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Abstract— In this paper, we present a novel and original
framework, which we dubbed mesh-local binary pattern (LBP),
for computing local binary-like-patterns on a triangular-mesh
manifold. This framework can be adapted to all the LBP variants
employed in 2D image analysis. As such, it allows extending
the related techniques to mesh surfaces. After describing the
foundations, the construction and the main features of the mesh-
LBP, we derive its possible variants and show how they can
extend most of the 2D-LBP variants to the mesh manifold. In the
experiments, we give evidence of the presence of the uniformity
aspect in the mesh-LBP, similar to the one noticed in the
2D-LBP. We also report repeatability experiments that confirm,
in particular, the rotation-invariance of mesh-LBP descriptors.
Furthermore, we analyze the potential of mesh-LBP for the
task of 3D texture classification of triangular-mesh surfaces
collected from public data sets. Comparison with state-of-the-
art surface descriptors, as well as with 2D-LBP counterparts
applied on depth images, also evidences the effectiveness of the
proposed framework. Finally, we illustrate the robustness of the
mesh-LBP with respect to the class of mesh irregularity typical
to 3D surface-digitizer scans.

Index Terms— Local binary patterns, ordered ring facets, mesh
manifold, 3D texture analysis.

I. INTRODUCTION

THE Local Binary Pattern (LBP) is a local shape descrip-
tor that has been introduced by Ojala et al. [1], [2]

for describing 2D textures in still images. Its computational
simplicity and discriminative power attracted the attention
of the image processing and pattern recognition commu-
nity, and rapidly it has found other applications in visual
inspection [3], [4], remote sensing [5]–[7], face recogni-
tion [8]–[11], facial expression recognition [12], and motion
analysis [13], [14]. However, all the LBP-based methods
developed so far operate either on photometric information
provided by 2D color images or on geometric information
in 2D depth images. The few solutions that extract surface
features directly in 3D (typically in the form of surface
normals), resort to the 2D case by converting the 3D extracted
features to depth values, and then use ordinary LBP processing
on depth images [15]–[17].
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The triangular mesh manifold is a simple, compact and
flexible format for encoding 3D shape information, which
is widely used in many fields, such as animation, medical
imaging, computer-aided design and many others. The recent
advances in shape scanning and modeling have also allowed
the integration of both photometric and geometric information
into a single support defined over a 2D mesh-manifold. Despite
the abundance and the richness of the mesh manifold modality,
to the best of our knowledge, there is no a computational
support that allows the computation of LBP on this format.
One factor that plagued the development of an LBP-based
description on the mesh is the lack of an intrinsic order in the
triangular mesh manifold, since the LBP requires an ordered
support for its computation. On the contrary, computation of
LBP on 2D images benefits from the implicit ordering of the
pixels in the 2D image array.

Providing such a framework for computing LBP on a mesh
could be of great interest for describing 3D texture reflecting
the presence of repeatable geometric patterns on the mesh
surface (this being a completely separate concept from photo-
metric texture). In fact, there are many applications that require
local surface shape analysis and interpretation of 3D textured
surfaces. In quality control, texture description can be used for
detecting local surface pattern defection. In medicine, most of
the imaging data (e.g., ultrasound, microscopic images) are
shifting to a 3D mesh format. Many diagnostic rules related
to these modalities need description and classification of some
organs local surfaces. More generally, texture description on
the mesh is useful for any application that needs 3D texture
analysis, classification, and retrieval. For example, a typical
scenario in the last application is to have a sample of specific
3D texture pattern and detect regions which match that model
in a gallery of surfaces.

Motivated by these facts, in this paper we address the
challenge of computing LBP on a mesh manifold by proposing
an original computational framework, which we called mesh-
LBP that allows the extraction of LBP-like patterns directly
from a triangular mesh manifold, without the need of any
intermediate representation in the form of depth images. With
this framework, we can therefore build on the current 2D-LBP
analysis methods, extending them to mesh manifolds as well
as to the modality that also embeds photometric information
into mesh models. To motivate our solution and to relate it to
the state of the art approaches, next we provide an overview of
the LBP literature, then the main features and the contribution
of our proposal are discussed.

A. LBP Overview and Related Work
In its original definition, the LBP operator [1] assigns labels

to image pixels by first thresholding the 3 × 3 neighborhood
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Fig. 1. (a) Computation of the basic LBP code from the 3×3 neighborhood
of a central pixel. Each pixel, starting from the upper-left corner is compared
with the central pixel to produce 1 if its value is greater or equal, 0 otherwise.
The result is an 8-bit binary code; (b) Example of a central pixel with a circular
neighborhood of a given radius.

of each pixel with the center value (i.e., each pixel in the
neighborhood is regarded as 1 if its value is greater or equal to
the central value, 0 otherwise), then considering the sequence
of 0/1 in the pixel neighborhood as a binary number according
to a positional coding convention. This is shown in Fig. 1(a),
where the upper left pixel in the neighborhood is regarded as
the most significant bit in the final code. This eight bits number
encodes the mutual relationship between the gray levels of the
central pixel and its neighboring pixels. The histogram of the
numbers obtained in such a way can then be used as a texture
descriptor. This operator is distinguished by its simplicity and
its invariance to monotonic gray-level transformations.

An extended LBP version that can operate on circular
neighborhood of different radii, also allowing sub-pixel alter-
ations was proposed later in [2] (see Fig. 1(b)). These ini-
tial formulations led subsequently to the definition of other
neighborhood variants, like the oriented elliptic neighbor-
hood LBP (elongated LBP) proposed by Liao et al. [18],
which accounts for anisotropic information, and the multi-
block LBP (MB-LBP) that compares the averages of the gray
level intensity of neighboring pixels rather than the value of
individual pixels, in order to capture macrostructural features
in the image [19]. Other versions have been proposed to
improve the discriminative power of the descriptor, such as
the improved LBP (ILBP) [20], in which pixel values are
compared with the average of the neighborhood, and the
extended LBP (ELPB) [21], which encodes, in addition to
the binary comparison between pixels values, the amplitude
of their difference using additive binary digits. To improve the
robustness of LBP, Tan et al. [22] introduced the so-called local
ternary pattern (LTP), which substitutes the original binary
code by a three-values code (1, 0 and −1) by means of a user-
defined threshold. This new operator addressed the sensitivity
to noise, though at the cost of the invariance to monotonic
gray-level transformations. A fuzzy-logic version of the LTP
was proposed later in [23], where a fuzzy membership function
substituted the crisp three-states association used in [22].
A more complete list and discussion on the many LBP variants
appeared in the literature can be found in [24].

Considering the case of 3D shape analysis, most if not
all the LBP-based approaches have been developed for face
recognition applications. Many of the techniques developed
in this context operate on standard depth images, where the
z-coordinate is mapped to a gray-level value. This format
allowed a straightforward application of the 2D-LBP operator
as it was demonstrated in the pioneering work of Li et al. [25].

Later, Huang et al. [26] proposed a 3D-LBP operator that
also encodes depth differences of neighboring pixels, and
more recently Huang et al. [27] extended the 3D-LBP to a
multiscale extended LBP (eLBP), which consists of several
LBP codes in multiple layers accounting for the exact gray
value differences between the central pixel and its neigh-
bors. Sandbach et al. [15] proposed a local normal binary
pattern (LNBP), which used the angle between normals at
two points rather than the depth value to obtain the local
binary code. Similar to this, in [16] the surface normals are
extracted in 3D, then the values of the normal components
along the direction of the three coordinate axes are interpreted
as depth values, and LBP is computed on these depth maps
reporting the values of the normal components. The idea of
exploiting surface normals is further extended in [17], where
azimuthal projection distance images are constructed. The
azimuthal equidistant projection is able to project normals
onto points in an Euclidean space according to the direction.
Though the projected information is not the depth, depending
on the normals of the 3D surface, 2D LBP are still computed
on the projection images. Fehr and Burkhardt [28] attempted
an LBP definition specifically tailored for volumetric data by
sampling a sphere of a given radius around a central voxel.
The approach is computationally expensive in that the rotation-
invariance is addressed with complex techniques involving
spherical correlation in the frequency domain.

B. Paper Contribution and Organization

From the analysis above, it emerges that since its introduc-
tion the LBP descriptor has attracted great interest for the
analysis of 2D images, mainly for its simple and efficient
computation and for the effective results that can be achieved
relying on the LBP theory. Recently, various attempts have
been done for extending the LBP framework to the case
of 3D meshes, but none of them succeeded in addressing
all the issues posed by the need for a simple and effective
processing directly performed on a mesh-manifold. Indeed,
existing solutions address the LBP extraction on 3D meshes
by resorting to the easier 2D case, through the projection of
3D meshes on 2D depth maps.

In this paper, we propose a framework that we call mesh-
LBP, for designing and extracting local binary patterns directly
from a 2D mesh-manifold. In addition to its originality, the
proposed framework is characterized by the following features:

• Effectiveness – The mesh-LBP operates directly on
3D triangular meshes, thus avoiding any expensive
pre-processing, such as registration and normalization,
required to obtain depth images;

• Generalization – By its ability of handling mesh data, this
framework can deal with a larger spectrum of surfaces
(e.g., closed, open, self-occluded) as compared to its
counterpart defined on depth images;

• Adaptability – This framework can be adapted to hold
most if not all the LBP variants proposed in the literature
for 2D and depth images;

• Simplicity – The mesh-LBP preserves the simplicity of
the original LBP, not requiring any surface parametriza-
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Fig. 2. Construction of an ordered ring: (a) Initial Fout facets on a
convex contour; (b) Bridging the gap between the pairs of consecutive
Fout facets with the Fgap facets; (c) The obtained ordered ring; (d) Ordered
ring constructed around a central facet.

tion, apart the standard mesh arrangement into facets
and vertex arrays, while keeping linear computational
complexity.

The rest of the paper is organized as follows: In Section II,
we introduce our framework by giving the foundation of the
mesh-LBP and presenting its multi-resolution extension; Some
mesh-LBP variants aiming to reduce the dimensionality of
the descriptor are introduced in Section III (a comprehensive
view of the mesh-LBP variants is provided in the Appen-
dix), together with solutions addressing the invariance of the
descriptor, and its robustness to irregular tessellations of the
mesh; Experimental evidence of the potential of the mesh-LBP
in different application scenarios and in comparison to state of
the art solutions is reported in Section IV; Finally, concluding
remarks and future research directions are drawn in Section V.

II. THE MESH-LBP

The construction of LBP-like patterns on a mesh, first
requires a scheme for constructing rings of facets around a
central one and for traversing them in an ordered fashion.

Let S = 〈V , F〉 be the triangular mesh representation of
an open or closed surface, where V and F are, respectively,
the sets of vertices and facets of the mesh. Let us start by
considering the general case of a convex contour on the mesh,
which we assume regular, i.e., each vertex has a valence of
six (we will show later that our framework can also cope with
meshes that do not comply with this ideal case). Consider the
facets that have an edge on that contour (Fig. 2(a)). We call
these facets Fout facets, as they seem pointing outside the
contour. Let us consider also the set of facets that are one-to-
one adjacent to the Fout facets and which are located inside
the convex contour. Each facet in this set, that we call Fin,
shares with its corresponding Fout facet an edge located on
the convex contour. Let us assume that the Fout facets are
initially ordered in a circular fashion across the contour. Given
that initial arrangement, we bridge the gap between each pair
of consecutive Fout facets, that is we extract the sequence
of adjacent facets, located between the two consecutive Fout
facets and which share their common vertex (the vertex on the
contour). We call these facets Fgap facets (see Fig. 2(b)). The
“Bridge” procedure reported in pseudocode in Algorithm 1 is

Algorithm 1 Bridge

Algorithm 2 GetRing

used to compute the Fgap facets. By iterating the process
of bridging the gap between two consecutive Fout facets
with the Fgap facets results in a ring of facets that are
ordered in a circular fashion (see Fig. 2(c)). The resulting
arrangement of the ring facets inherits the same direction
(clock-wise or anti-clockwise) of the initial sequence of Fout
facets. The “GetRing” procedure of Algorithm 2 describes the
ring construction, which is obtained by iterative calls to the
“Bridge” procedure. We dubbed such obtained ordered ring,
Ordered Ring Facets (ORF).

In the above discussion, we referred to the general case
where the ORF is constructed around a convex contour.
Actually, the usual case is constituted by an initial seed formed
by an individual facet (central facet), whose three edges
represent the initial convex contour. This case is considered
in this work, since it corresponds to the situation where
an ordered ring is constructed around the facets of a mesh
surface. In this particular case, the Fout set includes the three
facets adjacent to the central one, and the obtained ring is
composed of 12 ordered facets (i.e., the three Fout facets, plus
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the nine Fgap facets bridging the gap between consecutive
Fout facets), as shown in Fig. 2(d).

Let h( f ) : S → R be a scalar function defined on the
mesh S (e.g., photometric data or curvature). The circular
ordering of the facets obtained with ORF allows us to derive
a binary pattern (i.e., sequence of 0 and 1 digits) from it, and
thus to compute a local binary operator in the same way as in
the standard LBP. We define the basic mesh-LBP operator at a
central facet fc by thresholding its ordered ring neighbourhood
constituted by the 12 facets in the ORF:

meshL B P( fc) =
11∑

k=0

s(h( fk) − h( fc)) · α(k)

s(x) =
{

1 x ≥ 0

0 x < 0,
(1)

where α(k) is a weighting function. Different definitions of
the function α(k) permit us to obtain different binary patterns,
and thus different mesh-LBP values can be derived from
the central facet and its ring neighborhood. For example,
with α(k) = 2k the basic LBP operator firstly suggested by
Ojala et al. [1] is obtained; for α(k) = 1, the sum of the digits
of the pattern is computed (i.e., the number of digits equal
to 1). We remark here that for the present discussion it is not
necessary to detail the particular scalar function h( f ), whose
values are computed on the mesh facets. The effect of different
choices of this function will be investigated in Section IV.

A. Multi-Resolution Mesh-LBP

The mesh-LBP is extended to a multi-resolution framework
by deriving a sequence of concentric rings, which preserve the
ordering property. From the first ring, the sequence of facets
that are one-to-one adjacent to the Fgap facets are extracted
(Fig. 3(a)). This sequence, which inherits the order property
of the Fgap facets, constitutes the set of Fout facets for
the subsequent ring. So, by filling the gap between each two
consecutive facets of this sequence (Fig. 3(b)), a new ring,
which exhibits the same ordered structure of its predecessor
is obtained (Fig. 3(c)). By iterating this procedure, we build
a sequence of concentric ordered rings, which represent the
primitive entity for computing multi-resolution mesh-LBP
(Fig. 3(d)). Details of the procedure used for computing the
multi-ring structure are reported in Algorithm 3. In this case,
the “GetRing” procedure of Algorithm 2 is slightly modified,
so that it also returns the set of Fgap facets of the current ring
and the set of Fout facets of the subsequent ring (indicated
as NewFout).

It is worth mentioning that, when the regularity assumption
for the mesh is satisfied, the number of facets ν across the rings
evolves according to the following arithmetic progression from
ring i to ring i + 1:

νi+1 = νi + 12. (2)

This can be intuitively seen referring to Fig. 3: the
1st-ring comprises 12 facets (3 Fout plus 9 Fgap); 24 facets
are included in the 2nd ring (i.e., 9 Fout plus 15 Fgap);
36 facets in the third ring, and so on.

Fig. 3. Construction of multi-resolution mesh-LBP: (a) Extraction of the
next set of Fout facets, as the facets adjacent to Fgap which are not part of
the current ring; (b) Extracting the Fgap facets; (c) The second ordered ring
extracted; (d) Five concentric ordered rings. Notice that the first facet of each
ring (marked by 1) is located at the same relative position.

Algorithm 3 MultiRing

In a real mesh, because of mesh tessellation irregularities, it
might happen that the “GetRing” procedure gets trapped into a
closed loop resulting in NewFout facets being located on the
current ring or on duplicated instances. We fix such potential
anomalies by simply checking the consistency of the obtained
NewFout facets after each iteration. However, after this post-
processing procedure, the arithmetic progression of the number
of facets across rings is no longer satisfied, and this latter
case can be used as an indicator of the local mesh irregularity.
We will elaborate further on this aspect in Section III-C.

Given a multi-ring constructed around a central facet fc, a
multi-resolution mesh-LBP operator is derived as follows:

meshL B Pr
m( fc) =

m−1∑

k=0

s(h( f r
k ) − h( fc)) · α(k), (3)

where r is the ring number, and m is the number of facets
uniformly spaced on the ring. The parameters r and m control,
respectively, the radial resolution and the azimuthal quantiza-
tion of the operator. In principle, any predefined number of
samples per ring can be used. In this work, we considered, in
almost all the cases, a number of samples per ring m = 12.
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III. MESH-LBP IMPLEMENTATION

In the following, we provide more insights on the
practical implementation of mesh-LBP. In particular, we
propose mesh-LBP variants to reduce the descriptor size
(Section III-A), together with solutions to make the mesh-
LBP descriptor invariant with respect to the selection of the
initial ORF facet (Section III-B), and to make it computable
on meshes with non-regular tessellation (Section III-C).

A. Reducing Descriptor Size

The LBP operator produces rather long histograms and is
therefore difficult to use as a region descriptor. A first solution
to this problem was obtained by using just “uniform” patterns
(i.e., binary patterns with a number of bitwise 0-1 transitions
equal at most to 2) instead of all the possible ones [2].

The problem of reducing the dimensionality of the
LBP descriptor also inspired the LBP variant called
center-symmetric (CSLBP) [29], which modifies the pixels
comparison scheme by computing the difference between
center-symmetric pairs of pixels rather than comparing each
pixel with the central pixel. This halves the number of com-
parisons for the same number of neighbors. In the context of
mesh-LBP, the same result can be obtained using the following
equation for the center symmetric mesh-LBP (mesh-CSLBP):

meshC SL B Pr
m( fc) =

m/2−1∑

k=0

s(h( f r
k ) − h( f r

k+m/2)) · α(k).

(4)

This is illustrated in the case (d) of Table II in the Appendix.
In the experiments, we show the existence of the uniformity
aspect in the mesh-LBP patterns, and the capability of the
mesh-CSLBP of keeping virtually the same results than the
basic mesh-LBP, while reducing the computational cost.

B. Achieving Invariance to Facets Ordering

In order to make the mesh-LBP invariant to the ordering of
the facets in the ring and its traversal, two aspects should be
addressed: The position of the first facet (i.e., the first Fout
facet) in the ring, that is from which of the facets the ring starts
from; The direction of the ring traversal (clock-wise or anti-
clockwise). The last aspect can be easily fixed by orienting the
normals of the mesh-manifold. For the first aspect, when the
ORF are constructed around a central facet, three different
orderings of the facets inside each ring can be obtained,
depending from which of the three Fout facets, adjacent to
the central facet, the first ring starts from. Therefore three
different patterns can be derived from each ring. To address
this ambiguity several solutions can be used:

• Method-1: Performing a circular bit-wise shift of the
binary pattern, as was suggested in the standard LBP [2],
and selecting as initial facet that resulting in the minimum
LBP value. However, this method reduces the range of the
LBP values and might seriously affect the discriminative
power of the operator [30];

• Method-2: Adopting intrinsically rotation invariant
descriptors only. This set includes the number of tran-
sitions, the number of 1-valued bits (i.e., the sum of the

binary digits obtained when using α(k) = 1 variant), and
the number of 1-valued runs of a given length in the
binary patterns. This method preserves the range of the
LBP values, yet might still compromise the discrimina-
tion power, though to a less extent than the first method;

• Method-3: Considering all the binary pattern values that
originate by moving the initial facet along the ring, but
this solution creates redundancy and further burden the
computation;

• Method-4: Selecting the first facet with respect to a local
reference frame (LRF) determined based on the local
morphology of the ring neighborhood. For this purpose,
the method proposed by Tombari et al. [31], which
ensures a unique and unambiguous LRF can be used.
Afterwards, the nearest facet to the x or y axis of the
LRF can be selected as the first facet.

From the above, the method-4 looks the most reliable and
generic, but its implementation requires histograms construc-
tion, which might burden the computational complexity. For
this reason, we rather adopted a simpler yet practical solution,
tailored to our problem, and which consists of the following
steps: (i) First, we generate the sequence of rings starting from
any arbitrary adjacent facet to the central facet; (ii) Then, from
the obtained sequence of ordered rings, we select as a first
facet in each ring-r, the facet fi which satisfies the following
condition:

min
i

di st (co, cr
i ), fi ∈ ring-r, (5)

where dist (.) is the Euclidean distance, cr
i is the center of

facet fi in the ring-r (union of the Fout and Fgap facets),
and co is the centroid of the centers of the facets in the rings
weighted by their area; (iii) Finally, in each ring, we apply
a circular shifting to the current facets ordering to bring the
facet selected in step (ii) to the first position.

Fig. 4 shows the mesh-LBP maps obtained with the method-
1 and method-2 (the number of 1-valued bits in the pattern
has been used) listed above, and our proposed method for
selecting the first facet of a ring. The repeatability and behavior
obtained using the different methods can be appreciated.
In particular, the zoomed maps in Fig. 4(b), obtained for
a rectangular region at the base of the nose, show a clear
overall repeatability of the mesh-LBP (last column) obtained
with the proposed method. The minor disparities between the
three instances emanate from the mesh variability across the
scans, which in turn affects to some extent the binary patterns.
The same behavior is observed for the method-1 and -2.
In particular, we notice the reduced range of the pattern
values in method-1. For method-2, we can notice the limited
description ability reflected in the similar values observed at
the curve sides. On the opposite, our method looks the most
effective in detecting the shape variability at that neighbors.

C. Mesh Quality Assessment

One issue that can hamper the repeatability of the
mesh-LBP is the local irregularity of mesh tessellation, for
which the assumption of vertex valence of six does not hold,
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Fig. 4. Comparison of the mesh-LBP maps obtained with different methods for selecting the first facet of a ring (r = 1 and m = 12 are used). The maps
shown represent the face surface mesh after coloring each facet in the mesh with a color representing its mesh-LBP value. (a) mesh-LBP maps obtained using,
respectively, method-1, method-2 (number of 1s), and our proposed method, on three different face scans of a same subject; (b) A region at the base of the
nose of each scan in (a) is cropped (rectangular region framed in black), and the corresponding mesh-LBP maps are zoomed in. (The maps are best viewed
on the soft-copy version).

and consequently the regular progression of Eq. (2) is not
satisfied. This issue can be addressed in different ways:

• Adding a pre-processing stage that regularizes the density
of the mesh triangulation;

• Deriving iso-geodesic contours from the ordered rings
that act as a support region for computing mesh-LBP
operators;

• Applying the local density invariant smoothing, proposed
by Darom and Keller [32] to the ring vertices around the
central facet.

In our experiments, we rather used a simpler technique that
interpolates the scalar function used to compute mesh-LBP
across each ring, so as to obtain a sequence of samples that
matches the ideal progression.

We note that the progression of the number of facets across
the ordered rings (see Eq. (2)), also allows establishing a
simple criteria for assessing the local regularity of a triangular
mesh. Indeed, given a facet neighborhood comprising r rings,
we define the local irregularity criterion by:

δr = ‖�r − �̂r‖
‖�̂r‖

, (6)

where �̂r is a vector representing the ideal sequence of the
number of facets across an r -ring ORF (i.e., [12, 24, …, 12r])
according to the arithmetic progression of Eq. (2), and �r is
the actual sequence. Fig. 5(a) depicts examples of 3-ring ORF
exhibiting different �3 and δ3.

Intuitively, the idea behind the δr coefficient is that the
greater is the relative deviation between the actual number
of facets across the r rings with respect to its ideal number,
the more the mesh is irregular in the local surface spanned by
these r rings computed around a central facet. This criterion
can be used to assess the local regularity of a mesh, thus to
regularize the support region used in the computation of the
multi-resolution mesh-LBP. Fig. 5(b)-(c) depict, respectively,
a mesh sample and its corresponding map with the values of
δr originated using the local irregularity criterion. In the δr

map in (c), dark areas correspond to larger values of δr ; it

Fig. 5. (a) Examples of 3-ring ORF with their related �3 and δ3; (b) Sample
of a facial mesh showing local irregularities in the eye and nose regions;
(c) Corresponding map obtained by computing the local irregularity criterion
δr at each facet.

can be observed that dark areas correspond well to the most
irregular regions of the facial mesh in (b) (see, for instance,
the left nostril or the right eye).

With this criteria, once an irregular mesh region is detected,
a local mesh regularization approach can be applied to it
so as to recover the ideal mesh tessellation for mesh-LBP
computation. Using an opposite perspective, the value of δr

computed for the r -ring neighborhood of a facet can be used as
a criteria to assess the significance of the mesh-LBP computed
for the facet. According to this, 1−δr could be used to weight
the contribution of individual mesh-LBP values accumulated
in a global histogram descriptor: the more irregular the mesh
is in a facet neighborhood, the lower the contribution of
the corresponding mesh-LBP to the overall descriptor. In the
experiments, we found that, even without recurring to this
procedure, the mesh-LBP can actually cope to a large extent
with mesh irregularities.

IV. EXPERIMENTAL RESULTS

Experiments have two main goals: On the one hand, we
investigate the basic properties of the mesh-LBP descriptor,
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Fig. 6. Mesh models used in the uniformity experiment: (a) Portion of a
pot (MIT CSAIL textured 3D models); (b) Face surface (BU-3DFE); (c) Cat
model (TOSCA high-resolution).

evidencing the presence of mesh-LBP uniform patterns
(Section IV-A) and the repeatability of the descriptor
(Section IV-B); On the other, we evaluated the proposed
framework on the specific task of 3D texture classification:
first, we compare the different mesh-LBP surface functions
and operators, also in comparison with some of the mesh-
LBP variants (Section IV-C); then, we provide a comparative
analysis of the mesh-LBP descriptor with respect to state of
the art solutions which describe 3D meshes through surface
descriptors, or by applying the standard 2D-LBP on depth
images of the 3D meshes (Section IV-D); finally, the robust-
ness of the mesh-LBP to mesh irregularities is also shown
(see Section IV-E).

A. Uniform Patterns
By studying the statistics of the number of bitwise 0-1

transitions in the binary patterns, Ojala et al. [2] noticed that
the majority of the patterns in textured 2D images have a
number of transitions U equal at most to 2. These patterns
are called “uniform”. In our investigation, we considered
a representative set of three surface meshes collected from
different sources. The first surface is a portion of a pot object
from the “MIT CSAIL textured 3D models database” [33].
This object exhibits textured shape patterns on the surface. The
second surface represents a face scan from the “Binghamton
University 3D facial expression database” (BU-3DFE) [34],
and shows the case of an open surface. The third one is
a closed surface of a cat model from the “TOSCA high-
resolution database” [35]. These models are shown in Fig. 6,
from (a) to (c), respectively.

Four scalar functions (h(.) in Eq. (3)) on the mesh manifold
have been studied, namely, the mean curvature (H ), the
gaussian curvature (K ), the curvedness (C), and the angle
between facets normal (D). For each of these functions, we
computed the number of transitions U in the binary patterns
computed by using the mesh-LBP operator of Eq. (3), across
six levels of spatial resolution (r from 1 to 6), and using
12 samples for the azimuthal quantization (m = 12 at each r ).

The results, depicted in Fig. 7, show the percentage of
facets, exhibiting a number of transitions U less or equal
than 4. We can observe that this number exceeds 90% up to
the third ring, across the four scalar functions, for all the three
surfaces. The angle between normals is the function exhibiting
the largest score with an overall percentage above 80%. The
mean curvature and the curvedness show virtually the same
rates. Overall, all the scalar functions show a percentage of
U ≤ 4 above 70%. These observations provide evidence on the
existence of a “uniformity” aspect of the mesh-LBP computed
on triangular mesh manifolds, and thus the mesh-LBP has

Fig. 7. Percentage of facets whose mesh-LBP have a number of transitions U
less than or equal to 4 (legend: H - Mean curvature; K - Gaussian curvature;
C - Curvedness; D - Angle between facets normals).

the potential of adapting to the uniformity-driven description
suggested by Ojala et al. [2]. Based on the obtained results,
considering an azimuthal quantization of m = 12, that is 4096
possible patterns, we define the set of uniform patterns as the
set including all binary patterns for which U is at most equal
to 4. This set contains exactly 1123 patterns against 2973 for
the non-uniform patterns. Following the same partition scheme
of [2], where all the non-uniform patterns are grouped into a
single label, whereas a separate label is assigned to each non-
uniform pattern, the number of labels (or classes) is reduced
to 1234 for our mesh-LBP. We will adopt this partition in the
rest of the experiments. Notably, this partition will be used
for the mesh-LBP operator involving α(k) = α2(k) = 2k . For
α1(k) = 1 the distinction into uniform/non-uniform patterns
does not make too much sense since the number of patterns
is already small (13 patterns exactly).

B. Repeatability

Repeatability of mesh-LBP measures the capability of the
descriptor to assume comparable values when extracted from
corresponding facets of different instances (i.e., scans) of a
same 3D object. For this experiment, we acquired 32 facial
scans of a same subject with neutral or moderate facial
expressions. The four scalar surface functions reported in the
previous Section, namely, mean curvature, gaussian curvature,
curvedness and angle between facets normal have been used
for computing mesh-LBP. For each of these functions, we con-
sidered two different mesh-LBP operators, that is, α1(k) = 1,
α2(k) = 2k. A third mesh-LBP representation has been
obtained by applying the α2(k) operator just to the uniform
patterns (i.e., according to the results of Section IV-A, we
considered a pattern uniform if its number of transitions U is
U ≤ 4). Different spatial resolutions corresponding to eight
rings r = 1, . . . , 8, have been also accounted. To compute the
repeatability of mesh-LBP we followed an approach similar
to that proposed in [36] for 3D keypoints. With this solution,
first a scan is selected as reference, and each of the other scans
(probe) is aligned to the reference one using ICP registration.
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Fig. 8. Repeatability of mesh-LBP: (a) α1(k) = 1; (b) α2(k) = 2k ; (c) α2(k) = 2k applied to uniform patterns (i.e., number of transitions U ≤ 4).

Then, for each facet in the probe, the nearest neighbor facet in
the reference is found, whose mesh-LBP value is equal to the
mesh-LBP value of the probe facet (the nearest neighbor dis-
tance between facets is computed between the 3D coordinates
of their centroid). This operation is repeated for each facet
in the probe and the distances of the nearest neighbor facets
in the reference computed as above are recorded. Varying a
proximity radius around the facets, it is possible to count
the percentage of repeated mesh-LBP values between probe
and reference scans for each value of the radius. The overall
repeatability is finally obtained by iteratively using one of the
scan as reference, and all the remaining as probes.

Figs. 8(a)-(c) show the obtained average repeatability as a
function of increasing values of the proximity radius, respec-
tively, for the three used mesh-LBP descriptors. The plots
reported in the figure concern the mesh-LBP computed on
the 1st-ring, but a similar behaviour resulted for the rings at
increasing values of r. In general, we observe that the gaussian
curvature and the angle between facets normal show a similar
behaviour, obtaining the highest repeatability in all the cases.
The mean curvature and curvedness, instead, score similar
results each other, showing a lower performance especially for
the α1 and α2 operators. Interestingly, for all the scalar surface
functions, the best repeatability is obtained for the uniform
patterns U (see the plot (c) in the figure).

C. Discriminating 3D Texture Patterns

2D-LBP has been successfully used in a number of different
applications, the most notables being texture classification and
face recognition. We have shown that mesh-LBP inherits many
of the positive aspects of the standard LBP, further extending
the range of possible applications to the direct analysis of
3D triangular meshes. As a consequence, it is expected that
mesh-LBP can found application in a number of 3D scenarios,
inspiring also new one. In the following, we focus on the
problem of 3D texture classification. We remark here that
in this study textures are intended as 3D repeatable patterns
corrugating the object surface; This concept is completely
different and separated from the 2D texture, which is related
to the photometric appearance of the model and, if present,
is coded by a 2D image. In fact, 3D objects have been
analyzed for classification and retrieval purposes mainly using
their 3D shape. This is largely motivated by the almost
complete absence of 3D textures in CAD and synthetic models

used in the majority of benchmark datasets [35], [37], [38].
Instead, the 3D surface texture is of fundamental importance
to discriminate the 3D scans of real objects, which can
show very similar shapes, but be well differentiable based on
their 3D texture.

According to these considerations, in this experiment we
investigate the potential of the mesh-LBP for discriminating
texture patterns on 3D meshes. In so doing, our goal is to probe
the capability of mesh-LBP as a framework for 3D texture
classification, rather than to elaborate a proper method for such
task. For this purpose, we used surface samples exhibiting
a variety of 3D shape textures, collected from eight differ-
ent object models of the “MIT CSAIL textured 3D models
database” [33]. These objects are bagel, bird, gargoyle, head,
lion, owl, plaque and pot. All these models are characterized
by a reasonably uniform mesh, and we were able to identify
10 distinct 3D texture patterns from them, as reported in the
1st row of Fig. 9 (in particular, three texture patterns were
derived from the owl object). For each sample, we computed
a 1D-histogram of the mesh-LBP operator (Eq. (3)) using the
operator functions α1(k) = 1 and α2(k) = 2k , a varying
spatial resolution r = 1, . . . , 7, and an azimuthal quantiza-
tion m = 12. For the operator function α1, the resulting
mesh-LBP take values in [0,12] (i.e., in this case, the number
of 1-valued bits in a pattern of 12 bits is counted), and
these values are accumulated in a 1D histogram with 13 bins
for each ring. For the α2 operator, for which the range of
mesh-LBP is [0,4095], we adopted the uniform/non-uniform
mesh-LBP partition described in Section IV-A, that is 1123
bins are used for the uniform patterns, i.e., one bin for each
of the patterns having a number of transitions equal at most to
four, and one bin for all the remaining patterns (the 2973 non-
uniform ones). Based on this setting, two 2D histograms of
size (7,13) and (7,1124) are computed for each texture, which
are associated, respectively, with the α1 and α2 operators.
The histograms are computed for each sample surface by
considering an area of 19 rings around the central facets in
the computation of mesh-LBP, which is sufficient for covering
the 3D texture variation in each sample. To compute the
distance between two histograms H1 and H2, the complement
of the Bhattacharyya coefficient B(.), i.e.,

√
1 − B(H1, H2)

was used.
We repeated the histogram computation for each model

using four scalar surface functions, namely, the mean
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Fig. 9. Top: 3D texture samples from the ten classes. Bottom: The corresponding histograms obtained with the angle between facets normal and the
α1 weighting function using 7 rings and 12 samples per ring (i.e., histograms with 7 rows and 13 columns). Each histogram bin cumulates the frequency
of a mesh-LBP pattern computed for all the facets of a sample surface (histograms are represented as gray-level images, where lighter pixels correspond to
histogram bins with higher values).

curvature, the gaussian curvature, the shape index (instead of
the curvedness) and the angle between facets normal. As an
example, Fig. 9 (2nd row) depicts the histograms of the first
type (i.e., α1 operator) obtained with the angle between facets
normal, and computed for the sample surfaces in the first
row. The histograms are obtained by reporting the frequency
of the mesh-LBP patterns computed for all the facets of the
sample surfaces (i.e., histograms are represented as gray level
images, where lighter pixels correspond to histogram bins
with higher values).

The assessment of the discriminative power of the dif-
ferent descriptors is performed as follows. For each texture
class, we considered 30 different instances and for each of
them the different descriptors have been computed. From the
set associated to each texture class, we evaluate the mean
and the variance. Since all the descriptors have a histogram
structure, the variance we consider here is the variance of
the Bhattacharyya distances between descriptor instances and
their mean. For each descriptor, we compute the distance
matrix of the ten texture classes, where each diagonal term is
the mean intra-class distance, and the non-diagonal term is the
distance between the mean of class i and the mean of class j .
The so-obtained 10 × 10 distance matrices provide a coarse
assessment of the discriminative power of the descriptors.

Figs. 10 and 11 depict, respectively, the distance matrices
related to the different mesh-LBP surface descriptors for
α1(k) = 1 and α2(k) = 2k . For the mesh-LBP descriptor,
we notice that the intra-class distance is quite below the
inter-class distance across all the different descriptors and the
two operator functions. To evidence this behavior, in the con-
fusion matrices reported for the different cases, we highlighted
the intra-class and inter-class distances that are less separated
(in gray and yellow, respectively), and so that are more
susceptible to be confused with each other. Even in the worst
cases, it can be observed that the ratio between the inter-class
distances and the corresponding intra-class distance is greater
than 2.33, for α1 and SI, and of 3.37 for α2 and SI. This is a
clear indication of the potential and the appropriateness of the
mesh-LBP descriptors for discriminating textured shapes.

Fig. 12 reports the distance matrices between all the classes’
instances (i.e., 30 instances for each of the 10 classes). Results
for the mesh-LBP computed with the scalar functions H,
K, SI and D, for the α1 and α2 operators are depicted
in the top and bottom row, respectively. In the mesh-LBP

Fig. 10. Distance matrices between the 3D texture classes. The α1 operator
is used in the mesh-LBP computation using the following descriptors (from
top): mean curvature (H ), gaussian curvature (K ), shape index (S I ) and angle
between facets normal (D). The intra-class and inter-class distances that are
less separated are highlighted in gray and yellow, respectively.

distance matrices, we can easily distinguish the 30×30 blocks
related to the inter-class distances between class pairs. This
observation confirms the discriminant capability of the mesh-
LBP descriptors. The classification accuracy, estimated as the
percentage of occurrences where the inter-class distance is
greater than the intra-class distance across all the classes is also
reported for each descriptor on top of the distance matrices.
A perfect classification of 100% is obtained in all the cases.

1) Mesh-LBP Variants: We conducted the same tex-
ture classification experiment with the mesh-CSLBP variant
(Eq. (4)). In this variant, we kept the same spatial resolution
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Fig. 11. Distance matrices between the 3D texture classes. In this case, the
α2 operator function is used in the mesh-LBP computation.

Fig. 12. Matrices reporting the distances between all the instances of the
texture classes (30 instances per class). Distances are computed for the mesh-
LBP obtained using H, K, S I, and D scalar surface descriptors (top row for α1
and bottom row for α2, respectively). The classification accuracy, estimated as
the percentage of occurrences where the inter-class distance is greater than the
intra-class distance across all the classes is also reported for each descriptor.

and the azimuthal quantization (r = 7, m = 12), but the mesh-
LBP patterns are now coded on 6 digits, setting thus their
ranges to [0,6] and [0,63] for α1 and α2, respectively. We also
adopted the uniform/non-uniform partition as for mesh-LBP,
though the resulting number of classes (i.e., the histogram
bins) is not significantly reduced (62 instead of 64). Fig. 13
depicts the distance matrices between all the 30 classes’
instances, computed with the four previously used scalar
functions (H, K, SI and D), together with their corresponding

Fig. 13. Distance matrices obtained for the mesh-CSLBP using H, K, S I
and D scalar surface descriptors (top row for α1 and bottom row for α2,
respectively), and their related classification accuracies.

Fig. 14. Distance matrices between the 3D texture classes computed with
the mesh-CSLBP, α1 operator, and the four descriptors.

accuracy rates. The 10 × 10 distance matrices related to α1
and α2 are also depicted in Fig. 14 and 15, respectively.

We notice that the accuracy rate is virtually 100% and
exactly 100% for α1 and α2, respectively, across the four
descriptors. Also, in the worst cases, the ratio between the
interclass distances and the corresponding intra-class distance
is scoring 2.4 for both α1 (SI ) and α2 (SI ). These scores
confirm the discriminant capability of the mesh-CSLBP,
though to a less extent than the mesh-LBP, for which the
corresponding ratios are 2.33 and 3.37. However, this inferior-
ity is expected because of the lower range of the mesh-CSLBP
pattern.
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Fig. 15. Distance matrices between the 3D texture classes computed with
the mesh-CSLBP, α2 operator, and the four descriptors.

2) Mesh-LBP Discriminative Power: In order to compare
quantitatively the different cases using a synthetic performance
indicator, the discriminative power of the mesh-LBP descrip-
tors and the mesh-CSLBP descriptors has been evaluated
according to the following criterion:

J =
M∑

i=1

M∑

j=i+1

Di j , (7)

where M is the number of texture classes. Di j is the
probabilistic-like inter-class separation between texture classes
i and j defined as follows:

Di j = 1

2
dist (H̄i , H̄ j )

2(
1

σ 2
Hi

+ 1

σ 2
Hj

) + 1

2
(
σ 2

Hi

σ 2
Hj

+
σ 2

Hj

σ 2
Hi

− 2),

where (H̄i , H̄ j ) and (σHi , σHj ) are the mean histograms and
the variances of the texture classes i and j, respectively.

The criterion J computed for the different mesh-LBP and
mesh-CSLBP descriptors is reported in Table I. For both
variants, we notice that K and D score the best performance
for the α1 and α2 operators, respectively. The same ranking is
kept for the other descriptors H and SI .

D. Comparative Evaluation

In the following, we compared the mesh-LBP descriptors
performance, in terms of 3D texture classification, with other

TABLE I

DISCRIMINATIVE POWER J COMPUTED FOR THE DIFFERENT

MESH-LBP AND MESH-CSLBP DESCRIPTORS

standard 3D surface descriptors (Section IV-D.1) and the 2D-
LBP applied to depth images (Section IV-D.2).

1) 3D Surface Descriptors: In this analysis, we consid-
ered the following 3D surface descriptors: the Geometric
Histograms (GH) [39]; the Shape Distribution variants [40],
namely, the distance between a fixed point and one ran-
dom point on the surface (D1), the distance between two
random points on the surface (D2), the square root of the
area of the triangle between three random points on the
surface (D3), the cube root of the volume of the tetrahedron
between four random points on the surface (D4), and the
angle between three random points on the surface (A3);
the Spin-Images [41]; and the mesh-HOG [42]. Using these
descriptors, we performed the same experiments discussed
above for the mesh-LBP. The distance matrices between all
the classes’ instances are reported in Fig. 16. Comparing these
distance matrices with those obtained for the mesh-LBP using
different descriptors and reported in Fig. 12, it clearly emerges
the performance improvement obtained using the mesh-LBP
approach.

Similarly to the results presented for the mesh-LBP, we also
provide the distance matrices obtained between the different
texture classes. In this case, we report just the results for
the best competing solutions as resulted from Fig. 16, that
is, the descriptor D4, which resulted the best among the
Shape Distributions, and the Spin Images that resulted the
most effective among the other descriptors. In these matrices,
depicted in Fig. 17, the cases in which the intra-class distance
is greater than the corresponding inter-class distances are
highlighted in gray and red, respectively. It can be observed
that this case occurs for several pairs of texture classes for both
the matrices, whereas this is never the case for the distance
matrices obtained for the mesh-LBP descriptors, where the
intra-class distances are lower than the corresponding inter-
class distances across all the cases.

2) 2D-LBP on Depth Images: We conducted an additional
experiment to assess the mesh-LBP performance with respect
to the 2D-LBP counterpart applied on depth images [25].
For this purpose, we considered 30 depth image samples for
each texture surface (see Fig. 18). In each set, the samples
were constructed at different rotation angles, varying from
0 to 2π/3, around the surface’s principal orientation, to avoid
self-occlusion effects. For each sample, we computed multi-
resolution 2D-LBP patterns with nearly the same setting
than their mesh-LBP counterparts. That is, a radial resolution
varying from 1 to 7, and an azimuthal resolution of 8 across
all the radii. In addition, we adopted the local descriptors
H, K, SI, and C, rather than the depth value (e.g., z coordinate)
used usually in the standard 3D-LBP.
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Fig. 16. Matrices reporting the distances between all the instances of the texture classes (30 instances per class). Distances are computed for: Shape
Distributions (top); Geometric Histogram (bottom left); Spin Images (bottom middle); mesh-HOG (bottom right) computed for different surface scalar functions,
namely, H, K and SI. For each descriptor, the overall classification accuracy is also reported in percentage.

Fig. 17. Distance matrices for the Shape Distribution D4 and the Spin
Images. The cases in which the intra-class distance is greater than the
corresponding inter-class distances are highlighted (gray and red colors are
used for, respectively, the intra- and inter-class distances).

We computed, the classification rate for the three
2D-LBP variants, namely, the uniform LBP (u2), the rotation
invariant LBP (ri ) and the uniform rotation-invariant LBP
(riu2). Fig. 19 depicts the obtained classification rates and
the distance matrices for each variant. First, we notice the low
performance of the u2 variant, which naturally is expected
because its sensitivity to surface rotation. The ri and the riu2
show much better performance, but they remain lower than
their mesh-LBP counterpart across all the instances. We also
computed the distance matrices, showing inter-class and the
intra-class distances, between the different texture classes.
We reported only the results related to the best competing
variants, namely, Kriu2 and SIri , which are depicted in Fig. 20.

E. Robustness to Mesh Irregularities

Ideally, a mesh is formed entirely by equal-sized triangles
(not necessarily equilateral), and 6-valence vertices. As we
mentioned previously, though nowadays triangle mesh surfaces
acquired by shape digitizers have overall good quality in
terms of uniformity, they often contain areas of non-uniform
tessellation showing extremum triangles, such as needle or
flat triangles, and whereby the assumption of vertex valence

of six does not hold. These two aspects make the arithmetic
progression of the number of facets across the rings, expressed
in Eq. (2) no longer satisfied. We addressed this issue by
interpolating or sub-sampling the scalar function on the mesh
across the rings. In this experimentation, we wanted to assess
to what extent this procedure can cope with mesh irregularities
that can be encountered in real mesh data. To simulate the
two aforementioned aspects that corrupt the mesh uniformity,
we propose the following corruption procedure reported in
Algorithm 4.

The random perturbation consists of applying the following
transformation to one of the vertex of the facet:

t (v) = v + σ 
u, (8)

where σ is a random positive variable taking values in the
range [0.2, 0.8], and 
u is a unit vector collinear with the
line joining the vertex v to the middle point of its opposite
edge. The combination of this transformation and the edge
collapsing aims to obtain mesh irregularity instances close to
the ones encountered in real mesh data. The extreme case of
this corruption scheme is represented by meshes where 80%
of the facets and 50% of the edges have undergone vertex
perturbation and edge collapsing, respectively. Though real
mesh data rarely exhibit such extreme corruption, at least after
a basic pre-processing, considering such extreme cases, allows
us to best assess the extent to which the adopted interpola-
tion/subsampling procedure can address mesh irregularities.
We applied this corrupting procedure to the textured shape
surfaces included in the ten classes employed in the 3D texture
matching experiments discussed above. For each texture class,
we obtained 40 sets of mesh instances at increasing corruption
amplitudes. In turn, each set contains the 30 instances of
the class. Fig. 21 depicts an original mesh surface and four
samples of corrupted instances at different levels.

For each mesh corruption level, we performed the full
classification procedure involving all the 30 instances of each
class. The obtained classification rates are depicted in Fig. 22.
It can be observed that all the mesh-LBP descriptors keep a
classification accuracy above 99% up to the 30th corruption
level, and practically 100% up to the 20th level, especially
for the α(k) = 2k operator (Fig. 22(b)). For this category,
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Fig. 18. Depth images of 10 3D texture classes.

Fig. 19. Matrices reporting the distances between all the instances of the
texture classes computed from depth images (30 depth images per class) using
2D-LBP patterns. Distances are computed for the uniform LBP (u2), rotation
invariant (ri), and uniform rotation-invariant (riu2). The 2D-LBP patterns
were computed for each of the scalar functions H, K, S I and C. The overall
classification accuracy is also reported in percentage.

Fig. 20. Distance matrices for the 2D-LBP: Kriu2 and S Iri . Cases when
the intra-class distance is greater than the corresponding inter-class distances
are highlighted (gray and red colors are used for, respectively, the intra- and
inter-class distances).

we notice in particular that with gaussian curvature, the
descriptor keeps above 99% accuracy across all the corruption
levels, seconded by the Shape Index (SI), which is showing
similar performance up to the 37th level. In the first category
(Fig. 22(a)), the angle between facets normal is virtually
scoring 100% till the 29th level. Overall, the results indicate
a clear resistance of the mesh-LBP descriptors to mesh irreg-
ularities, and bring evidence of the validity of the proposed
interpolation/subsampling procedure.

Algorithm 4 Triangular Mesh Corruption Procedure

Fig. 21. The original mesh (left) and 4 corrupted instances at levels 1, 11,
21, and 31.

Fig. 22. Classification accuracy obtained for the different mesh corruption
levels: (a) α(k) = 1; (b) α(k) = 2k.

V. DISCUSSION AND CONCLUSIONS
In this paper, we presented mesh-LBP as a novel framework

for computing local binary patterns on triangular mesh man-
ifolds. This framework keeps the simplicity and the elegance
characterizing the original LBP and allows the extension of
all its variants, developed in 2D image analysis, to the mesh
manifold. The mesh-LBP reliefs object surface data from
normalization and registration procedure required when using
depth images, while it extends the spectrum of LBP analysis
to closed surfaces.

The experimental tests revealed that mesh-LBP exhibits a
“uniformity” aspect for the different types of scalar functions,
pretty similar to the one noticed in 2D-LBP. We also provided
a simple method for addressing rotation invariance that proved
to be effective as was confirmed by repeatability and the other
subsequent experiments.

Experiments on 3D texture classification showed clear evi-
dence of the appropriateness of the mesh-LBP descriptors
for such a task, and their superior discriminative power as
compared to other popular 3D descriptors. Experiments related
to the mesh-CSLBP variant showed that we can keep virtually
the same performance, while reducing the computational cost.
Regarding the choice of the scalar function, in summary, the
angle between facets normal and the gaussian curvature seem
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TABLE II

DIFFERENT VARIANTS OF THE LBP OPERATOR, GROUPED IN FOUR CATEGORIES, AND THE CORRESPONDING PATTERNS OBTAINED FOR THE

2D-LBP AND THE MESH-LBP ARE REPORTED. UNDER THE COLUMN “CLASS OF VARIATION”, WE EVIDENCE THE MAIN ASPECT

OF THE LBP COMPUTATION FRAMEWORK, WHICH IS VARIED BY A PARTICULAR SOLUTION

the more effective surface descriptors to be used within the
mesh-LBP framework as emerges throughout the different
experiments. The same experiments that were carried out
with depth image modalities, confirmed also the superiority
of our mesh-LBP, noting also the constraints on the depth
image construction procedure that we had to consider to obtain
the desired quality in terms of pattern visibility. It is also
noticeable, in particular, that the rotation invariant mesh-LBP
α1 outperforms its 2D-LBP ‘ri’ variant despite the lower size
of its associate histogram (13 against 36 for ‘ri’).

The re-sampling scheme of the scalar function over each
ORF ring proved to be an effective mechanism for addressing
mesh irregularities. In the related experiment, the gaussian cur-
vature and the shape index exhibited the best robustness score.

The comparison of the α1 and α2 operators does not provide
conclusive results, apart that they perform best with gaussian
curvature and the angle between facets normal, respectively.
However, the compactness of the descriptor obtained with the
α1 operator, and the resulting lower computational complexity
required to compare descriptors, vote for this solution espe-
cially in the cases where time constraints are relevant.

As future work, we plan extending the mesh-LBP to global
analysis. One potential approach is extracting ordered blocks
from the mesh surfaces and then construct from them, by
concatenation, a global histogram. We believe that mesh-LBP
will open-up new perspectives for mesh manifold analysis and

will be an appropriate complement to other mesh manifold
analysis techniques.

APPENDIX

In this appendix, we show that most, if not all, the different
LBP neighborhood and operator variants proposed in the
literature [24] can be easily derived from the ordered rings
structure of the mesh-LBP. In fact, one important feature of the
mesh-LBP is that the topology of the neighborhood from
which the descriptor is computed can be changed to accom-
modate the specificities of a given shape analysis application.
Some of the most effective and used LBP variants, their
structure and the related mesh-LBP patterns are summarized
in Table II, where the LBP variants are organized in four
categories, according to which aspect of the basic LBP compu-
tation framework is varied. In the following, we provide more
details about the definition and computation of the mesh-LBP
variants:

Browsing Path: Considering a set of directions D j , a
mesh-LBP operator can be defined which uniformly samples
m facets along the directions D j :

meshL B P
D j

m ( fc) =
m−1∑

k=0

s(h( f j
k ) − h( fc)) · α(k). (9)

This directional extension of the mesh-LBP can be regarded
as a generalization to the mesh case of the Local Line
Binary Pattern (LLBP) [43], introduced in the context of face



234 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

recognition to encode anisotropic information of neighbour-
ing pixels by computing LBP across vertical and horizontal
directions (Table II, case (a)). A variety of operators can
be further derived from Eq. (9) by combining the different
directional operators. Among these, the ORF framework can
be used to arrange the facets according to a spiral-wise
topology, thus allowing the derivation of the equivalent of
the Archimedean spiral-like LBP, as originally defined in [44]
(Table II, case (b)).

Contour/Initial Seed: Several LBP variants can be obtained
by using a non-circular neighbourhood of the central facet,
through a particular setting of the initial contour. For example,
selecting the set of Fin_root facets of Algorithm 3 in a bar-
like shape fashion produces elongated ORFs. This pattern can
be viewed as the mesh-LBP version of the elongated local
binary pattern (ELBP) proposed in [18] (Table II, case (c)).

Comparison Strategy: This category includes the variants
aiming to reduce the dimensionality of the LBP descriptor. The
uniform patterns and the central symmetric mesh-LBP (mesh-
CSLBP in Table II, case (d)) variants have been presented in
Section III-A and experimented in Section IV. More recently, a
dimensionality reduction method for LBP, denoted as orthogo-
nal combination of LBP (OC-LBP) has been proposed in [45].
In this case, the basic idea is to first split the neighboring
pixels of the original LBP operator into several non-overlapped
orthogonal groups, then compute the LBP code separately
for each group, and finally concatenate them together. The
same computation procedure can be used in the mesh-LBP
framework, resulting in an equivalent mesh-OCLBP operator.

Structural Element: The three-patch and four-patch LBP
(TPLBP and FPLBP, respectively) have been proposed by
Wolf et al. [10] as an extension of the center-symmetric
LBP (CSLBP) [29] for the purpose of extracting com-
plementary information to pixel-based descriptors. In the
mesh-LBP framework, we define a mesh-TPLBP like structure
by constructing ORF patches of w rings at the central facet,
and at m equally spaced facets on the r -th ring around the
central facet. The case (e) of Table II depicts a mesh-TPLBP
composed of ORF with 3-ring patches (w = 4), one at
the central facet and six at equally spaced positions on the
12-th ring (e.g., r = 12). Varying the parameters w, r and
m other mesh-TPLBP can be obtained as well. Formally, we
express the mesh-TPLBP operator as follows:

meshT P L B Pr,m,w( fc) =
m−1∑

k=0

s(Y ) · α(k)

wi th Y = d(Pk, Pfc ) − d(Pk+δ mod m, P fc ),

where d(.) is any distance function between two patches
constructed on w rings (for example, d(.) can be the
L2 norm or the Bhattacharyya distance between the geometric
histogram [39] associated to the two patches); and δ controls
the arc-length distance between the patches of a pair.

The FPLBP construction follows a similar approach to
the three-patch solution, but considering four patches on two
concentric rings (see Table II, case (f)). The construction of
the mesh-FPLBP version of this operator follows virtually the
same steps of the mesh-TPLBP, except that two groups, rather
than one, of equally spaced ORF with w-rings are generated

at two different radii (e.g., the inner ring with radius r1, and
the outer ring with radius r2). The mesh-FPLBP operator is
defined as follows:

mesh F P L B Pr1,r2,m,w( fc) =
m/2−1∑

k=0

s(Y ) · α(k)

Y = d(P1
k , P2

k+δ mod m) − d(P1
k+m/2, P2

k+m/2+δ mod m).

Different variants of the mesh-FPLBP can be constructed
by tuning the parameters r1, r2, m, w and δ. An example is
shown in Table II, case (f), using r1 = 5, r2 = 10, m = 6,
w = 2 and δ = 0.
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