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Abstract

In this paper we describe a technique for joint estimation
of head pose and multiple soft biometrics from faces (Age,
Gender and Ethnicity). Our proposed Multi-Objective Ran-
dom Forests (MORF) framework is a unified model for the
joint estimation of multiple characteristics that automati-
cally adapts the measure of information gain used for eval-
uating the quality of weak learners. Since facial charac-
teristics are related in the feature space, estimating all of
them jointly can be beneficial as trees can learn to condition
the estimation of some characteristics on others. We refor-
mulate the splitting criterion of random trees in our multi-
objective formulation and evaluate it on publicly available
face characteristic estimation imagery. These preliminary
experiments show promising results.

1. Introduction
Facial characteristics like Gender, face pose, Age and

Ethnicity are important to estimate in many computer vi-
sion applications. Estimating the Gender and Age can be
used to adapt advertising displayed on nearby screens, and
pose estimation can allow users to interact with devices by
simply looking at them. Although head pose is not a bio-
metric characteristic, it is related to the gaze of a person
and therefore can be an important aspect of behaviour and
social interaction understanding. Despite the attention re-
ceived in recent years, estimation of multiple face charac-
teristics, and especially multiple soft biometrics like Age,
Gender and Ethnicity, remains a difficult problem and an
active area of research in the computer vision community.

Most systems for estimating characteristics like Age,
head pose [8] and Gender [11,16] use their own sets of cus-
tom features and specific estimation techniques. In systems
requiring simultaneous estimates of target characteristics in
real-time, this can be wasteful since much work (like fea-
ture extraction) is duplicated. Moreover, it may be easier to
estimate one characteristic after conditioning it on a subset
of others. Instead of estimating characteristics individually,
we believe estimators can and should share the same pool of

features, and perhaps even the same estimators. In this way,
estimation of multiple characteristics can be made more ef-
ficient and more robust.

We believe that random decision forests [2] can provide
a unified framework for multi-objective estimation. In this
article we show how they can be used to simultaneously
estimate multiple characteristics using a single pool of fea-
tures. We propose a new information gain formulation en-
abling the use of multiple (potentially heterogeneous) char-
acteristics to train a random forest. We demonstrate the ef-
fectiveness of our approach for jointly estimating head pose,
Gender, Age and Ethnicity from single face images.

In the next section we discuss the related literature on
soft biometric and head pose estimation from face images.
In section 3 we describe our approach to multi-objective
estimation with random decision forests. We report on a
series of experiments we performed to evaluate the potential
of our proposed estimation framework in section 4, and we
conclude in section 5 with a discussion of our contribution.

2. Related work
In this section we discuss some of the recent literature on

face characteristic estimation from images.

Gender classification. Zheng et al. [16] proposed a sup-
port vector machine with automatic confidence (SVMAC)
and the LGBP feature for gender classification. Guo et
al. [5] demonstrated that Gender recognition based on LBP
and HOG features can be helped by Age classification.

Age estimation. Gunay et al. [4] proposed an Age clas-
sification approach based on a nearest neighbour algorithm
with LBP feature, obtaining about 80% accuracy on a subset
of the FERET dataset [12]. In [13] the authors introduce the
concept facial aging to improve the efficiency of Gender es-
timation and face recognition and proposing the “MORPH”
dataset [14] as a benchmark for Gender and Age estimation.

Soft biometric estimation. The authors in [10] proposed
a technique for face verification in uncontrolled environ-
ments, considering two different approaches: one based on
attribute classifiers for Gender, Age and Ethnicity, and a
second one to recognize facial landmarks.



One of the first works to jointly estimate multiple char-
acteristics was presented in [15]. They use AdaBoost on
LBPH features to jointly estimate Gender, Age and Ethnic-
ity. With the same goal, Guo et al. in [6] investigated two
different ways to estimate these same characteristics using
Kernel Canonical Correlation Analysis (KCCA) and Partial
Least Squares (PLS). They show that it is possible jointly
estimate Age, Gender and Ethnicity, while significantly re-
ducing feature dimensionality. We will use this work as our
baseline.

Head pose estimation. Head pose, while not a soft bio-
metric, is a fundamental characteristic in video surveillance
as it can provide an estimate of interest for profiling-at-a-
distance applications [9], or evidence of the direction in
which a person is moving [1]. In [1] the authors propose an
unsupervised method to estimate gaze direction with ran-
dom decision trees over Histogram of Oriented Gradients
(HOG) and color features. In [7] the authors use partial least
squares (PLS) and a 3-level pyramid of HOGs to estimate
head pose in the presence of misalignment.

Random forests for face characteristic estimation. The
random forest model has been used for head pose estima-
tion [2, 8]. Existing approaches based on random forests
focus on a single characteristic estimation, or consider mul-
tiple characteristics independently. Random forests have
been shown to be a powerful tool for head pose estima-
tion [8], and we believe they can be naturally extended to
simultaneously estimation multiple, heterogeneous proper-
ties (including soft biometrics) from face imagery.

3. Multi-objective Random Forests (MORF)
In this section we describe our multi-objective estimation

approach using random forests.

3.1. Feature representation for faces

We use the HOG feature descriptor to describe faces. We
first resize all face images to a canonical dimension of 41×
54 pixels. Using the standard cell configuration of 8 × 8
pixels, the gradient orientations are extracted in each cell
and quantized into 8 orientations. Block normalization is
then applied to 4×4 blocks of cells, and normalized outputs
are concatenated to the final HOG vector of 1024 bins.

3.2. Random forests for supervised estimation

In this section we describe the basic, single-objective es-
timation model upon which MORF are based and how we
extend it to multi-objective estimation model using random
forests.

Training single-objective random trees. We consider su-
pervised estimation problems. Assume we have a set of N
face images available, each represented as a d-dimensional

vector and labeled with a single characteristic c:

S0 = {(xi, yi) | i = 1, . . . , N} , (1)

where xi = (x1, x2, . . . xd) and yi ∈ Yc, the set of labels of
characteristic c. A random tree is built by recursively split-
ting this initial set S0 of labeled examples in such a way that
the mutual information between the set of examples at each
node and the characteristic c being estimated is maximized.

We define a splitting function that compares two dimen-
sions in the face descriptor:

h(x; θ1, θ2) =

{
1 if xθ1 > xθ2
0 otherwise.

(2)

Given a parametrization θ = (θ1, θ2) of the splitting func-
tion, we define the left and right child sets of Si as:

SLi (θ) = {x ∈ Si | h(x; θ1, θ2) = 1} (3)
SRi (θ) = {x ∈ Si | h(x; θ1, θ2) = 0} .

By construction, the splitting function h(x) guarantees that
SLi (θ) and SRi (θ) partition Si. The quality of splits is mea-
sured by the information gain in the resulting subsets with
respect to the characteristic being estimated:

Ii(θ) = H(Si)−
∑

j∈{L,R}

|Sji (θ)|
|Si(θ)|

H(Sji (θ)), (4)

where H(S) is the characteristic entropy in set S: H(S) =
−
∑
y∈Yc p(y|S) log p(y|S) for the discrete estimate of

p(y|S) from set S: p(y|S) = |{xi∈S | yi=y}|
|S| . Using infor-

mation gain to evaluate splits produces trees in which the
entropy of the class distributions associated with the nodes
decreases when descending in the tree, and thus prediction
confidence increases.

Trees are built by randomly sampling the parameter
space θ = (θ1, θ2) at each node Si in the tree. At each
internal node, T random parameters θt for t = {1, . . . , T}
are generated, and the split resulting in the highest informa-
tion gain is chosen:

θ∗i = argmax
t
Ii(θt). (5)

The number of tests T controls the randomicity of the re-
sulting tree. Clearly, if T = d(d−1) the best overall split at
each node will be selected and there will be no randomicity
in the resulting tree. Child nodes are added until a maxi-
mum depth D is reached in the tree, or until a minimum
number of training elements remains in the set Si at node i.
Estimation with forests of random trees. A random tree
T is thus defined by the split parameters at each internal
node:

T = {θi}i=|T |i=1 . (6)



To ensure diversity and avoid overfitting possible with a sin-
gle tree, a forest of trees is defined as F = {T1, . . . , TF }.
The trees in F are trained independently and their outputs
averaged to provide some sort of regularization.

Given an unlabeled test sample x, we use the hierarchy
of tests defined by each T to determine to which leaf node
it arrives. Denoting the leaf node that x arrives to in tree T
as l(x; T ), we can estimate the unknown label y of x using
the training elements xi that arrive to the same leaf node:

label(x;F) = argmax
y

1

|F|
∑
T ∈F

p(y|L(x; T )), (7)

where L(x; T ) is the set of training examples in the same
leaf as x in tree T :

L(x; T ) = {(xi, yi) ∈ S0 | l(xi; T ) = l(x; T )} . (8)

Multi-objective estimation with random forests. We
now assume that each training sample xi is labeled with
C > 1 characteristics we wish to estimate:

S0 = {(xi, {yji }
C
j=1) | i = 1 . . . N} (9)

If constructed properly, the tree model should learn how
to condition the estimation of one characteristic on the es-
timation of another, thus simplifying the problem. The
fundamental difference between single-objective and multi-
objective estimation is in how the information gain driving
the splitting process is defined. In particular, there is no
guarantee that the information gain in one characteristic is
comparable in scale with the information gain in another.

We define a new normalized measure of information gain
for multi-objective random forests, it weights the informa-
tion of each characteristic c by the ratio between the local
entropy in Si with respect to the root entropy Hc(S0). This
locally weighted information gain Ilw is defined as:

Ilw(Si,θ) = max
c

Hc(Si)
Hc(S0)

Ic(Si,θ). (10)

The main idea behind the definition of Ilw is to update
weights during the training process in order to scale each
characteristic information gain based on how much entropy
remains at the current depth. During training, our approach
selects the split function parametrization θ which maxi-
mizes the locally weighted information gain Ilw accord-
ing to one characteristic. Note that the characteristic c is
selected automatically at each node of each tree. A de-
tailed experimental analysis of our learning procedure is
conducted in section 4.2.

4. Experimental results
We report on experiments comparing our approach to a

state-of-the-art baseline [10] (based on KCCA) for the joint

FERET [12] CAS-PEAL-R1 [3] MIX Dataset

# Persons 994 1040 210

Pan Angles
{−90,−75,−67.5,−45, {−45,−30, {−67,−45,−22,
−22.5,−15, 0,+15, −15, 0,+15, −15, 0,+15,

+22.5,+45,+67.5,+90} +30,+45} +22,+45,+67}
Tilt Angles 0 {−45, 0,+45} 0

Age 19 years of birth Y, M, O Y, M, O
Ethnicity 9 ethnic groups Asian only 5 ethnic groups

# Images per subjects At least 5 by subject ∼ 21 At least 5 by subject

Table 1: Characteristics of the FERET, CAS-PEAL and our
MIX datasets.

estimation of multiple soft biometrics and face characteris-
tics. We evaluate performance on a dataset we create using a
subset of images from the FERET [12] and CAS-PEAL [3]
datasets.

4.1. Datasets and experimental protocols

We evaluate our approach on a subset of the FERET [12]
and CAS-PEAL-R1 [3] datasets. The main characteristics
of these datasets are summarized in table 1. We first detail
each of these datasets, and then describe how we merge the
two of them to create a combined dataset with a richer and
more balanced set of soft biometrics to estimate.

The FERET Dataset. The FERET dataset [12] is a bench-
mark for face-recognition algorithms. It is composed of im-
ages of 994 subjects (591 males and 403 females). It is
composed of 11,338 images, annotated with 9 different eth-
nic groups, 12 different Pan angles, and year of birth.

The CAS-PEAL-R1 Face Dataset. The complete CAS-
PEAL dataset [3] is one of the largest datasets (99,594 im-
ages of 1,040 subjects) for evaluating Gender recognition,
head pose estimation, and face recognition methods. The
dataset is composed only of Chinese persons (595 males
and 445 females) imaged in different poses and with vary-
ing expressions, accessories, and lighting. The publicly
available version, called CAS-PEAL-R1, contains 30,863
images of 1,040 subjects, with about twenty images of each
person. Each image is acquired considering a combination
of the Tilt and Pan angles reported in Table 1 and the Age is
quantized into three classes Young (Y) from 10 to 44 years,
Middle-Age (M) from 45 to 59 years and Old (O) above 60
years.

A dataset for multiple soft biometric estimation. Nei-
ther CAS-PEAL-R1 nor FERET alone are satisfactory for
evaluation of multiple soft biometric estimation. For ex-
ample there are only 4 “Old” subjects and 10 “Middle-
Age” subjects in the CAS-PEAL-R1 dataset, and it also
composed only of Asian subjects. In contrast, the FERET
dataset contains very few “Old” subjects and 81 “Middle-
Age” ones, and 9 different Ethnicity classes. As seen in
Fig. 1(a), there are mostly “White/Young” persons, and
few “Middle-Age” and “Old” ones. Additionally, as shown



Y M O
0

100

200

300

400

500

600

700

800

900

#
 S

u
b

je
ct

Age

 

 

W

BAA

AME

A

PI

H

O

NA

AS

(a) Ethnicity/Age (FERET)

W Baa Ame A PI H O NA AS
0

100

200

300

400

500

600

700

#
 S

u
b

je
ct

Ethnicity

 

 

Female

Male

(b) Gender/Ethnicity (FERET)

Y M O
0

10

20

30

40

50

60

70

80

90

#
 S

u
b

je
ct

Age

 

 

W

BAA

AME

A

H

(c) Ethnicity/Age (MIX)

W Baa Ame A H
0

50

100

150

#
 S

u
b

je
ct

Ethnicity

 

 

Female

Male

(d) Gender/Ethnicity (MIX)

Figure 1: Characteristic distribution in the FERET and MIX datasets. See text for definition of MIX dataset.

in 1(b) Gender is not uniformly distributed within Ethnicity
and some ethnicities have very few subjects.

We define a dataset that mixes images from the FERET
and CAS-PEAL-R1 (which we call the “MIX” dataset in
what follows). When joining the two datasets, we exclude
images having a Pan angle of {−90,−75,−30,+30,+90},
because −90, −75 and +90 are present only in FERET and
{−30, +30} are present only in CAS-PEAL. We remove
all the images with a nonzero Tilt angle, since FERET con-
tains no images with nonzero tilt angles, and set to −67
and 67 the Pan angles −67.5 and 67.5, respectively. The
images from 4 ethnic groups that have very few subjects
were removed. We hence maintain the following 5 eth-
nicities: White (W), Black-or-African-American (BAA),
Asian-Middle-Eastern (AME), Asian (A) and Hispanic (H).
Note that the authors of [6] addressed the imbalance in eth-
nicities by maintaining only the White and Asian classes.
Finally, we project the Age labels from the FERET dataset
into the set of Age classes of CAS-PEAL: Young, Middle
and Old, as these three classes are the only Age information
provided in CAS-PEAL.

In our dataset the majority number of subjects are
“White” or “Asian”, and a significant part is composed by
“Young” people as shown in Fig. 1(a). To avoid bias in clas-
sification results, we consider ten randomly drawn subsets
of these subjects. Our random subset divisions consider the
number of subjects for each Age class so that each subset
contains 90 “Young” subjects, 90 “Middle-Age” subjects
and 30 “Old” subjects, where the 90 “Young” are selected
randomly from the mixed dataset, so that we have the same
number of subject for each Ethnicity class both for “Young”
and “Middle-Age” people. Each split contains from 1,858
to 1,995 images, randomly divided in half of the subjects
for each Ethnicity class to form the training and test sets.

Experimental protocol. Given the random nature of our
approach, and the ten different subsets, all results reported
are averages over multiple runs of the algorithm (three trials
for each split of the dataset). All trees used in these experi-

ments have maximum depth of 9, which was found to work
well in preliminary tests. Our random forest is composed
of 200 trees. At each node of a tree, T = 500 parametriza-
tions of the split function are randomly generated and the
best one (according to Eq. 10) is selected.

We evaluate Pan and soft biometrics estimation in terms
of recognition accuracy, and in terms of mean average error
(MAE). While recognition accuracy and mean average er-
ror are commonly used for performance evaluation, we feel
that – especially for soft biometrics in unbalanced datasets
– precision and recall on individual biometrics is a better
metric for evaluating performance. We thus also give preci-
sion/recall plots for all estimated soft biometrics.

4.2. Analysis of multi-objective learning

In Figs. 2(a), 2(b) and 2(c) we show, respectively, the
evolution of the entropy, the information gain, and the rank-
ing (in terms of information gain) of each estimated charac-
teristic as a function of the depth in the random trees com-
prising a MORF. The curves were computed from the av-
erage of all of the trees of all trials using our information
gain combination approach (Eq. 10) with 200 trees. At the
first levels of the trees, the Pan characteristic has the high-
est entropy (see Fig. 2(a)) and indeed as we see in Fig. 2(c)
Pan is the highest ranked splitting characteristic is and also
results in the highest information gain (Fig. 2(b)). The early
levels of each tree thus specialize in discriminating Pan an-
gles and consequently implicitly condition the estimation
of the other characteristics on Pan angle. Going deeper into
the trees, the entropy of each soft biometric characteristic
decreases gradually, and Age, Gender and Ethnicity begin
to have more importance as splitting characteristics. Trees
learn to specialize first on Pan, then Gender and Age, and
finally on Ethnicity.

4.3. Comparison with the state-of-the-art

In this section we compare the performance of our pro-
posed MORF approach for Pan and soft biometric esti-
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Figure 2: MORF performance on the MIX dataset. (a) Mean entropy per level for each characteristic. (b) Mean information
gain of selected split per level. (c) Mean rank (in terms of information gain) of selected split per level.

Pan Age Gender Ethnicity
Approach Accuracy MAE Accuracy MAE Accuracy MAE Accuracy MAE

MORF 63.56% 10.65 58.89% 0.43 79.86% 1.41 78.42% 0.56

CCA 31.27% 19.29 47.91% 0.58 76.28% 1.66 43.71% 1.01

KCCA 40.30% 14.59 57.12% 0.43 83.63% 1.15 40.04% 0.89

Table 2: Comparison between our approach and the state of
the art on Pan, Age, Gender and Ethnicity estimation.

mation with those of the Canonical Correlation Analy-
sis (CCA) and Kernel CCA (KCCA) approaches reported
in [6]. These approaches have the same objective as ours: to
reliably and simultaneously estimate multiple face charac-
teristics. They work by learning a subspace in which corre-
lation between image features and desired characteristics is
maximized, and then fitting a least squares prediction model
from projected image features and characteristics. We eval-
uate baselines with standard linear CCA, and KCCA with a
radial basis kernel.

We give accuracy and mean absolute error (MAE) per-
formance of our methods and both baselines in Table 2. We
give Mean Average Precision (MAP) for all methods and for
each label separately in Table 3. We plot in Fig. 3 the preci-
sion/recall curves of our approach compared with CCA and
KCCA for: age (Figs. 3(a) and 3(b)), gender (Figs. 3(c) and
3(d)), and ethnicity estimation (Figs. 3(e) and 3(f)).

Pan estimation. We compare the Pan estimation perfor-
mance of our approach with the state-of-the-art in the first
two columns of Table 2 in terms of accuracy and MAE.
The MAE measures how close predictions are to the ex-
pected outcomes. Our approach outperforms the state-of-
the-art baselines by a significant margin. The Pan charac-
teristic has 9 different labels (−67,−45,−22,−15, 0,+15,
+22,+45,+67), this high number of labels may be an issue
for the CCA and KCCA baselines.

Age estimation. We obtain similar or slightly higher per-
formance with respect to the CCA and KCCA baselines.

Accuracy and MAE are given in Table 2. We obtain an ac-
curacy of 58.89%, which is 1.7% higher than the KCCA
baseline. In the first three rows of Table 3 we report MAP
performance on Age estimation. We plot in Fig. 3 the pre-
cision/recall curves of our approach compared with CCA
and KCCA baseline. The trend is similar for our approach
and the two baselines, but our curves tend to stay above the
CCA curves (except for the Old class) and a bit above the
KCCA curves (except for the Young class for lower recall
values).
Gender estimation. Our MORF approach gives lower
performance that the KCCA baselines both in terms of ac-
curacy and MAE as reported in Table 2. However MORF
outperforms the CCA baseline on these two metrics. From
Table 3 where per class MAP are given and from the Pre-
cision/Recall curves in Fig. 3(c), we can see our method
works better on female class with respect to the CCA, while
in Fig. 3(d) we can see that the performance on the Female
class is lower than KCCA. For all methods the performance
on the female class is lower, this could be related to the fact
that only one third of the subjects in our dataset are females.
Ethnicity estimation. We significantly outperforms the
baselines on Ethnicity estimation. MORF obtains an ac-
curacy of 78.42% while the CCA and KCCA baseline are
around 40%, see Table 2. In terms of MAP, results in Ta-
ble 3, the performances of our approach are comparable
with the baselines for most of labels except for the Asian
class where our approach performs much better. This is
confirmed by the precision/recall plot in Figs. 3(e) and 3(f),
where the Asian curve of our approach is much higher.

5. Discussion
In this paper we described a technique for simultane-

ously estimating multiple facial characteristics. We pro-
posed a new normalized measure of multi-objective infor-
mation gain that is used with our Multi-Objective Random



Characteristic Label MORF CCA KCCA

Age
Y 54.66% 46.15% 53.75%
M 59.20% 53.74% 56.53%
O 19.64% 23.85% 19.09%

Gender F 53.75% 50.09% 63.07%
M 80.69% 84.76% 85.08%

Ethnicity

W 78.65% 79.55% 79.86%
BAA 5.64% 7.62% 6.55%
AME 6.33% 7.62% 6.55%

A 57.73% 27.85% 45.63%
H 4.08% 4.94% 4.35%

Table 3: Comparison with the state-of-the-art in terms of
MAP on Age, Gender and Ethnicity estimation.

0 20 40 60 80 100
0

20

40

60

80

100

P
re

ci
si

o
n

Recall

 

 

CCA − Young

CCA − Middle

CCA − Old

MORF − Young

MORF − Middle

MORF − Old

(a) Age: CCA vs MORF

0 20 40 60 80 100
0

20

40

60

80

100

P
re

ci
si

o
n

Recall

 

 

KCCA − Young

KCCA − Middle

KCCA − Old

MORF − Young

MORF − Middle

MORF − Old

(b) Age: KCCA vs MORF

0 20 40 60 80 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

 

 

CCA−Male

CCA−Female

MORF−Male

MORF−Female

(c) Gender: CCA vs MORF

0 20 40 60 80 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

 

 

KCCA−Male

KCCA−Female

MORF−Male

MORF−Female

(d) Gender: KCCA vs MORF

0 20 40 60 80 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

 

 

CCA − W

CCA − BAA

CCA − AME

CCA − A

CCA − H

MORF − W

MORF − BAA

MORF − AME

MORF − A

MORF − H

(e) Ethnicity: CCA vs MORF

0 20 40 60 80 100
0

20

40

60

80

100

P
re

c
is

io
n

Recall

 

 

KCCA − W

KCCA − BAA

KCCA − AME

KCCA − A

KCCA − H

MORF − W

MORF − BAA

MORF − AME

MORF − A

MORF − H

(f) Ethnicity: KCCA vs MORF

Figure 3: Precision/Recall plots of Age, Gender and Eth-
nicity estimation compared with CCA and KCCA.

Forests (MORF) framework for estimation of multiple char-
acteristics from a single feature representation. On aver-
age, MORF outperforms subspace methods like KCCA and
CCA for simultaneous estimation of multiple biometrics.

We feel that simultaneous estimation of characteristics is
an interesting direction for future research. Ongoing work is
focused on better features for soft biometric estimation, and
on addressing problems where many characteristics (such
as attributes) can be estimated for each sample. Methods to
overcome the imbalance of the training sets are also some-
thing we plan to study.
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