets (ORF). It can be observed
that for the particular case of a contour formed by the three edges
of an individual facet (and for a regular mesh), the obtained ring is
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Fig. 3. Construction of multi-resolution mesh-LBP: (a) Extraction of the next set of Fout facets, as the facets adjacent to Fgap, which are not part of the current ring; (b) Extracting
the Fgap facets of the second ordered ring; (c) Five concentric ordered rings. Notice that the first facet of each ring (marked by 1) is located at the same relative position.

Algorithm 2 GetRing.

Input: Fout, set of n ordered facets, fouty, fout,, ..., fout,, lying on a
convex contour; Fin, set of n ordered facets, finq, fin,, ..., fin,, one-
to-one adjacent to the Fout facets and located inside the region
delimited by the convex contour (depending on the contour, Fin
might include duplicates)

Output: Ring, set of facets in a ring-wise order

procedure GETRING(Fout, Fin)
Ring = |
for all (fout;, foutiy,,1),i < 1,...,ndo
append fout; to Ring
Fgap; < BRIDGE(fout;, foutiyn. 1, fin;)
append Fgap; to Ring
end for
return Ring
end procedure

composed of 12 ordered facets union of the Fout and Fgap facets, as
shown in Fig. 2(b).

Let h(f) : S — R, be a scalar function defined on the mesh S (e.g.,
photometric data or curvature of the surface). The circular ordering
of the facets obtained with ORF allows us to compute a local binary
operator in the same way as in the standard LBP. In fact, by compar-
ing the scalar value of the facets in the ordered ring with the scalar
value computed for the central facet results into a binary pattern
(i.e., sequence of 0 and 1 digits). According to this, we define the ba-
sic mesh-LBP operator at a facet f. by thresholding its ordered ring
neighborhood f;:

11 >
meshLBP(.) = 3 s(h(i) — h() o), swo=1{ %= ()
pard x<0

where «(k) is a weighting function applied to the bits of the binary
pattern. Different definitions of the «(k) permit us to obtain different
mesh-LBP values from the binary pattern derived from the central
facet and its ring neighborhood: for example, c(k) = 2¥ results into
the mesh counterpart of the basic LBP operator firstly suggested by
Ojala et al. [1]; for a(k) = 1, the sum of the digits of the pattern is
computed (i.e., the sum is equal to the number of bits set to 1). In the
experiments, we will refer to these two functions as the «; and «;
operators, respectively. Finally, we remark here that for the present
discussion it is not necessary to detail the particular scalar function
h(f) computed on the mesh surface. The effect of several different
choices of this function will be given in Sections 3 and 4.

2.1. Multi-resolution mesh-LBP

The potential of the mesh-LBP descriptor can be fully exploited
when the surface analysis is extended to neighborhood of the central
facet larger than that constituted by the first ORF. This requires the
construction of subsequent concentric rings, still using the concept of
OREF. This extends our framework to a multi-resolution mesh-LBP.

From Fig. 3(a), we can observe that the first ORF is indeed a con-
vex contour determined by the edges of the Fgap facets. This provides
an immediate extension of the ORF at subsequent rings. First, from
the first ring, the sequence of facets that are one-to-one adjacent
to the Fgap facets are extracted (Fig. 3(a)). This sequence, which in-
herits the order property of the Fgap facets, constitutes the set of
Fout facets for the subsequent ring. So, by filling the gap between
each two consecutive facets of this sequence, a new ring, which ex-
hibits the same ordered structure of its predecessor is obtained (Fig.
3(b)). By iterating this procedure, we build a sequence of concentric
ordered rings, which represent the primitive entity for computing
multi-resolution mesh-LBP (Fig. 3(c)). Details of the procedure used
for computing the multi-ring structure are reported in Algorithm 3.In
this case, the “GetRing” procedure of Algorithm 2 is slightly modified,
so that it also returns the set of Fgap facets of the current ring and the
set of Fout facets of the subsequent ring (indicated as NewFout).

Algorithm 3 MultiRing.

Input: Fout_root, initial set of ordered Fout facets; Fin_root, initial
set of ordered Fin facets one-to-one adjacent to the Fout facets; Nr,
number of rings to be constructed around Fin_root

Output: Rings, set of Nr rings of ordered facets constructed around
Fin_root

procedure MULTIRING(Fout_root, Fin_root, Nr)
Rings <[]
Fout < Fout_root
Fin < Fin_root
fori < 1,Nrdo
(Ring, NewFout, Fgap) < GETRING(Fout, Fin)
append Ring to Rings
Fout < NewFout
Fin < Fgap
end for
return Rings
end procedure

In a real mesh, because of mesh tessellation irregularities, it might
happen that the “GetRing” procedure gets trapped into a closed loop
resulting in NewFout facets being located on the current ring or on du-
plicated instances. We fix such potential anomalies by simply check-
ing the consistency of the obtained NewFout facets after each iteration.

Given a multi-ring constructed around a central facet f;, the multi-
resolution mesh-LBP operator is derived as follows:

m—1
meshLBP;, (fo) = > s(h(fy) — h(f,)) - a(k), ()
k=0
where r is the ring number, and m is the number of facets uniformly
spaced on the ring. The parameters r and m control, respectively, the
radial resolution and the azimuthal quantization of the operator.
Finally, we observe that the topology of the neighborhood from
which the mesh-LBP features are computed can be changed to ac-
commodate the specificities of a given shape analysis application. In
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Fig.4. Mesh models used in the experiment for detecting uniform patterns: (a) Portion of a pot (MIT CSAIL textured 3D models). (b) Face surface (BU-3DFE). (c) Cat model (TOSCA

high-resolution).

fact, it can be shown that most, if not all, the different LBP neighbor-
hood and operator variants proposed in the literature can be easily
derived from the ordered rings structure of the mesh-LBP [29].

3. Mesh-LBP properties

The mesh-LBP framework reveals some interesting properties that
are evidenced in the following: in Sections 3.1 and 3.2, we show two
methods that endow the mesh-LBP representation of the required
robustness to rotation and non-uniform tessellation of the mesh; in
Sections 3.3 and 3.4, the existence of uniform patterns and the re-
peatability of mesh-LBP are evidenced.

3.1. Achieving invariance to facets ordering

The ORF approach provides an easy and efficient algorithm to cast
the facets of a mesh to an ordered ring structure. However, bringing
OREF to the mesh-LBP framework requires some invariant properties
be fulfilled, so as to permit repeatable computation of the representa-
tion. In fact, in order to make the mesh-LBP invariant to the ordering
of the facets in the ring and its traversal, two aspects should be ad-
dressed: The position of the first facet (i.e., the first Fout facet) in the
ring, that is from which of the facets the ring starts from; the direction
of the ring traversal (clockwise or anti-clockwise). The last aspect can
be easily fixed by orienting the normals of the mesh-manifold. Some
common solutions used to address the first aspect are:

o Performing a circular bit-wise shift of the binary pattern, as was
suggested in the standard LBP [2], and selecting as initial facet
that resulting in the minimum LBP value. However, this method
reduces the range of the LBP values, and might seriously affect the
discriminative power of the operator [30].

Adopting intrinsically rotation invariant descriptors only. This set
includes the number of transitions, the number of 1-valued bits,
and the number of 1-valued runs of a given length in the binary
patterns. This method preserves the range of the LBP values, yet
might still compromise the discrimination power, though to a less
extent than the first method.

Considering all the binary pattern values that originate by moving
theinitial facet along the ring, but this solution creates redundancy
and further burden the computation.

In this work, we have adopted a simpler yet practical solution.
Given a sequence of ordered rings, we select as first facet f] in each
ring r, the facet f; which satisfies the following condition:

miin dist(co. cf),  fi € ring-r, (3)
where dist(.) is the Euclidean distance, ¢ is the center of facet f; in
the ring-r (union of the Fout and Fgap facets), and ¢, is the centroid
of the centers of the facets in the ring weighted by their area. Start-
ing from f7, the other facets in the ring are traversed in a clock-
wise manner. Using this approach throughout all the experiments of
Sections 3 and 4, we can show its effective applicability in various
contexts.

3.2. Mesh irregular tessellation

In Section 2, we assumed the meshes to be regular. When this con-
dition holds, the number of facets v across the rings evolves according
to the following arithmetic progression from ring i to ring i + 1:

Viy1 = Vi + 12. (4)

Actually, due to local irregularities in the tessellation of real
meshes, the assumption of vertex valence of six cannot hold. Conse-
quently, the regular progression of Eq. (4) is not satisfied, thus ham-
pering the repeatability of the mesh-LBP. This issue can be addressed
in different ways:

« Adding a pre-processing stage that regularizes the density of the
mesh triangulation.

o Deriving iso-geodesic contours from the ordered rings that act as
a support region for computing mesh-LBP operators.

o Applying the local density invariant smoothing proposed by
Darom and Keller [31] to the ring vertices around the central facet.

In our experiments, we rather defined a simpler technique that
interpolates the scalar function used to compute the mesh-LBP across
each ring, so as to obtain a sequence of samples that matches the
ideal progression. In the experiments, we found that the mesh-LBP
computed using this technique can actually cope to a large extent
with mesh irregularities.

3.3. Uniform patterns

In the 2D-LBP, Ojala et al. [2] noticed that the majority of the pat-
terns in textured 2D images have a number of bitwise 0-1 transitions
equal at most to 2. These patterns were called “uniform”. Based on
this result, in our work we investigated the statistics of mesh-LBP
values in order to verify if patterns with a preponderant recurrence
can be identified. To this end, we considered a representative set of
three surface meshes collected from different sources, each used as
representative of different classes of 3D objects. The first surface is
a portion of a pot object from the “MIT CSAIL textured 3D models
database” [32]. This object exhibits textured shape patterns on the
surface. The second surface represents a face scan from the “Bing-
hamton University 3D facial expression database” (BU-3DFE) [33],
and shows the case of an open surface, with regions of different 3D
textures. The third one is a closed surface of a cat model from the
“TOSCA high-resolution database” [34]. These models are shown in
Fig. 4(a), (b) and (c), respectively.

Four scalar functions on the mesh manifold have been studied,
namely, the mean curvature (H), the Gaussian curvature (K), the
curvedness (C), and the angle between facets normal (D). For each func-
tion, we counted the number of transitions U in the binary patterns
computed by using the mesh-LBP operator of Eq. (2) with a5 (k) = 2K,
across six levels of spatial resolution (r from 1 to 6), and using 12 sam-
ples for the azimuthal quantization (m = 12 at each ). The results are
depicted in Fig. 5, considering as uniform the patterns of 12 bits with
a number of 0-1 transitions less than or equal to four (i.e., U < 4). It
can be observed that the number of uniform patterns exceeds 90% up
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Fig. 5. Percentage of facets whose mesh-LBP computed for the three meshes have a
number of transitions U less than or equal to 4 (legend: H—mean curvature; K—Gaussian
curvature; C—curvedness; D—angle between facets normals).

to the third ring, across the four scalar functions, for all the three sur-
faces. The angle between facets normal (D) is the function exhibiting
the best uniformity with an overall percentage above 80%. The mean
curvature and the curvedness show virtually the same rates. Overall,
all the scalar functions show a percentage of uniform patterns above
70%. These observations provide an evidence on the existence of a
“uniformity” aspect of the mesh-LBP computed on triangular mesh
manifolds. As a consequence, mesh-LBP has the potential of adapting
to the uniformity-driven description suggested by Ojala et al. [2].

The uniformity aspect is particularly relevant when the o, (k) =
2k weighting function is used for deriving the mesh-LBP patterns.
In fact, using 12 samples per ring (i.e., azimuthal quantization m =
12), the mesh-LBP takes values in [0,4095]. Using a histogram rep-
resentation to account for the frequency of the patterns in a local
support, this results in a large histogram with 4096 bins. Considering
a uniform/non-uniform mesh-LBP partition, the number of histogram
bins can be reduced by using distinct bins for uniform patterns, and
a single bin for all the non-uniform one. For example, considering
as uniform the patterns with a number of transitions equal at most
to four (U < 4), 1123 bins are sufficient to account for the different
uniform patterns, while one bin is used for all the remaining patterns
(the 2973 non-uniform ones). In this way, a histogram of 1124 bins
is sufficient to capture the variability of mesh-LBP. For the oq(k) =
1 weighting function, instead, the number of possible different pat-
terns is 13, so that the uniform/non-uniform distinction is not useful
in practice. Based on the above, in the remaining of the paper, if not
stated differently, when the mesh-LBP is used in combination with
o, (k), we exploit the uniformity aspect to reduce the dimensionality
of the descriptor, hence reducing the space and computational cost
of histogram matching, and improve its descriptiveness.

3.4. Repeatability

Repeatability is a fundamental property for 2D or 3D descriptors,
measuring the capability of the extracted representation to assume
comparable values when computed from corresponding positions in
different acquisitions of a same scene or object. According to this,
the mesh-LBP repeatability measures the capability of the descriptor
to assume comparable values when extracted from corresponding
facets of different instances (i.e., scans) of a same 3D object. To prove
this property, we acquired 32 facial scans of a same subject with
neutral or moderate facial expressions. The four scalar surface func-
tions reported in Section 3.3, namely, mean curvature, Gaussian cur-
vature, curvedness and angle between facets normal have been used for

computing mesh-LBP for each facet of the meshes. For each of these
functions, we considered two different mesh-LBP operators, that is,
a1(k) =1 and a5 (k) = 2k (see Eqgs. (1) and (2)). In addition, for o5 (k)
we considered the variant in which the operator is applied just to the
patterns with a number of transitions U not greater than 4 (i.e., uni-
form patterns). Different spatial resolutions corresponding to eight
ringsr =1, ..., 8 have been also accounted, whereas the number of
samples is kept constant to m = 12 at each r. To compute the repeata-
bility of mesh-LBP, we followed an approach similar to that proposed
for 3D keypoints by Mian at al. [35]. With this solution, first a scan
is selected as reference, and each of the other scan (probe) is aligned
to the reference one using ICP registration. Then, for each facet in the
probe, the nearest neighbor facet in the reference is found, whose
mesh-LBP value is equal to the mesh-LBP value of the probe facet (the
nearest neighbor distance between facets is computed between the
3D coordinates of their centroid). This operation is repeated for each
facet in the probe and the distances computed as above are recorded.
Varying a proximity radius around the facets it is possible to count
the percentage of repeated mesh-LBP values between probe and ref-
erence scans for each value of the radius. The overall repeatability is
finally obtained by iteratively using one of the scan as reference and
all the remaining as probes.

Fig. 6(a)-(c) show the obtained average repeatability as a function
of increasing values of the proximity radius, respectively, for the three
used mesh-LBP operator functions. The plots reported in the figure
concern the mesh-LBP computed on the 1st-ring (i.e.,r=1), buta sim-
ilar behavior resulted for the rings at increasing values of r. In general,
we observe that the Gaussian curvature and the angle between facets
normal show a close behavior, obtaining the highest repeatability in
all the cases. The mean curvature and curvedness, instead, score simi-
lar results each other, showing a lower performance especially for the
o1 and a5 operators. Interestingly, for all the scalar surface functions
the best repeatability is obtained for the v, operator when applied to
uniform patterns (case (c) in Fig. 6).

4. Applications

From the formal definition and properties given in the previous
sections, it emerges that the mesh-LBP is based upon a notion of local
description, which captures differential information of the surface.
This makes it not meant to handle general 3D shapes, but rather ap-
propriate for the class of 2D-manifold objects exhibiting geometric
texture of the surface or local shape variation. We believe that mesh-
LBP is best suited for addressing intra-class classification/retrieval
problems, in which objects have a similar global structure and differ-
ent local shape characteristics, rather than 3D objects retrieval appli-
cations where objects exhibit large global shape variability. According
to this, mesh-LBP would not be the appropriate tool for describing 3D
synthetic objects created by modelling software and characterized by
smooth surfaces (like, for example, those included in the Princeton
Shape Benchmark dataset [36]), or for evaluating the similarity be-
tween 3D shapes characterized by different classes of transformations
(example of 3D shapes transformed in different classes by isometry,
topology, sampling, scale, holes, noise, are included in the SHREC10
robust correspondence 3D shape benchmark [37]).

Based on these considerations, we investigated the exploitation of
the mesh-LBP in three different surface analysis applications, which
involve both local and global representations of geometric texture of
the surface, namely, 3D texture classification (Section 4.1), 3D texture
retrieval (Section 4.2), and 3D face matching (Section 4.3).

4.1. Discriminating 3D texture patterns
In this experiment, we investigated the potential of the mesh-LBP

for discriminating texture patterns on 2D mesh-manifolds. We re-
mark here that in this study textures are intended as 3D repeatable
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Fig. 7. Top: 3D texture samples from the 10 classes. Bottom: The corresponding his-

tograms obtained with the scalar surface function angle between facets normal, and the

oy operator, using 7 rings and 12 samples per ring (histograms with 7 rows and 13 ®
columns). as

patterns which corrugate the surface geometry of a 3D object mesh.

This concept is completely different and separated from the 2D tex- Fig. 8. Matrices reporting the distances between all the instances of the texture classes

ture, which is related to the photometric appearance of the model (30 instances per class). Distanges are computed for the mesh-LBP obtained using H,

and. if present is coded by 12D image. In so doing our goal is to K, SI, aquscalar surfa;e dgscnptors (top row for oy and bottom row for &, operator,
’ > ’ respectively). The classification accuracy, estimated as the percentage of occurrences

probe the capability of mesh-LBP as a framework for 3D texture clas- where the inter-class distance is greater than the intra-class distance across all the

sification, rather than to elaborate a proper method for such task. As classes is also reported for each descriptor.

an example, the task of classifying 3D texture patterns is relevant for

medical applications, where 3D scans or reconstructions of biologi-

cal organs and tissues can exhibit different geometric patterns of the

surface that can be used to distinguish between diseased and normal using four scalar functions, namely, the mean curvature (H), the Gaus-

response. sian curvature (K), the shape index (SI) (instead of the curvedness) and
In the following, we propose an experimentation on surface sam- the angle between facets normal (D). As an example, Fig. 7 (second

ples exhibiting a variety of 3D shape textures, collected from eight dif- row) depicts histogram instances of the first type (i.e., &1 operator)

ferent object models of the “MIT CSAIL textured 3D models database” obtained with the angle between facets normal.

[32]. These objects are bagel, bird, gargoyle, head, lion, owl, plaque The assessment of the discriminative power of the different de-

and pot. All these models are characterized by a reasonably uniform scriptors has been performed by considering 30 different instances
mesh, and we were able to identify 10 distinct 3D texture patterns for each texture class. For each of them, the different descriptors have
from them, as reported in the first row of Fig. 7 (in particular, three been computed. Fig. 8 reports the distance matrices between all the
texture patterns were derived from the owl object). For each sam- classes’ instances (i.e., 30 instances for each of the 10 classes) mapped
ple, we computed a 1D-histogram of the mesh-LBP (Eq. (2)) using in ascending order to a gray-level scale from black to white. The in-
the operator functions a1(k) = 1 and a»(k) = 2%, a varying spatial stances have been arranged and ordered class-wise, that is, the first
resolution r = 1, ..., 7, and an azimuthal quantization m = 12. For 30 instances correspond to the first class, the second 30 instances
the aq operator, the resulting mesh-LBP take values in [0,12], and to the second class, etc. Likewise the distance matrix is arranged in
these values are accumulated in a 1D histogram with 13 bins for each 100 blocks, where the diagonal ones correspond to the 30 x 30 intra-
ring. For the o5 operator, for which the range of mesh-LBP is [0,4095], class distance matrix and the others blocks to the 30 x 30 inter-class
we adopted a uniform/non-uniform mesh-LBP partition, that is 1123 distance matrix. Results for the mesh-LBP computed with the scalar
bins are used for the different uniform patterns having a number of functions H, K, SI and D, for the operator «; and o, are depicted in
transitions equal at most to four, and one bin for all the remaining the top and bottom row of the figure, respectively. In the mesh-LBP
patterns (the 2973 non-uniform ones). Based on this setting, two 2D distance matrices, we can easily distinguish the diagonal blocks rep-
histograms of size (7,13) and (7,1124) are computed for each texture resenting the intra-class distances blocks by their dark colors when

(i.e., each row of the histogram corresponds to the mesh-LBP com- compared to the other blocks. The classification accuracy, estimated
puted for a ring), which are associated, respectively, with the o1 and as the percentage of occurrences where the inter-class distance is
oy operators. greater than the intra-class distance across all the classes is also re-

To compute the distance between two histograms H; and H,, the ported for each descriptor on top of the distance matrices in Fig. 8. A
complement of the Bhattacharyya coefficient B(.), i.e., /1 — B(H1, H2) perfect classification of 100% is obtained in all the cases. These results
was used. We repeated the histogram computation for each model confirm the discriminant capability of the mesh-LBP descriptors.
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Fig.9. Matrices reporting the distances between all the instances of the texture classes
(30 instances per class). Distances are computed for: three variants of 2D-LBP on depth
images (top); shape distribution variants (middle); geometric histogram (bottom left);
spin images (bottom center); mesh-HOG (bottom right) computed for different surface
scalar functions, namely, H, K and SI. For each descriptor, the overall classification
accuracy is also reported in percentage.

4.1.1. Comparative evaluation

We compared the mesh-LBP with other standard 3D surface de-
scriptors including the 2D-LBP on depth images [25], geometric his-
tograms (GH) [38], and the shape distribution variants [39], namely, the
distance between a fixed point and one random point on the surface
(D1), the distance between two random points on the surface (D2), the
square root of the area of the triangle between three random points
on the surface (D3), the cube root of the volume of the tetrahedron
between four random points on the surface (D4), and the angle be-
tween three random points on the surface (A3). In addition, we also
considered the spin-images [40] and the mesh-HOG [41] descriptors.

Using these descriptors, we performed the same experiments dis-
cussed above for the mesh-LBP. Experiments with 2D-LBP descrip-
tors on depth images differ by the fact these have been derived from
depth images of the textured surfaces. For these experiments, for each
texture class, samples were constructed at different rotation angles,
varying from 0 to 277 /3, around the surfaces principal orientation,
to avoid self-occlusion effects. For each sample, we computed multi-
resolution 2D-LBP patterns with nearly the setting than their mesh-
LBP counterparts. That is, a radial resolution varying from 1 to 7, and
an azimuthal resolution of 8 across all the radii. This analysis has been
performed for three 2D-LBP variants, namely, the uniform LBP (u2),
the rotation invariant LBP (ri) and the uniform rotation-invariant LBP
(riu2).

The distance matrices between all the classes’ instances, related to
the aforementioned standard descriptors are reported in Fig. 9. Com-
paring these distance matrices with those obtained for the mesh-LBP
using different descriptors and reported in Fig. 8, it clearly emerges the
performance improvement obtained using the mesh-LBP approach.

To best understand the structure of the distance matrix, while
appreciating the discriminative superiority of the mesh-LBP, we de-
picted in Fig. 10 the first row of the distance matrix for each of the
mesh-LBP (&, D) and spin image descriptors.

4.1.2. Robustness to mesh irregularities

Ideally, a mesh is formed entirely by equal-sized triangles (not
necessarily equilateral), and 6-valence vertices. As we mentioned pre-
viously, though nowadays triangle mesh surfaces acquired by shape
digitizers have overall good quality in terms of uniformity, they often
contain areas of non-uniform tessellation showing extremum trian-
gles, such as needle or flat triangles, and whereby the assumption
of vertex valence of six does not hold. These two aspects make the

- --+—,
qF ?q;t?
ik 3F

Fig. 10. First bloc-rows of the distance matrices computed for the (&3, D) mesh-LBP
descriptor (see Fig. 8) and the spin images descriptor (see Fig. 9). Blocks of the first
descriptor are quite homogeneous and distinguishable as compared to the second
descriptor. We can also notice, by zooming, the different distances in each 30 x 30
block in the first block of each row.

arithmetic progression of the number of facets across the rings, ex-
pressed by Eq. (4) in Section 3.2 no longer satisfied. We addressed
this issue by interpolating or sub-sampling the scalar function on the
mesh across the rings. In this experimentation, we assess to what
extent this procedure can cope with mesh irregularities that can be
encountered in real mesh data. To simulate the two aforementioned
aspects that corrupt the mesh uniformity, we propose the corruption
procedure reported in Algorithm 4.

Algorithm 4 Triangular mesh corruption procedure.
procedure MESHCORRUPT( )
form=1:8do
forn=1:5do
Apply random perturbation to m - 10% randomly selected
vertices
Collapse n - 10% randomly selected edges
end for
end for
end procedure

The random perturbation consists of applying the following trans-
formation to one of the vertex v of the facet:

tv)=v+ol, (5)

where o is a random positive variable taking values in the range [0.2,
0.8], and ii is a unit vector collinear with the line joining the vertex v
to the middle point of its opposite edge. Fig. 11 illustrates the effect of
the mesh corruption procedure of Algorithm 4, by reporting examples
of the transformation of Eq. (5), used for randomly perturb the vertex
position, and the mesh collapse procedure. In particular, the effects
of perturbing a verte, of collapsing together the vertices of an edge,
and the combination of a vertex perturbation followed by an edge
collapse are shown in Fig. 11(a), (b) and (c), respectively.

Combining the transformation of Eq. (5) and the edge collapsing
aims to obtain mesh irregularity instances close to the ones encoun-
tered in real mesh data. The extreme case of this corruption scheme
is represented by meshes where 80% of the facets and 50% of the
edges have undergone vertex perturbation and edge collapsing, re-
spectively. Though real mesh data rarely exhibit such extreme corrup-
tion, at least after a basic pre-processing, considering such extreme
cases, allows us to best assess the extent to which the adopted in-
terpolation/subsampling procedure can address mesh irregularities.
We applied this corrupting procedure to the textured shape surfaces
included in the 10 classes employed in the 3D texture matching ex-
periments discussed above. For each texture class, we obtained 40
sets of mesh instances at increasing corruption amplitudes. Referring
to Algorithm 4, these sets are obtained by combining the 8 percent-
ages of vertex perturbation (form = 1, ..., 8), with the 5 percentages
of edge collapsing (forn =1, ...,5), each combination representing
a different level [ of corruption (I = (m — 1)%5 + n). In turn, each set
contains the 30 instances of the class. Fig. 12 depicts an original mesh
surface and four samples of corrupted instances at different levels.

For each mesh corruption level, we performed the full classifi-
cation procedure involving all the 30 instances of each class. The
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Fig. 12. The original mesh (left) and four corrupted instances at levels 1, 11, 21, and 31 (e.g., according to Algorithm 4, a level of corruption equal to 21, correspond to randomly

perturbing 50% of vertices and 10% of edges).
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Fig. 13. Classification accuracy obtained for the different mesh corruption levels: (a) a(k) = 1; (b) ar(k) = 2.

obtained classification rates are depicted in Fig. 13(a) and (b). It can
be observed that all the mesh-LBP descriptors keep a classification ac-
curacy above 99% up to the 30th corruption level, and practically 100%
up to the 20th level, especially for the (k) = 2¥ variants (Fig. 13(b)).
For this category, we notice in particular that with Gaussian curvature
(K), the descriptor keeps above 99% accuracy across all the corruption
levels, seconded by the SI, which shows similar performance up to the
37th level. In the first category (Fig. 13(a)), the angle between facets
normal is virtually scoring 100% till the 29th level. Overall, the re-
sults indicate a clear resistance of the mesh-LBP descriptors to mesh
irregularities, and bring evidence of the validity of the proposed in-
terpolation/subsampling procedure.

4.1.3. Global deformation

In this experiment, we studied the behavior of mesh-LBP descrip-
tors when the surface undergoes a global and uniform deformation,
that is a deformation that affects the overall shape of the surface,
while preserving the 3D texture of the shape.

For this purpose, we applied a series of circular bending at in-
creasing amplitudes to the 10 3D textured surfaces. The bending
is performed around the major axis of the surface. Such operation
simulates wrapping the textured surface on a cylinder whose axes
is aligned with the major axis of the textured surface. The bending

N . >

original surface level 1 level 16 level 22

Fig. 14. Original surface (left), and bent samples corresponding to amplitude levels 1,
16 and 22, respectively.

transformation is defined by the following equations:

X = xcos (%)

y =yc05(%) 6)

Z =z+ X sin X +y'sin y
- 2r) Y 2r)’

where 1 is the radius of the cylinder, which defines the bending am-
plitude. The range of the radius values that can be applied must have
a lower bound, which we estimated to 0.8, being A the surface di-
mension along the major axis. Below this value, the local shape of
the tested surfaces is affected, and thus the 3D texture characteris-
tics are no longer preserved. The bending has been applied for 22
decreasing radius values from 5A (which corresponds to a moderate
bending, level 1) down to 0.8 (level 22). Fig. 14 depicts some samples
illustrating surface bending at different amplitudes.
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Fig. 15. Classification rates obtained at different bending levels are reported in (a) and (b) for the mesh-LBP with (k) = 1 and (k) = 2% operators, respectively; in (c) and (d) for
the other shape descriptors (i.e., shape distribution D1, D, D3, D4, and spin images), and 2D-LBP depth images, respectively.

The experimental data have been prepared as follows: for each
bending level, we grouped together 30 samples of the bent surface
with 30 samples from its original counterpart. Each texture class is
thus represented by 60 samples with equal normal and bent instances.
We assessed the classification accuracy as in the previous experi-
ments, that is by computing the distance matrices between all the
groups of 60 class instances, and deriving from them the percent-
age of correct matching instances. The results are depicted in Fig. 15.
For a(k) = 1 (Fig. 15(a)), all the mesh-LBP descriptors, except the SI,
keep a classification rate above 99% and practically 100% till the 15th
level. A better performance is observed in the results for (k) = 2*
(Fig. 15(b)), for the Gaussian curvature (K), the mean curvature (H),
and the curvedness (C). The difference between normals (D) and the
shape index (SI) behave well till the 15th level, then degrade signifi-
cantly afterwards.

We performed the same experiment with the other standard
descriptors that include shape distributions (Dq, D, D3, Dy4), the
spin image (SpIm), and 2D-LBP (u2, ri, riu2). As we can notice in
Fig. 15(c), D1, Dy, D3 show some steadiness, whereas the SpIm and
D,4 performance starts to decrease significantly from the level 18 and
19, respectively. For the 2D-LBP, we first notice a significant drop of
the performance from the very first bending level, then the perfor-
mance decrease nearly at linear rate. Overall, while the mesh-LBP and
shape distribution descriptors look coping reasonably with bending,
the mesh-LBP keeps its superiority across the different levels. The
2D-LBP descriptor performance, on the opposite, seem quite affected
by the bending.

4.2. 3D texture retrieval

In the following, we propose 3D retrieval based on the geomet-
ric texture of the surface. We consider the 3D geometric texture as
a property of the surface, distinct from the shape, characterized by
the presence of repeatable geometric patterns. These patterns can
be seen as geometric corrugations of the surface that do not al-
ter the overall 3D shape, but rather change the local smoothness
and appearance of the surface. This can result in 3D objects that
show similar or equal shape, but very different 3D geometric tex-
ture. To the best of our knowledge, the potential of a 3D retrieval
based on this surface feature has been not addressed before. This
concept can find applications in distinguishing and retrieving 3D ob-
jects where the information of interest lies in the geometric texture
of the surface, rather than in the shape (an application is reported in
Section 4.2.1); or in the identification of textured query patches in
large textured surfaces where the shape feature cannot be effectively
used, being it vague or even impossible to represent (the terrain mod-
els of Section 4.2.2 represent such a case).

4.2.1. Textured objects

This experiment aimed to assess the mesh-LBP potential for de-
tecting specific type of texture in a given surface. Such capacity is
useful in “3D shape texture retrieval” applications, where a sample
of specific 3D texture (probe texture) is available and we want to
automatically detect regions, in a gallery surface, matching that par-
ticular model. To the best of our knowledge, we are the first to attempt
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Fig. 16. Surfaces extracted from the bird, pot owl, and mural models, and their corresponding position, highlighted with a rectangle, in the probe models.

D2
-

Fig. 17. Results for the bird surface. Two rows are reported in each case: the upper row represents the distance map obtained with the Bhattacharyya distance; in the lower row,
the region on the mesh where the probe texture is best identified is highlighted in blue. For mesh-LBP the «; and «, operator are evaluated, in combination with the surface
functions K, H, SI, D and C. (For the interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

retrieving shape texture on a mesh manifold. However, we point out
that elaborating a full scheme for 3D texture retrieval is beyond the
scope of this paper. Rather, we aim to showcase the potential of the
mesh-LBP and its performance for such a task in comparison with
other standard descriptors. Therefore, we just used a naive template-
matching-like method, where the gallery mesh surface is browsed,
and at each facet a texture descriptor is computed and compared to its
probe texture model counterpart using a given metric (i.e., the Bhat-
tacharyya distance in this application). Facets exhibiting a low dis-
tance (i.e., below a certain threshold) are selected as a potential match.

In the experiments, we considered as gallery a representative set
of four surfaces (Fig. 16), exhibiting different global and local shape
characteristics. These surfaces were extracted from the bird, pot, owl,
and the murail objects in the MIT CSAIL database [32]. The order of the
aforementioned objects reflects an ascending level of 3D texture re-
trieval complexity. The bird instance contains basically two free-from
surfaces, one is smooth and the other is textured. The pot surface is
composed of a single cylindrical surface exhibiting different types of
3D texture patterns. The owl surface encompasses different free-from
textured surfaces. The set of probe textures for these three models
is composed of three instances of textured surface extracted from
them, as shown in Fig. 16. The fourth murail model is a U-shaped
surface, composed of harsh flat bottom surface, and two border tex-
tured bands. The texture retrieval is deemed the most complex for
this object, because what we want to retrieve here, is not the tex-
tured areas, but rather a particular 3D shape pattern in the textured
surface, shown in the probe sample in Fig. 16.

D5 Spin Image

ISC
=

The experiment consists in searching each probe within its cor-
responding surface and then assessing the detection and retrieval
capacity of the different descriptors.

In addition to the shape distribution and the spin-image descrip-
tors, we also tested the recently proposed intrinsic shape context (ISC)
[42]. Figs. 17-20 show the maps of the Bhattacharyya distance com-
puted at each facet and the related retrieval results for the bird, pot,
owl, and murail objects, respectively. Referring to the distance maps
(first row), we can assert that the shape distributions practically show
no possibility for detecting the searched texture. The spin-image (first
row, fifth sample) looks partially spotting the textured regions in the
distance maps for the bird and the pot surfaces, whereas its corre-
sponding owl map indicates neat incapacity. For the murail model,
none of shape distribution descriptors seems capable of detecting the
3D probe pattern. The spin-image could only achieve a partial re-
trieval of the textured areas, with some false positives detected at
flat surface though. The ISC does not indicate a particular ability for
spotting the probe texture apart for the owl model, but with a sig-
nificant false detection rate. These observations, related to the shape
distribution, the spin-image and the ISC maps are confirmed in the
texture retrieval results (second row), which indicate a nearly total
failure in recovering the searched texture.

The mesh-LBP distance maps, on the opposite, indicate a neat su-
perior performance across the four models, though with different
levels. For the o variant, the K and D results clearly indicate an
ability of detecting the searched texture for the bird and the pot sur-
faces, as compared with the H, SI and C. The same is noticed for the
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Fig. 18. Results for the pot surface.

owl surface. These observations are confirmed by the retrieval results
(fourth row), whereby K and D instances show the best performance
across the three surfaces. For the variant using the o, operator, the
distance maps (fifth row) show an overall improvement, particularly
visible in the pot and the owl results. We can observe that for the
three surfaces, the regions in related maps look more compact and
localized when compared with their «; counterparts. The appear-
ances of these maps suggest an even more ability in texture retrieval,
which has been confirmed in the detection results depicted in the last
row.

Results of murail model experiments depicted in Fig. 20 indicate
clearly the ability of the mesh-LBP descriptors for detecting and re-
trieving the 3D pattern. The H and C variants exhibit the best per-
formance whereby the eight 3D pattern instances have been suc-
cessfully detected. We can appreciate this performance by observing
their distance-maps showing saliently the 3D texture pattern loca-
tions. The distance maps and the retrieval figures, overall, confirm
again the superiority of the «, operator.

4.2.2. Terrain models

In this experiment, we considered a remote sensing application.
Here the retrieval task is described as follows: given a 3D terrain
query representing a specific area, find its corresponding match in a
gallery of 3D terrain models. We used terrain models from the public
“The Visualization Virtual Services databases”.! These terrain models
are originally digital elevation models (DEM) converted into mesh
models. A set of 21 terrain mesh models have been set as gallery
models. From these models, we generated three rotated sets at an
angle of 45°, 90° and 135°, thus obtaining 63 query models simulating
different sensor poses. Also, to simulate the effect of distortion in the
mesh model construction from the DEM model, which might result

1 http://shapes.aimatshape.net/ontologies/shapes/

from the sensor pose change, we applied the rotation on the cloud of
points derived from the terrain model after perturbing their positions
by small amount, then we construct a new mesh model out of them.
Fig. 21 depicts samples of gallery and query terrain models.

In each query model, we selected a sample area to be used as
probe. The area is a geodesic disc around a given point, which is ap-
proximated, in the terrain mesh model, by the facets confined within
a given sphere. The histogram of mesh-LBP descriptors computed at
this area is compared with its counterpart computed at each facet of
the gallery models, looking for the instance that produces the mini-
mum distance. Table 1 shows the rate of correctly retrieved models
with the different mesh-LBP descriptors. We restricted the compari-
son to the spin image descriptor in view of the previous experiment
results, in which the spin image performed quite above the others. We
first notice the neat superiority of the mesh-LBP over the spin image.
The K and D performed best at both oy and & variants. The overall
results confirms also the preeminence of o5 variants.

4.3. 3D face matching

The mesh-LBP has been also used for constructing a 3D counterpart
of the LBP based face description proposed in [9]. In that work, a
face representation is constructed, by dividing the 2D face image
into regions (e.g., 2D blocks), and histograms of the LBP descriptors
are extracted from each region, and then concatenated to form a
global description of the face (see Fig. 22(a)). In the case of 3D face
scans, the methodology for constructing a mesh-LBP representation
of the facial shape is a two-phase process, namely: (1) Extracting a
grid of points from the facial surface, and generating regions around
these points; (2) computing the histograms of mesh-LBP descriptors
for each region, and concatenate them to obtain a global mesh-LBP
representation of the face.

As depicted in Fig. 22(b) the extraction of the grid is performed
as follows: First, the plane formed by the nose tip and the two eyes
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Fig. 19. Results for the owl surface.

inner-corner landmark points is computed. These landmarks have
been selected since they are among the most accurate detectable
landmarks on the face, in addition to their robustness to facial ex-
pressions. From these three landmarks we derive, via simple geomet-
ric calculation, an ordered and uniform set of points on that plane.
Afterward, we project this set of points on the face surface, along the
plane’s normal direction. The outcome of this procedure is an ordered
grid of facets, which defines an atlas for the facial regions dividing the
facial surface. Once the grid of points is defined, a multi-ring structure
of s; rings is generated at each facet of the grid, thus obtaining an or-
dered sequence of regions covering the facial surface. Then, for each
facet in a region we compute a multi-resolution mesh-LBP descriptor
using Eq. (2). In the final step, the histograms of these descriptors are
computed and concatenated into a single histogram describing the
overall face (see Fig. 22(c)).

From the above, the set of parameters of this representation that
can be used to optimize face matching encompasses the number and
the size of the regions (n, and s, respectively) in addition to the pa-
rameters of the multi-resolution mesh-LBP, which include the radial
resolution r, the azimuthal quantization m, and the type of mesh-LBP
operator (¢ or «y), and the local shape descriptor (H, K, SI, D, and C).
For the face matching metric, we used different distances that include,

the Bhattacharyya distance, the cosine distance, and the Chi-square
distance.

For the experimentation, we used the BU-3DFE database con-
structed at Binghamton University [33]. The data encompass 56 males
and 44 females. The subjects are well distributed across different eth-
nic groups or racial ancestries, including White, Black, East-Asian,
Middle-East Asian, Hispanic-Latino, and others. Face scans are ac-
quired with different facial expressions, including anger, disgust, fear,
happiness, sadness, and surprise. Each facial expression has four lev-
els of intensity, respectively, low, middle, high and highest, except the
neutral facial expression that has only one intensity level. Thus, there
are 25 3D facial expression scans for each subject, resulting in 2500 3D
facial expression scans in the database. As an example, Fig. 23 shows
the 3D scans of a sample subject showing the neutral expression and
the six basic facial expressions at the lowest level.

While the BU-3DFE dataset has been used to investigate the ro-
bustness of face recognition algorithms with respect to facial expres-
sions, our main purpose from using it here is to have an assessment
of the mesh-LBP potential for global face matching. For that reason, in
the experimentation scheme, we considered as gallery and probe the
sets of neutral scans and the level-1 expression scans, respectively.
We note, however, that level-1 scans actually exhibit significant
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Fig. 20. Results for the murail surface.

Fig. 21. Samples of gallery terrain models (top). Samples of probe models corresponding to 45°, 90° and 135° rotations (bottom).

Table 1
Accuracy of retrieval for terrain models (values in percentage).
(03] Ay
Spinimage K H SI D C K H SI D C
84.1 968 937 921 984 952 100 984 952 100 96.8

disparity from the neutral expression, especially for the disgust, fear,
happy and surprise expressions, as it can be noticed in Fig. 23. Using
these probe and gallery sets, we performed recognition experiments
based on our mesh-LBP descriptors, for a radial resolution r and an az-
imuthal quantization m set to 7 and 12, respectively. We tested all the
combinations of the local shape descriptors H, K, SI, D, and C, and the
mesh-LBP operator functions o1 and or,. We set the region size s, to 7.
Also to account for the effects of facial expressions, we segmented the
grid points into three bands, dubbed, top (T), middle (M) and bottom
(B), then we tested our recognition considering the full grid (TMB) and

the top and middle bands (TM) only (see Fig. 22(d)). The TM option
allows us to neutralize to some extent the shape changes manifesting
in the lower part of the face, and caused by the mouth in particular.
The TMB and the TM grids contain 35 and 26 points, respectively.
Table 2 reports the best obtained rank-1 recognition accuracies.
We found that the mean curvature (H) and the curvedness (C) perform
the best across the different combinations. From the table, we can
clearly notice the best results obtained with the TM grid in comparison
with the TMB counterparts, confirming the effect on the shape of the
face caused by the mouth (e.g., mouth open). Looking to the mesh-LBP
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Fig. 22. Face representation. (a) 2D LBP-based face representation. (b) Construction of the face grid. (c

) Region samples and their corresponding histograms, which are composed

together into a global histogram. (d) On the left scan, the separation of the grid points into a top, middle and bottom band is reported, whereas in the center and right scans all the
points in the three bands, and only the points in the top and middle bands are shown, respectively.

Fig. 23. BU-3DFE—3D face scans (with texture) of a sample subject showing, from left, the neutral, anger, disgust, fear, happy, sad, and surprise expressions. The level-1 of

expression intensity is shown in each case.

Table 2
BU-3DFE - Rank-1 recognition accuracy obtained with different operators, sur-
face functions, distances, and points grid.

TMB ™
Bhatt cos x2 Bhatt cos x?
o H  85.74% 90.61% 88.00% 87.48% 92.52% 89.57%
C 84.47%  89.57%  87.13%  88.00%  90.43%  89.04%
o H  92.00% 82.96% 92.70% 93.91% 87.83% 95.48%
C 93.04%  85.22%  93.57% 94.61% 89.39%  95.13%

operator functions, we can notice a net superiority of the o, operator,
for which the top overall performance is obtained in combination with
the chi-square distance. The cosine distance instead, seems better
coupled with the oy operator function.

Table 3 shows on the left-most columns the results obtained on the
same database using the three variants of interest-points method re-
cently proposed by [43]. We can see easily that our method performs
better. We note, however, that the sets used in their experiments

Table 3

BU-3DFE - Rank-1 recognition rate of our method for the six expressions, obtained
with H and C descriptors for each of the local binary operator functions ¢« and &, and
using TM bands grid. The results of the interest-points method [43], using the HOG,
SHOT and GH descriptors are also reported. The best obtained rate in each expression
is marked in Bold.

[43] oy a

HOG SHOT GH H C H C
Angry 90.0% 93.8% 90.6% 95.88% 91.75% 96.07% 96.91%
Disgust 87.5% 81.6% 85.0% 8333% 79.17% 87.50% 88.54%
Fear 88.8% 91.9% 844% 87.62% 85.57% 93.91% 93.81%
Happy 88.1% 90.0% 85.6% 92.86% 92.86% 95.92% 94.90%
Sad 90.6% 94.4% 90.6% 96.94% 95.92% 98.98% 96.94%
Surprise  85.0% 88.8% 82.5% 98.88% 97.75% 100.00% 100.00%
Overall 88.3% 91.6% 86.5% 92.52% 91.43% 95.48% 95.13%

include level-1 and level-2 expressions. Yet, the small difference be-
tween these two levels, allows us to assert the superiority of the
proposed approach. In the same table, the recognition accuracies ob-
tained separately, with the TM grid, for the six expressions, together
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with the counterpart results in [43] are depicted. Again, we can ob-
serve that our method performs best across all the expressions. We
notice in particular the high performance obtained in the sad and
surprise expressions for the «; operator function.

5. Discussion and conclusions

In this paper, we presented mesh-LBP as a novel framework for
computing local binary patterns on triangular mesh manifolds. This
framework keeps the simplicity and the elegance characterizing the
original LBP and allows the extension of all its variants, developed
in 2D image analysis, to the mesh manifold. The mesh-LBP reliefs
object surface data from normalization and registration procedure
required when using depth images, while it extends the spectrum of
LBP analysis to closed surfaces.

The experiments performed on mesh surfaces collected from dif-
ferent sources, brought evidence of a mesh-LBP “uniformity” aspect
for the different types of scalar functions, pretty similar to the one
noticed in 2D-LBP. We also demonstrated that mesh-LBP descriptors
can cope with mesh-irregularities to a great extent. We showcased
the ability of the mesh-LBP to be deployed in both local and global
shape analysis. The experiments carried on 3D texture classification
showed clear evidence of the appropriateness of the mesh-LBP de-
scriptors for such a task, and their superior discriminative power as
compared to other competitive shape descriptors. In summary, the
angle between facets normal and the Gaussian curvature seem to be
the more effective surface descriptors to be used within the mesh-LBP
framework as emerges throughout all the performed experiments.
The mesh-LBP performance superiority of 3D texture classification is
nearly preserved for moderate and uniform global deformation apart
for the shape index variant. While qualitative, and despite employing
basic techniques, the experiments on 3D texture retrieval revealed
their great potential of the mesh-LBP descriptors and the incapacity
of the standard descriptors for such a task.

The mesh-LBP allows a straightforward extension of the 2D-LBP
face matching paradigm to the facial mesh surface modality. We pro-
posed a simple yet effective method for constructing global facial
shape signature. Compared to its depth image counterpart, our frame-
work relieves the process from the constraining data normalization
and depth map extraction tasks, in addition of avoiding self-occlusion
effect. We proposed presentation composed of a three-band grid of
facial points to which are attached mesh-LBP region descriptors. The
experiments showed a net improvement when using the top and
middle bottom only as the bottom band is the most sensitive to fa-
cial expressions. On the other hand, considering the lower part of the
face as missing data, the obtained results revealed the ability of our
method to successfully handle partial face matching to a great ex-
tent, even in the presence of facial expressions. Overall the obtained
results are quite promising and showed to outperform other compet-
itive methods.

The comparison of the o1 and «» operator functions across the
different mesh-LBP applications results, gives more credentials the
second function, especially in 3D texture retrieval and face recog-
nition. However, the compactness of the descriptor obtained with
the o1 operator, and the resulting lower computational complexity
required to compare descriptors, vote for this solution when time
constraints are relevant.

In conclusion, we believe that our proposed mesh-LBP opened-
up new perspectives in mesh manifold analysis, as showcased by
the newly investigated tasks, namely 3D texture classification and
retrieval, that have not been approached before, to the best of our
knowledge, at least using mesh manifold modality. The texture re-
trieval experiments evidence the ability of the mesh-LBP not only for
retrieving textured surfaces, but also detecting specific 3D shape pat-
terns. As a final remark, we want also to point out our framework is
not meant to handle general 3D shapes. Being based upon a notion of

local description, our mesh-LBP framework is rather appropriate for
the class of manifold objects exhibiting texture or shape variation. So,
it is more related to intra-class classification/retrieval, where objects
in that class have a very similar global structure and different local
shape characteristics.

As future work, we plan undertaking a deeper investigation of the
different applications approached in this work. In addition, to explor-
ing further the different mesh-LBP variants and their appropriate and
optimal usage.
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