
Computer Vision and Image Understanding 134 (2015) 74–88
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu
Non-myopic information theoretic sensor management of a single
pan–tilt–zoom camera for multiple object detection and tracking
http://dx.doi.org/10.1016/j.cviu.2014.12.001
1077-3142/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: pietro.salvagnini@gmail.com (P. Salvagnini).
Pietro Salvagnini a,⇑, Federico Pernici b, Marco Cristani a,c, Giuseppe Lisanti b, Alberto Del Bimbo b,
Vittorio Murino a,c

a Istituto Italiano di Tecnologia, Pattern Analysis & Computer Vision Department, Via Morego 30, 16163 Genova, Italy
b University of Florence, Media Integration and Communication Center, Viale Morgagni 65, 50134 Firenze, Italy
c University of Verona, Department of Computer Science, Strada Le Grazie 15, 37134 Verona, Italy

a r t i c l e i n f o
Article history:
Received 3 February 2014
Accepted 4 December 2014

Keywords:
Pan–tilt–zoom camera
Multiple object tracking
Sensor management
Markov decision process
a b s t r a c t

Automatic multiple object tracking with a single pan–tilt–zoom (PTZ) cameras is a hard task, with few
approaches in the literature, most of them proposing simplistic scenarios. In this paper, we present a
novel PTZ camera management framework in which at each time step, the next camera pose (pan, tilt,
focal length) is chosen to support multiple object tracking. The policy can be myopic or non-myopic,
where the former analyzes exclusively the current frame for deciding the next camera pose, while the
latter takes into account plausible future target displacements and camera poses, through a multiple
look-ahead optimization. In both cases, occlusions, a variable number of subjects and genuine pedestrian
detectors are taken into account, for the first time in the literature. Convincing comparative results on
synthetic data, realistic simulations and real trials validate our proposal, showing that non-myopic strat-
egies are particularly suited for a PTZ camera management.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Visual tracking of multiple objects in realistic outdoor scenarios
is often performed in wide areas. In these viewing conditions a sta-
tionary fixed focal length camera has typically too limited field of
view and image resolution with respect to the scene extent. There-
fore, a network of cameras is used to sufficiently cover the area at
the required resolution [1–5]. However, this may be unfeasible for
the cost associated to the setup and maintenance of the camera
network, as well as for the practical impossibility to provide all
the necessary resolutions for target biometric recognition at a dis-
tance. Similarly, in the case of a vehicle mounted camera [6–9] it
would be difficult to cover a wide area at adequate resolution
due to the limited acceleration at which the camera may be moved.
Active vision [10] and specifically active pan tilt zoom (PTZ) cam-
eras, have promised to solve these limitations, permitting at least
in principle the monitoring of a large space at variable image res-
olutions [11,4]. However, letting a large number of stationary or
PTZ cameras operate in a cooperative way is still an expensive
and complex solution [12,13]; for this reason, exploiting a single
zooming sensor could be a more reasonable and worthy goal.
According to this, in this paper, we propose and show the benefits
of an active sensing approach to multiple object detection and
tracking using a single pan tilt zoom camera.

Despite the high exploitable potential, when applied for the
task of multiple object tracking in world coordinates, a single PTZ
camera induces a number of complex problems that must be
solved to obtain effective results [14,15]. Specifically, camera cali-
bration solutions adopting natural landmarks [16,17] should be
preferred with respect to others adopting domain specific scene
landmark geometry as in [11,15,18]. Since the PTZ camera must
also undergo rapid and unpredictable motions to rapidly gaze at
any part of the field of view, real time tracking of camera motion
should not be based on recursive filtering, but on keyframe based
methods [16,19]. At the same time, the scene background appear-
ance must be continuously updated [16,20,21]. Moreover, due to
the fact that monitoring is performed in a large area, accurate
objects localization in a common 3D world reference frame is
needed to track targets at a distance. This requires some form of
online camera calibration since the camera parameters change
dynamically. The framework we developed in [22] is conceived
to support all these requirements and is therefore suitable to be
used in task-driven active surveillance of scenes with multiple
moving objects.

Starting from this framework [22], we propose a solution for
sensor management (i.e. determine the best way to control the
visual sensor) in order to enhance multiple target detection and
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Fig. 1. The three main components of the system.

Fig. 2. (a) Synthetic scenario; (b) realistic simulation; and (c–f) real trial (best
viewed in colors). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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tracking in a wide area. Here the focus is on non-myopic sensor
management where the long-term ramifications of taking a partic-
ular sensing action are accounted for decision making. A sensing
action may consist of choosing a particular image processing
modality (e.g. pedestrian detection or motion detection), a partic-
ular camera pose and focal length, or a combination of the two.
Information gain [23] is chosen as performance indicator of deci-
sion making, since it has the desirable property that different inho-
mogeneous sensing actions can be simultaneously optimized in a
single metric. This requires to maintain the probability density
which capture uncertainty in the current state estimate. In our set-
ting there are multiple actions that can be tasked by evaluating a
single global metric, some of which contribute better than others
to tracking. The PTZ camera sensor is used to gain information
about the kinematic state (e.g. position and velocity) and objects
detectability.1 There are many objectives that the sensor manager
may be tuned to meet, e.g. minimization of track loss, probability
of target detection, minimization of track error/covariance, and iden-
tification accuracy. Each of these different objectives taken alone
may lead to a different sensor allocation strategy. As detailed in Sec-
tion 4, we jointly optimize over all these objectives by maximizing
the expected amount of information extracted from the scene,
namely the expected information gain between the current objects
state estimate and the state estimate after a measurement has been
made. Since the best sensing action must be selected before actually
executing it, what is practically maximized is the expected reduction
in entropy (i.e. the expected information gain) that a sensing action
will produce. Fig. 1 shows the three main components of the com-
plete multi target tracking system for a single PTZ camera.

The sensor management problem can be approached in a princi-
pled way with the Markovian Decision Process (MDP) formalism
[24]. However, the long-term (non-myopic) planning solution suf-
fers from combinatorial explosion and may be defined, as in our
case, in a continuous state space. Approximate solutions are there-
fore required and will be discussed in the next section. This work
extends the preliminary results we obtained in [25] where we have
analyzed the myopic (i.e. greedy) aspects of sensor management.
Experimental results show that the non-myopic strategy provides
a substantial performance improvement by better capturing the
complex space–time trade-off between objects and camera motion.
Two motivating examples for which the non-myopic will outper-
form the myopic strategy are: (1) the case in which an object is
repeatedly measured before it gets occluded so as to sharpen its
uncertainty when it reappears and (2) the case in which objects
are measured exploiting the calibrated zoom2 so as to sharpen their
uncertainties. The underlying assumption is that if the operative
1 Image object measurements are obtained according to a detector that have a
time-varying object response characteristics. For example in the case of pedestrian
detection as processing modality, the response characteristic varies depending on the
imaged size of the object and on how much the object is occluded.

2 Calibrated zoom allows increasing measurement accuracy in world plane
coordinate object localization. In Appendix A a formal proof of this result is presented.
scenario evolves with reasonable temporal coherence, it is possible
to predict the ability of gathering information of a future action.

Synthetic and real experiments are shown confirming the suit-
ability of our approach for realistic scenarios. Fig. 2 shows few
frames from the three sets of experiments.

The rest of the paper is organized as follows. We give and over-
view of related work in Section 2 while we summarize our contri-
butions in Section 3. The information theoretic formulation based
on MDP for the myopic version is presented in Section 4, and the
modeling of the real world challenges such as missed detections
and occlusions is presented in Section 5. The non-myopic version
is described in Section 6. In Section 7 we give a detailed discussion
about how the proposed solution can be extended to a network of
multiple cameras. Some implementation and evaluation details are
given in Section 8. Experiments for the myopic framework are
reported in Section 9 while experiments for the non-myopic ver-
sion are reported in Section 10. Finally the conclusions are drawn
in Section 11.
2. Related work

Automatic multiple object tracking with a single pan–tilt–zoom
camera is a hard task with few approaches present in the literature,
most of which propose simplified scenarios. One of the most chal-
lenging part is that the evaluation with real data require the devel-
opment of a real time system since it is not possible to work offline
with pre-recorded3 videos. To deal with this issue, in [26] a com-
pletely simulated environment is created through computer graph-
ics and different strategies for camera to target assignments are
proposed and compared. In [27] the authors propose a system for
cooperative tracking between multiple Active Vision Agents (AVA).
In this solution each AVA agent manages visual perception, camera
action and network communication to perform cooperative tracking.
Different scheduling policies for a network of PTZ cameras in a mas-
ter–slave configuration were tested in [28,29]. However, the strate-
gies described above [26–29] are mainly hand-crafted, and require
precise information on the targets’ position from other sensors. An
overview of recent methods for managing PTZ camera networks
can be found in [30,31].

Principled information theoretic frameworks exploiting the
concept of information gain for single object tracking are intro-
duced in [32–34]. In [32] optimal selection of the focal lengths of
two cameras during active 3D object tracking is proposed. This is
3 If the video is recorded at high resolution it is possible to crop and downsample
the image to get the desired field of view. However the level of detail and the quality
of the image that can be captured with optical zoom is still orders of magnitude larger
than the one achievable with the digital zoom.



76 P. Salvagnini et al. / Computer Vision and Image Understanding 134 (2015) 74–88
the first work on active focal length selection for improving accu-
racy in 3D object tracking. Despite the promising results observed
in a controlled laboratory test, the system is not yet mature to
work in unconstrained video sequences. In [33], the authors pro-
pose a non-myopic solution for optimal focal length selection
based on the minimization of the expected entropy of a tracked
object. Tracking is performed in 2D, only on simulated data, using
an extended Kalman filter. In [34] the authors suggests a method to
control the zoom in order to obtain maximum resolution by plac-
ing a limit in the innovation of a constant velocity Kalman filter. In
particular, the zoom is used to modify the measurement process.
Other works that control the focal length to keep the imaged size
of a single object constant were proposed in [35–37], but no 3D
localization uncertainty is taken into account and the extension
to multiple objects is not trivial.

Sensor management for the task of multiple object tracking is
addressed in [38]. Here tracking is performed in the image plane
and therefore focal length selection cannot be used to improve
the accuracy in 3D object localization. Multiple zooming cameras
which give a 3D representation of target positions are considered
in [39] for the multi-target scenario. In both [38,39] the evaluation
is carried out with ground truth data (i.e. sources of error from the
detection, tracking and data association stage are ignored). All the
works described above optimize over a single step look-ahead (i.e.
myopic) except for the method in [33] which optimize over multi-
ple step ahead for the task of tracking a single moving object. How-
ever testing is conducted with single object in a constrained
simulated environment and only the zoom is managed.

Recently novel sensor management approaches with real-time
implementations has been reported in [12,13] with convincing
results. The network camera system described in [12] comprises
a total of eight cameras, four fixed and four PTZ. The fixed cameras
are processed at a resolution of 320� 240 while no image process-
ing is performed on the PTZ views. The sensor network in [13]
includes nine PTZ network IP cameras with a resolution of
320� 240 pixels and 12� optical zoom. In this system the control
of the PTZ parameters is modeled as a multiplayer game where the
cameras gain by reducing the error covariance of the tracked tar-
gets or through higher resolution feature acquisition, which, how-
ever, comes at the risk of losing the target. The work in [40]
proposes a distributed approach to optimize various scene analysis
performance criteria through distributed control of a dynamic
camera network including the uncertainty of the targets. All these
works adopt a large number of stationary or PTZ cameras operating
in a coordinated way (typically in master–slave configuration
[41,42]). Although these approaches could be in principle applied
to the case of a single camera we are not aware of any work inves-
tigating in this regard.

In Table 1 we give an overview of the main characteristics for
some of the methods described above and our solution. In particu-
lar, we highlight the main differences in terms of: necessity of syn-
chronization between the sensors involved in the network,
calibration of each sensor, number of cameras, number of tracked
targets, occlusions management and the cost to be optimized. In
particular, the cost to be optimized can be: the accuracy in tracking
Table 1
Overview of the main characteristics for state of the art methods and our solution.

Method Sync. Calibration # Tested cameras Multi target

[12] Yes Yes (offline) 4 fixed and 4 PTZ Yes, in the fixed cameras
[13] Yes Yes (offline) 9 PTZ Yes
[35–37] No Yes (online) 1 PTZ No
[38] No No 1 PTZ Yes
[39] Yes Yes (offline) 2 PTZ Yes
[40] Yes Yes (offline) 2 PTZ Yes
Ours No Yes (online) 1 PTZ Yes
the targets (tracking accuracy), the necessity to maintain constant
the size at which the object is observed (constant object imaged
size) or the necessity to obtain the highest resolution for the object
of interest (highest target resolution).

Computational model. The sensor management problem is
generally approached as planning under uncertainty according
to Markov Decision Processes (MDPs) [24]. Such framework
explicitly models the temporal state evolution and designs a pol-
icy for selecting the action based on a reward function. However,
optimal long-term solutions suffer from combinatorial explosion,
for this reason suboptimal approximate methods must be
applied.

The non-myopic strategy can be optimized with a Monte Carlo
rollout strategy as described in [43,44]. These approaches address
the solution for large MDPs while small problems can be directly
solved with Dynamic Programming [45]. There are two basic vari-
ants for estimating (online) an approximate strategy of a MDP and
both these variants can be classified based on the length of the
planning horizon, namely: Monte Carlo Tree Search methods
(MCTS) [46] and Reinforcement Learning (RL) based methods
[47]. The former guide the search using results from rollouts in
the decision tree of the actions and are appropriate for the finite
horizon case. The latter are most indicated for finding approximate
solutions in the infinity horizon case. The method that we investi-
gate here is focused on finite horizon and includes sparse sampling
techniques for direct approximation of the Bellman equation, as
described in [48]. A relevant application of this technique has been
recently presented in [49] for the task of tracking vehicles from
radar imagery. The rollout approach driven by information metric
is exploited to capture the long-term reward due to expected vis-
ibility and occlusion of objects.

Another application of MDP, hidden MDP (hMDP), is proposed
in [50], where a target moving in the scene is modeled as an agent
for which the state is the position on the plane and the action is its
future direction. In this work the goal is to estimate the policy it is
following in order to forecast its future behavior.

3. Contributions

Our contributions with respect to the related work are:

� A well-founded theoretical solution for the information theo-
retic management of an active camera, which keeps into
account all the typical sources of error of a tracking system:
detector performance, limited field of view, occlusions among
targets, variable number of targets. The solution has been
divided in two techniques: one myopic, introduced in [25]
and here fully detailed in all the mathematical derivations;
the other technique is a non-myopic minimization strategy that
can more effectively deal with a high number of targets, occlu-
sions among them and the mechanical constraints of the
camera.
� We adopt the sampling method in [48] to handle large Partially

Observable MDP (POMDP) and modify it to further limit the
computational cost.
Occlusions Optimized cost

Yes, in the fixed cameras Highest target resolution
No Tracking accuracy and highest target resolution
No Constant object imaged size
No Tracking accuracy
No Tracking accuracy and highest target resolution
Yes Tracking accuracy
Yes Tracking accuracy
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Fig. 3. Graphical representation of our approach.

4 The conditional entropy for two random variables x and y is defined as
HðxjyÞ ¼ �

RR
pðx; yÞ log pðxjyÞdxdy.

5 The entropy of a Gaussian distributed random vector x 2 Rn with x �N ðl;RÞ is:
HðxÞ ¼ n

2þ 1
2 logðð2pÞnkRkÞ.
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� We improve the evaluation of the whole method with respect to
previous works [38,39] in which ground truth data are used as
objects measurements, and use standard metrics for multi-tar-
get tracking evaluation.
� We firstly show how to task a single PTZ camera according to a

sophisticated sensor management strategy to support multiple
object tracking in a 3D world coordinate frame [22], and dem-
onstrate it working online in a real scenario.

4. MDP with information gain reward

4.1. Baseline method for multi object tracking

Similarly to [22,38], our baseline multi object tracking uses
extended Kalman filter (EKF) for each initialized target. Pedestrian
detection [51] is used to extract object observations, and the Hun-
garian algorithm [52] is applied to associate each observation to
the corresponding EKF-filter and to initialize a new filter in the
case of unassociated observations.

At time t, the real object state, st , and its estimation, xt , include
its location in world coordinates and its speed: st ¼
½xw

s;t ;y
w
s;t ; _x

w
s;t ; _y

w
s;t�
>
; xt ¼ ½xw

t ;y
w
t ; _x

w
t ; _y

w
t �
>. The observation ot ¼ ½ut ;v t �>,

i.e., the target location on the image plane, only depends on the
current state and on the action at , that is selected from the finite
set A which comprises L different possible actions each of which
corresponds to a particular PTZ camera pose a¼ð/;h; f Þ 2A (the
pan /, tilt h and focal length f respectively). Formally, we have:

st ¼ f ðst�1Þ þmt; mt �N ð0;UÞ;
ot ¼ gðst ;atÞ þ nt ; nt �N ð0;VÞ;

ð1Þ

where f ð�Þ and gð�Þ are the motion model and the observation
model, respectively, mt and nt are the process and the measurement
noise with U and V their respective covariance matrices. In particu-
lar, the function gð�Þ represents the homography from the world
plane to the image plane parameterized by the actions defined in
the set at .

Let x�t be the predicted state estimate at time t, i.e. before hav-
ing made the observation at t, while xþt incorporates the observa-
tion. The final estimate for the state at time t;xt , is either xþt or
x�t , depending whether the target is observed or not (e.g., when
the camera is not pointing at it, or the detector misses it). P�t ;P

þ
t

and Pt are the covariance matrices for x�t ;x
þ
t and xt , respectively.

If the target is not observed, only x�t and P�t are considered. The
EKF equations are then:

x�t ¼ Fxt�1;

P�t ¼ F>Pt�1Fþ U;

Kt ¼ P�t CxðatÞðC>x ðatÞP�t CxðatÞ þ VÞ�1
;

xþt ¼ x�t þ Ktðot � gðx�t ;atÞÞ;
Pþt ¼ ðI� KtC

>
x ðatÞÞP�t ;

ð2Þ

where CxðatÞ ¼ rxgðx;atÞjx¼x�t
is the linearized homography g eval-

uated in x�t and F is the 4� 4 matrix that models the system
dynamics. Importantly, CxðatÞ depends on the action, so that diverse
camera poses lead to different observation matrices, and different
estimations for xþt and Pþt . It is worth to highlight that also the zoom
modifies the linearized projection matrix CxðatÞ; in fact observing a
target with an higher magnification will produce a smaller covari-
ance Pþt [32].

Eq. (2) can be seen as modeling the transition probabilities in
the MDP (see Fig. 3). To complete the MDP model, we need the
reward function Rðx�t ; atÞ, which tells how informative is a given
action at performed in the state x�t . Notably, the reward must
depend on x�t (not on xþt ), since we want to select the action before
performing the observation. Given the reward function, at each
time step we can evaluate its value for all the possible actions
at 2 A, choosing the one which gives the maximal reward.

4.2. Information gain formulation

In designing the reward function Rðx�t ; atÞwe directly relate it to
the expected information gain Iðxt ; ot jatÞ between the state xt and
the observation ot , for a given action. In practice, it expresses the
amount of information shared between state and observation.
Adopting the same formulation of [53], we can write:

aH

t ¼ arg max
at

Rðx�t ; atÞ ¼ arg max
at

Iðxt; ot jatÞ

¼ arg max
at

Hðx�t Þ � Hðxt jot ;atÞ ¼ arg min
at

Hðxt jot ;atÞ; ð3Þ

where Hðxtjot ;atÞ is the conditional entropy.4 Thus, we want to
minimize:

Hðxtjot; atÞ ¼ �
Z

pðotjatÞ
Z

pðxt jot ;atÞ log pðxtjot; atð ÞÞdxtdot

¼
Z

Xt

pðot jatÞdotHðxþt Þ þ
Z
:Xt

pðotjatÞdotHðx�t Þ

¼ atðatÞHðxþt Þ þ ð1� atðatÞÞHðx�t Þ; ð4Þ

where we split the domain of integration for pðotjatÞ. Xt is the set of
points in which the target is visible, :Xt is the set where it is not
visible, i.e., it is out of the camera field of view (FoV), is occluded,
or is too small to be detected. Assuming the distribution for xt as
Gaussian and being the system in Eq. (2) linear, we can derive the
entropy Hðxþt Þ directly from the EKF equations. In fact, the entropy
of a Gaussian distribution only depends on its covariance5 and Eq.
(2) provide Pþt if at allows to get the observation for the target,
and P�t otherwise. For more details, see [53].

In other words, to ensure maximal expected information gain
Iðxt ; ot jatÞ we need only to consider how the term aðatÞ varies for
different actions at . Intuitively, such term estimates the probability
that at the next step a target will be observed by the camera, as a
function of the pose of the camera itself. Extending to K indepen-
dent targets correspond to sum up the information gains Ik for each
target k.

5. Modeling real world scenarios

As analyzed in the previous section, the formulation of aðatÞ in
[53] is limited, since it neglects aspects of real world scenarios. We



Table 2
Comparing the miss rate as a function of target size between HOG pedestrian detector
and the parametric estimation proposed in this paper. See Fig. 4 for the corresponding
plots.

Target height [pixel] 32 45 64 91 128

HOG (dashed orange) 0.928 0.8272 0.696 0.473 0.350
Estimation (solid black) 0.900 0.792 0.657 0.503 0.350
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model (a) the visibility constraint, accounting for the physical
dimension of the target in the current field of view; (b) a realistic
person detector whose performance varies according to the occlu-
sion ratio and the imaged object size; (c) the occlusions between
the targets that considers the relative positions between the
imaged objects (evaluated through sampling); and (d) the mechan-
ical speed limits of camera motion. The variability of the number of
targets is managed through the patrolling term as in [38].

5.1. Modeling visibility and detection factors

Introducing the visibility constraint requires to define properly
the set Xt in Eq. (4), while introducing the estimation of the
detector performance implies to modify pðot jatÞ. Let dt be a binary
variable which is 1 if the target is found by the detector and 0
otherwise. In practice, dt tells us whether the Kalman filter will
be updated with a new observation or only the information from
the previous prediction will be considered. Hence, Eq. (4) can be
modified by considering this new variable:

Hðxt jot;dt ;atÞ ¼ �
ZZ

pðot ;dtjatÞ;Z
pðxt jot;dt ;atÞ log pðxt jot;dt ;atð ÞÞdxtdotddt :

ð5Þ

Let us start by analyzing pðot ;dtjatÞ and introducing some assump-
tions. First, pðot jatÞ ¼ pðo�t jatÞ (where o�t ¼ gðx�t ;atÞ) since the
actual observation ot is yet not available when selecting the actual
action at .6 In this way, we assume that the expected positions of the
targets on the image plane only depend on the prediction of the state
and the action. Second, we assume that the visibility of a target only
depends on its position on the image plane, being unaware of obsta-
cles or other occluders in the scene. Therefore, the term pðot ;dt jatÞ in
Eq. (5) factorizes as:

pðot ;dt jatÞ ¼ pðotjatÞpðdt jot ;atÞ: ð6Þ

Being dt binary, Eq. (5) may be rearranged as:

Hðxtjot ;dt; atÞ ¼
Z
:Xt

pðotjatÞdotHðx�t Þ þ
Z

Xt

pðotjatÞpðdt

¼ 0jot; atÞdotHðx�t Þ þ
Z

Xt

pðot jatÞpðdt

¼ 1jot ;atÞdotHðxþt Þ
¼ ð1� aðatÞÞHðx�t Þ þ aðatÞHðxþt Þ; ð7Þ

where we also suppose that a detection is possible only if the obser-
vation is visible in the image. In conclusion, we just need to com-
pute for any possible action at the weight aðatÞ:

aðatÞ ¼
Z

Xt

pðot jatÞpðdt ¼ 1jot ;atÞdot: ð8Þ

Now, to preserve the Gaussian distribution and therefore the effi-
cient integration for the weight aðatÞ, the two pdfs in Eq. (8) and
the integration domain X are defined as follows.

Observation distribution. pðot jatÞ is the predicted distribution of
the observation. Based on the prediction of the state from Eq. (2),
we have ot �N ðo�t ;Rot Þ, where:

o�t ¼ CxðatÞx�t ; Rot ¼ CxðatÞP�C>x ðatÞ þ V: ð9Þ

Visibility probability. Xt is the set of possible observations fotg
for which the target is fully visible in the camera field of view, con-
sidering the limited size of the image plane S � R2. In defining
6 In the remaining, for the sake of clarity, we omit the apex � from o�t , if not
otherwise specified.
such set, we originally extend the work in [39], and consider the
spatial dimension of the targets, assuming that objects are almost
vertical on the ground plane and that their projected height is
known for at least one target. Since we know the extrinsic calibra-
tion parameter for the camera, we can estimate the head position
etðotÞ on the image plane for a target whose feet are in ot , through
the homology Wat , as in [54]. The set Xt is then defined as:

ot 2 Xt () ot 2 S ^ etðotÞ 2 S: ð10Þ

To integrate pðotjatÞ on the set of points defined above we linearize
the homology through the Jacobian Jat ¼ rotWat jot¼o�t

of Wat around
o�t . Therefore:

et 	 �et þ Jat ðot � o�t Þ; �et ¼ Wat ðo�t Þ: ð11Þ

Assuming that people are vertical in the scene, and that the image
plane y-axis is vertical, we can discard the horizontal component
getting:

ye
t ¼ y�e

t þ Jat 2;2 ðyo
t � yo�

t Þ; xe
t ¼ xo

t : ð12Þ

In conclusion, the y coordinate for the head et is linearly obtained
from the y coordinate of ot , thus the integration on the image plane
is still equivalent to integrating over a rectangle whose sides are
parallel to the x–y axis.

Detection probability. pðdt ¼ 1jot ; atÞ is the probability that a tar-
get will actually be detected given its position in the image plane.
In practice, we consider that the performance of any pedestrian
detectors depends on the height rt of the target on the image plane
(in pixels). We estimate such a relation with the function
pðdt ¼ 1Þ ¼ 1� e�Kdðr�r0Þ1ðr� r0Þ. The two parameters
Kd ¼ 0:0098 and r0 ¼ 21:29 are extrapolated from the performance
of HOG pedestrian detector on the Caltech Pedestrian Dataset,
reported in [55].7 More details are given in Table 2 where we report
the miss rate values as a function of target size for the HOG pedes-
trian detector and compare them with the parametric estimation
used. Fig. 4 (left) shows the miss rate values for all the other methods
reported in [55].

The target height rt ¼ jye
t � yo

t j ¼ ðyo
t � ye

t Þ can be computed as a
function of the observation yo

t and the camera position at , exploit-
ing the homology:

rt ¼ 0 1½ � ot � et½ � ¼ 0 1½ � ðI2�2 � Jat Þot � Wat ðo�t Þ � Jat o
�
t

� �
¼ 0 1½ � Ttot½ � þ 0 1½ � �Wat ðo�t Þ � Jat o

�
t

� �
¼ Ttot þ tt : ð13Þ

Linearizing the homology around the expected observation o�t give
us the exponential function:

pðdt ¼ 1jot ;atÞ ¼ 1� e�KdðTt otþtt�r0Þ; ð14Þ

where the matrix Tt and tt are constants depending on the linear-
ized homology, see Eq. (12). The product of the Gaussian distribu-
tion pðotjatÞ, Eq. (9), and the exponential function in ot , Eq. (14),
gives another Gaussian distribution:
Since in our implementations we use the HOG pedestrian detector, we estimate
the parameters Kd and r0 for the performance of that detector. The same procedure
can be applied to any other detector for which the miss-rate as a function of the target
size is given.
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pðot jatÞpðdt ¼1jot ;atÞ¼
1

2pjRj
1
2

1�exp tt�r0ð Þexp �KdTtotð Þð Þ

exp �1
2
ðot�lÞ>R�1ðot�lÞ

� �

¼ 1

2pjRj
1
2

exp�1
2
ðot�lÞ>R�1ðot�lÞ

�
þ�exp tt�r0ð Þexp

�1
2
ðo>t R�1RTtKdþT>t RR�1otKdþðot�lÞ>R�1ðot�lÞÞ

�

¼ 1

2pjRj
1
2

exp �1
2
ðot�lÞ>R�1ðot�lÞ

� �

þ� 1

2pjRj
1
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exp tt�r0þ
K2

d
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T
>
t RTt

 !

exp �1
2
ðot�ðl�RTtKdÞÞ>R�1ðot�ðl�RTtKdÞÞ

� �
: ð15Þ

Thus the weight aðatÞ in Eq. (8) can be numerically computed as
bounded integration of a Gaussian distribution, and the boundary
are modified to require that the minimum target height is r0.

At this point we have introduced two factors that increase the
realism and completeness of the proposed model, while maintain-
ing a low computational cost for the reward function. In the next
sections the management of occlusions among targets will be
introduced to further reduce the difference between the expected
information gain and the real information gain obtained from the
camera.

5.2. Occlusions handling

Occlusions represent a serious problem for the selection of the
action due to a wrong estimation of the information gain for a tar-
get. In fact, being occlusions not modeled in the above formulation,
even an occluded target would bring a contribution to the expected
information gain, which will not correspond to real information
gain obtained after the action is performed. As analyzed in [55]
the larger the occluded area for a target the more probable that
the detection algorithm will fail. Without any information on pos-
sible occluding obstacles in the field of view, we can only keep into
account inter-occlusions among targets. To this aim, we introduce
a term that estimates the ratio of area of a person occluded in the
frame, resembling the depth-sorting method of [56]. In practice,
we build a binary occlusion mask which indicates the occluded
pixels for each target. From now on we slightly modify the nota-
tion, introducing an index for each target k 2 K (with jKj ¼ K),
since we will have to consider also the dependencies among two
or more targets.
Formally, let ck
t 2 ½0;1� be the ratio of the bounding box of the

target which is visible at time t, we can estimate the relation
between the probability of detecting the target and its associated
ct by injecting this variable in Eq. (5):

Hðxk
t jok

t ;d
k
t ;c

k
t ;atÞ¼

Z
:Xt

pðok
t jatÞdotHðx�;kt Þþ

Z
Xt

pðok
t jatÞZ

pðdk
t ¼0jok

t ;at ;ck
t Þpðck

t jok
t ;atÞdck

t dok
t Hðx�t Þ

þ
Z

Xt

pðok
t jatÞ

Z
pðdk

t ¼1jok
t ;at ;ck

t Þpðck
t jok

t ;atÞdck
t dok

t Hðxþt Þ

¼ð1�aðatÞÞHðx�;kt ÞþaðatÞHðxþ;kt Þ: ð16Þ

As for the previous case, we just need to compute for any possible
action at a modified version of the weight aðatÞ:

akðatÞ ¼
Z

Xt

pðok
t jatÞ

Z
pðdk

t ¼ 1jck
t ;o

k
t ;atÞpðck

t jok
t ;atÞdck

t dok
t ; ð17Þ

which requires to define pðdk
t ¼ 1jck

t ;o
k
t ;atÞ and pðck

t jok
t ; atÞ.

Detection probability with occlusion term. We assume that the
effect of the occlusion ratio and the target size on the detection
performance are independent. This leads to the following factoriza-
tion: pðdk

t jck
t ;o

k
t ; atÞ ¼ pðdk

t jok
t ; atÞpðdk

t jck
t Þ, where the first factor has

been computed in Section 5.1. To estimate pðdk
t jck

t Þ, i.e., the effect of
the occlusion on the detection performance, we use again the Cal-
tech Pedestrian Dataset [55], obtaining the plots shown in
Fig. 4(right). We choose to approximate this relation as linear:
pðdk

t ¼ 1jck
t Þ ¼ ck

t .
Computing occlusion ratio for each target. pðck

t jok
t ; atÞ estimates

the distribution of the occlusion ratio, given the observation for
the target k and the camera position. This term also depends on
the position of the other targets in the scene (collectively indexed
by :k), so we need to expand it as:

pðck
t jok

t ;atÞ ¼
Z

pðck
t joK

t ; atÞpðoK
t jatÞdo:k: ð18Þ

The term pðck
t joK; atÞ expresses the visibility probability given by

the ratio of visible versus occluded pixels:

pðck
t joK; atÞ ¼ dðck

t � �ckÞ; �ck
t ¼

R
dðxk

t<u
x:k

t jatÞduR
dðxk

t jatÞdu
; ð19Þ

where dðxk
t <u

x:k
t jatÞ is a binary mask that takes value 1 if at pixel u a

part of target k is observed, and 0 otherwise. The other termR
dðxk

t jatÞ measures the whole target area.
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The main limitation of this formulation is that it is not possible
anymore to compute the information gain for each target indepen-
dently, since the relative position among targets is considered
when estimating occlusion, and it is also not possible to compute
the pðck

t Þ in closed form.
Therefore, at each possible camera pose we apply a Monte Carlo

approach sampling from pðx�;1t ; . . . ;x�;kt ; . . . ;x�;Kt Þ ¼
QK

k¼1pðx�;kt Þ, M

sets of positions ~x�;1t;j ; . . . ; ~x�;kt;j ; . . . ; ~x�;Kt;j

n o
j¼1...M

for all the targets.

Then, for a candidate action at , the corresponding weight akðatÞ
is estimated from the related sets of observation predictions,

~o1
t;j; . . . ; ~ok

t;j; . . . ; ~oK
t;j

n o
j¼1...M

, computed according to the model of

Eq. (2). Each of this set j is used to evaluate the inner integral in
Eq. (17):

~dk
t;j ¼

Z
pðdk

t ¼ 1jck
t ; ~o

k
t;j; atÞpðck

t j~ok
t;j;atÞdck

t ; ð20Þ

providing the detection probability of the target k in the sample j.
The final akðatÞ for the target k is therefore computed replacing
the integral in Eq. (17) with a summation over the samples:

akðatÞ ¼
1
M

XM

j¼1

~dk
t;j: ð21Þ

The conditional entropy for that target is then computed according
to Eq. (7). The sum of the contribution of each target provides the
information gain for all the targets. In Sections 5.1 and 5.2, we grad-
ually refined the reward function making the expected entropy to
match the realized entropy, thus helping in choosing a better action.
Fig. 5 shows such effect on some synthetic data.

5.3. Modeling the camera mechanics: action set reduction

We want to model the mechanical constraints that define the
set of positions reachable from the current pose, in a given time
interval, of a real PTZ camera. Given the set of all the possible cam-
era actions A and the previous action at�1 ¼ ð/t�1; ht�1; f t�1Þ, an
action ð/; h; f Þ 2 A also belongs to the set of actions At , reachable
at the next time t, if:

j/� /t�1j 6 D/ ^ jh� ht�1j 6 Dh ^ jf � f t�1j 6 Df ; ð22Þ
(a) (b)

Fig. 5. The comparison between the expected information gain for the most promising a
that is obtained with the observation from the selected action Iðxt ;ot jaH

t Þ. This test is pe
reward function. (a) Comparison between the expected and realized information gain us
(b) same as before but obtained by keeping into account the performance from the detec
M ¼ 100. (d) Shows the differences for the 3 case on a statistic of 12 runs of 50 frames e
close to 0 for the last formulation of case (c).
where D/ and Dh are the maximum displacement allowed in the
unit of time for the pan and tilt angles and Df is the maximum
variation in the zoom, that can be easily obtained by combining
the expected system frame rate and the camera specifications.

5.4. Patrolling term for new target detection

To take into account for new targets occurring in the scene, the
PTZ has to randomly patrol, looking for new evidence. To model
this factor we get inspiration from [38], where an additional term
Ipðbt jatÞ related to the patrolling around the scene is defined. Such
factor estimates the information gain that could be obtained per-
forming an action at due to the detection of a new target bt .

When combining the information gain on target position uncer-
tainty with the patrolling term we obtain:

ItðatÞ ¼
XN

k

Iðxk
t ; ok

t jatÞ þ bIpðbtjatÞ; ð23Þ

where b is the weight that mixes the two quantities.
With this last element we complete the definition of the MDP

process formed by the EKF equations plus the reward function.
In particular, Eqs. (8) and (17) characterize the two proposed
versions, the first more efficient and the second one more com-
plex, which also takes into account the occlusions. Algorithm 1
shows the pseudo-code for the version with the occlusions
handling.

Algorithm 1. Algorithm for the myopic approach
5 7 16

(c) (d)

ction, Iðxt ;o�t jaH

t Þ, used as reward function, Eq. (3), and the actual information gain
rformed on the synthetic experiments, see Section 9, varying the complexity of the
ing the reward function that only keeps into account the visibility criterion, Eq. (5);
tor, Eq. (7); (c) keeps into account also the occlusions among particles, Eq. (16), with
ach. Note that the difference decreases as the model becomes more accurate and is
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6. Non-myopic approach

The solution proposed so far is myopic, i.e. the action to be per-
formed at the next step is selected only considering the current
system state and the prediction for the next time step, as shown
in Fig. 6. Better results could be achieved if we design a non-myo-
pic approach, where the reward function to be maximized consid-
ers more than one step in the future. A non-myopic approach
would outperform the myopic one when there are terms which
are time-variant: a visibility map on the scene (trees, houses or
other occlusion that could prevent the tracker from working prop-
erly), occlusions between targets that move close to each others, a
target that is leaving the field of view or a target that is going far
away from the camera where it will be no longer visible. Indeed,
these are all examples of a realistic scenario, that we want to take
into account. On the other hand, reasoning on a longer temporal
horizon requires a precise modeling of the target future behavior
in order to produce a reliable prediction of the targets trajectories.

6.1. Look-ahead algorithm

To solve the non-myopic approach we use a sampling strategy
inspired by [48], that allows approximate computation on a MDP
with very large or infinite dimensionality of the state space.
Algorithm 2. Algorithm for the non-myopic approach
The main idea is to estimate the future dynamic of the model by
sampling the future observations zt from the pðot jx�t ; aÞ. The sam-
pled observation zt are used to update the state x̂t according to
the pðxt jotÞ. The prediction and sampling iteration are repeated
iteratively in future steps and at each step the information gain
is computed. The global information gain is computed as a dis-
counted sum of the current and future steps.
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Fig. 6. Graph of the algorithm for computing the expected information gain with
the occlusions estimation, Eq. (16).
Let L be the maximum number of possible actions that are
reachable from any action at and M the number of observations
to sample at each time for each action. Exploiting the notation of
[48], we define the selection of the best action at time t over the
finite horizon �h as:

aH

t ¼ arg max
at

Qðxt ;at; �hÞ; ð24Þ

with:

Qðat; xt�1; �hÞ ¼
X

zt

ðIðxt ; zt jatÞ þ cVðx̂t; �h� 1ÞÞ;

Vðx̂tþ1; �hÞ ¼ max
atþ1

Qðatþ1; x̂tþ1; �hÞ;

Qðat; xt�1;1Þ ¼ Iðxt; otjaÞ;

ð25Þ

where c is the discount factor parameter. Such parameter balances
the contribution of the information gain expected at the next step
and the information gain expected on later steps. A complete recur-
sive description of the algorithm is given in Algorithm 2 while Fig. 7
gives a graphical representation of the procedure. At the final step,
in the leaves of the tree we can either compute the information gain
considering also the occlusion through the sampling procedure or
compute the closed form reward, that discards the occlusion effects.

We add the pruning parameter rp that allows to reduce the size
of the tree to be explored, discarding the least promising actions at
the current step. The computational cost is OðL � KÞ for the myopic
case and OððK � LÞ�h � ðM � rpÞ�h�1Þ for the non-myopic. The pruning
factor rp is essential when considering a system with many possi-
ble actions, we set it to rp ¼ 0:1 in our experiments.

6.2. Summarizing samples for efficiency

The non-myopic approach should be extremely effective in case
of occlusions that are considered in the look-ahead procedure via
sampling. The number of samples that can be used in our approach
is really limited due to exponential growth of the tree in the num-
ber of samples. In fact, each new sampled observation generates a
state for the tracking algorithm that must be propagated in the
future. On the other hand, a small number of samples gives a very
rough idea on the expected state of the targets, in particular
whether it would be visible or not.

We would like to better predict the expected information gain,
keeping a reduced size of the tree, i.e. keeping the same computa-
tional complexity as if M ¼ 1. To achieve this we first sample M
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Fig. 7. Scheme representing the selection of the best action through the look-ahead algorithm. Left Look-ahead optimization according to the original method from [48]
applied in [57]; Right: proposed approximation which summarizes the samples at each horizon.
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observations for each action and compute the expected informa-
tion gain, but then these data are merged, resulting in a single

updated value for the filter state. This state �x ¼ 1
M

PM
i¼1~xj is the

average of the states corresponding to each observation. In this
way, we do not have to generate a subtree for each of the M sam-
ple, but a single subtree for each action, as shown in Fig. 7. Its var-
iance P is computed as the weighted geometrical mean between
matrix to preserve the same information gain, [58]:

P ¼ ðP�Þ
1
2 ðP�Þ�

1
2PþðP�Þ�

1
2

� �a
ðP�Þ

1
2; ð26Þ

such definition ensures that if Pþ and P� are symmetric and definite
positive, also P is. Moreover, the entropy H associated to a Gaussian
distribution with variance P is exactly the weighted arithmetic
mean of the entropy associated to Pþ and P�, with weight a. This
property guarantees that the entropy obtained averaging over the
samples is the same as the entropy associated to this new state �x:

Hð�xÞ ¼ 1
M

XM

j¼1

Hð~xjÞ ¼
1
M

XM

j¼1

~djHð~xþj Þ þ
1
M

XM

j¼1

ð1� ~djÞHð~x�j Þ

¼ aHð~xþÞ þ ð1� aÞHð~x�Þ; ð27Þ

where a ¼ 1
M

PM
j¼1

~dj. By applying this procedure we propagate only
one subtree common to all the M observations, thus the computa-

tional complexity reduces to OððK � LÞ�h � r�h�1
p �MÞ, which is linear

in the number of samples instead of exponential. The summariza-
tion causes the loss of the multiple modes, represented by the sam-
ples, which are not propagated to future steps.

7. Extension to multiple cameras

The method presented in the previous sections describes an
algorithm for efficiently and automatically managing a single PTZ
camera in a standard multi-target tracking scenario. The extension
to a network of multiple PTZ cameras may be obtained in several
ways. For example [39] proposes a sequential Kalman filter to com-
bine, in the update stage, the observations of the same target as
seen from different cameras. This approach can be applied also to
the information gain formulation we proposed. Consider a set C

of Nc cameras which successfully observe a target xt at time t,
the covariance resulting from the successive observation according
the sequential Kalman filter is the product:

Pþt ¼
Y
c2C

I� Kc
t Cc

t

� 	 !
P�t : ð28Þ

As observed in [39] this equation depends on the order in which
each camera is considered, mainly because it does not take into
account the fact that a camera could miss a target, i.e. aðac

t Þ < 1 in
Eq. (4.) All the possible combinations are exponential in the number
of cameras and therefore not suitable for an online application.
Hence, we approximate the updated covariance for a single camera
with aðac

t Þ, from the weighted average of Eq. (26):

Pc
t ¼ ðP

c;�Þ
1
2 ðPc;�Þ�

1
2 I� Kc

t Cc
t

� 	
Pc;�

t ðP
c;�Þ�

1
2

� �aðac
t ÞðPc;�Þ

1
2: ð29Þ

Then, the information gain for a single target across multiple cam-
eras is obtained by successively iterating such computation for each
camera, substituting Pc;�

t ¼ Pt
c�1.

The formulation is similar to the one proposed in [39] except for
the fact that Eq. (29) replaces the weighted sum. As introduced in
Section 6, Eq. (29) guarantees that the entropy related to a gaussian
distribution with covariance Pt

c is the weighted sum of the entropy
due to covariances Pc;�

t and Pc;þ
t . This modification does not affect

the computational cost, compared to [39]. Indeed, it is exponential

in the number of cameras, OðððK � LÞ�h � r�h�1
p �MÞ

Nc Þ, since all differ-
ent combinations of actions for the different cameras need to be
evaluated.
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8. Implementation and evaluation details

Experimenting PTZ tracking solutions is a classic problem in
computer vision [59]. The current protocols span between being
quantitative and perfectly repeatable with a low realism [26,39],
and considering real scenarios, where each test is qualitative and
cannot be repeated [13,60]. Here, we consider both the cases, pro-
viding a synthetic and a realistic experimental benchmark, which
are quantitative and repeatable, concluding with a real experiment
where our approach has been implemented in a real-time surveil-
lance platform.

A direct comparison with the methods similar to ours
[12,13,40], described in Section 2, is not possible without changing
their own network architecture (number of cameras and the way
they communicate), or the experimental protocol (data and ground
truth information used by previous works). One of the main fea-
tures of our system is that it integrates both the multi-target track-
ing module and the camera management on a single PTZ device,
differently from [12] which requires a set of fixed cameras to track
the targets and then drive the PTZ cameras towards the target of
interest. Both [13,40] perform live experiments on their own
video-surveillance network, hence it is not possible to perform
new tests on the same sequences.

We tried to compare our method with the solution proposed in
[38], which is the only one focusing on information theoretic man-
agement for a single PTZ camera. In particular, this is obtained by
simplifying our method (without the detector performance, the
occlusion management and the look-ahead optimization) in order
to obtain an implementation as close as possible to their method,
apart for the fact that we are tracking the targets in the ground
plane, instead of the image plane as they do. Results in Sections
9 and 10 demonstrates that the contributions proposed in this
paper allow to outperform [38].
Table 3
Synthetic data, ideal detector: comparison among standard strategies and the
information theoretic strategy, with and without the sampling (M = 100) to cope
with occlusions. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ MDP

‘intg’ ‘smpl’

MOTA (%) 94.6 87.6 79.7 89.9 97.0
(MOTP [m]) (0.26) (0.35) (0.45) (0.23) (0.21)
Height [pix] 49.1 102.6 64.4 91.4 89.0

# Dets 278.3 75.8 55.5 186.3 214.2
Zoom [x] 1.00 2.54 2.53 2.05 2.00
8.1. Experimental setup

We have performed two kind of experiments, synthetic and
realistic, for both myopic and non-myopic strategies in order to
quantitatively and qualitatively asses the performance of our
approach. For the myopic method we have also performed a real
experiment with an off-the shelf IP PTZ camera (Sony SNC-RZ30P).

The synthetic scenario consists in a 15� 15 m area, with 7 tar-
gets following random trajectories mimicking human motion,
Fig. 2 (a). The targets are always in the scene, thus the exploration
term Ip in Eq. (23) is not considered. We run 12 different
sequences, each 50 frames long, with diverse target trajectories,
and compute the final scores averaging the per sequence results.
In each sequence, we manage 350 target instances, which have
to be detected and associated to tracks. The action set has 4 steps
for the zoom, 7 for pan angle and 10 for tilt angle (i.e., L = 280 dif-
ferent actions). To model the mechanical constraints the camera
can move by a maximum displacement of 2 steps for the angles
and 1 for the zoom.

For the realistic experiments, as compromise between repeat-
ability and realism, we consider here the PETS 2009 (S2-L1-View1)
benchmark, Fig. 2b, where intrinsic calibration matrix Kc and the
extrinsic calibration information are provided. For reproducing
the PTZ zoom 1, we reduce the 576 � 768 resolution to
120 � 160. The homography Gptz for this virtual camera to the 3D
plane is Gptz ¼ KcRptzK

�1
ptz, where Kptz and Rptz are the intrinsic and

the rotation PTZ matrices (defined empirically). The original extrin-
sic calibration data allow to map the ground plane to the original
sequence image plane and then, through the Hptz, to the virtual
PTZ image plane. The action set is made of 140 different actions,
7 for pan angle, 5 for tilt angle and 4 steps for the zoom. The
mechanical constraints of the camera are implemented as in the
previous case. The sequence is 795 frames longa and we sub-sam-
ple it every 2 frames. Globally, there are 19 different targets, for a
total of 2322 true detections.

The whole framework has been implemented in MATLAB and it
works at 10 fps for the Gaussian integral solution of Eq. (8) and
0:3 fps for the sampling strategy of Eq. (21). However, it is easily
parallelizable both in the sampling stage and in evaluating Eq.
(5) for the various actions. Indeed, the evaluation of the expected
information gain for each action can be done independently. With
D/ ¼ 2;Dh ¼ 2 and Df ¼ 1 the number of reachable actions varies
between 18 (at the corners of the grid) and 75. If enough parallel
threads are available this can lead to a speedup from 18� to 75�
when computing the information gain for each action.
8.2. Evaluation metrics

To ease future comparisons, we adopt standard multi-target
tracking metrics: the Multiple Object Tracking Accuracy (MOTA,
the higher the better) which tells how reliable the tracks are and
the Multiple Object Tracking Precision (MOTP, the lower the bet-
ter) [61], which measures the error in localizing the tracked targets
on the ground plane. In addition, we calculate the average height of
targets as detected in the image, analogously to [38]: the bigger a
target appears on the screen, the more information could be
extracted for higher level tasks (recognition, re-identification,
etc.). Other important parameters for appreciating the perfor-
mance from different strategies are the number of detections on
the whole sequence and the average zoom value for the camera.

We use three comparative control strategies: ‘fix’, keeping the
camera fixed at the lowest zoom (1x), ‘patrol’, scanning the field
of regard according to a preset sequence, ‘random’, performing
actions randomly chosen from the set A.

We exploit the occlusion term of Eq. (17), comparing the Gauss-
ian integral solution of Eq. (8), namely ‘intg’ (that represent our
implementation of [38]), with the sampling strategy of Eq. (21),
namely ‘smpl’.
9. Myopic experiments

9.1. Synthetic experiments for the myopic strategy

Two different experimental sessions are performed on the syn-
thetic scenario, comparing the formulations proposed above for
two different types of pedestrian detectors.

A first session considers a perfect detector, whose performance
does not decay for smaller targets, but still worsens when the tar-
get gets occluded; results are in Table 3. The following observa-
tions can be made: (1) both the ‘intg’ and ‘smpl’ approaches
outperform the competing PTZ strategies ‘patrol’ and ‘rnd’, both
in terms of MOTA and MOTP; (2) the ‘fix’ policy is the best among
the competitors: actually, it detects a large number of targets (see



Table 4
Synthetic data, realistic detector: comparison among standard strategies and the
information theoretic strategy, with and without the sampling (M = 100) to cope with
occlusions. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ MDP

‘intg’ ‘smpl’

MOTA (%) 56.6 58.8 14.0 67.2 72.8
(MOTP [m]) (0.46) (0.47) (0.67) (0.33) (0.29)
Height [pix] 57.7 106.4 84.5 121.6 122.3

# Dets 54.5 38.3.8 15.0 80.0 89.8
Zoom [x] 1.00 2.54 2.46 2.64 2.61

Table 5
PETS dataset, ideal detector: comparison among standard strategies and the
information theoretic strategy, with and without the sampling (M = 100) to cope
with occlusions. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ b ¼ 9 b ¼ 1

‘intg’ ‘smpl’ ‘intg’ ‘smpl’

MOTA (%) 80.6 50.7 30.6 75.2 76.5 64.8 81.1
(MOTP [m]) (0.20) (0.29) (0.39) (0.22) (0.22) (0.18) (0.17)
Height [pix] 19.9 38.5 29.3 37.5 39.2 31.8 36.4

# Dets 2160 414 567 998 895 1524 1513
Zoom [x] 1.00 2.00 1.55 1.97 2.08 1.63 1.87
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# Dets), even when they are small, due to the perfect detector; (3)
the improvements of our approaches are mainly due to the zoom-
ing on the targets (see Zoom [x]), which both creates more reliable
tracks (higher MOTA) and better localization (lower MOTP); (4) the
sampling approach, that prevents the camera from observing tar-
gets which may be occluded, outperforms the ‘intg’ approach.

Note that when using the ideal detector and the ‘intg’ version,
which discards the occlusions, our method slightly differs from
the approach in [38]. In fact, in this case our approach only consid-
ers the mechanical constraints of the camera and the physical
extension of the targets as additional elements. Hence, results also
show a clear improvement with respect to [38].

In the second session, we consider Eq. (14), substituting the
ideal detector with a realistic one, which simulates the HOG per-
formance (i.e. it works worse at small resolutions). Results are in
Table 4, leading to considerations similar to the previous test.
The presence of a realistic detector brings in general to worse
MOTA and MOTP scores. In addition, the #Dets in the ‘fix’ case
decreases dramatically (it cannot zoom to increment the number
of detections), and, in general, both the proposed approaches are
better in this case. In fact, our strategies know that they need to
zoom more (see the Zoom values) to possibly get a detection.
Again, the advantage of keeping into account the occlusion term
is evident.
Table 6
PETS dataset. HOG detector: comparison among standard strategies and the
information theoretic strategy, with and without the sampling (M = 100) to cope
with occlusions. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ b ¼ 9 b ¼ 1

‘intg’ ‘smpl’ ‘intg’ ‘smpl’

MOTA (%) 21.6 19.0 0.0 28.3 28.3 31.6 36.4
(MOTP [m]) (0.36) (0.52) (0.52) (0.49) (0.48) (0.39) (0.38)
Height [pix] 19.5 37.7 28.5 42.7 42.8 48.4 50.6

# Dets 1886 370 581 435 440 714 716
Zoom [x] 1.00 2.00 1.48 2.94 2.33 2.58 2.70
9.2. Realistic experiments on the S2-L1-View1 PETS sequence for the
myopic strategy

A different experimental setup uses a publicly available dataset
(PETS2009) and its ground truth for quantitative evaluation. Fig. 8
shows how a PTZ camera is simulated from the original frame, and
used to track targets on the ground plane, exploiting the calibra-
tion data.

In a first test, whose results are in Table 5, we employ the ideal
detector, extracting the bounding box from the ground-truth and
removing the occluded ones. Since in this sequence people are
Fig. 8. Simulated PTZ on the PETS 2009 dataset. (a) Original frame from the dataset, with
the simulated PTZ in the current position (resolution is 160 � 120 pixels); (c) top view of
top view of the warped ground plane where targets are moving, with the estimated tra
entering and leaving the scene, we include the exploration term
(Eq. (23)), testing two different values for b. Considerations: (1)
the sampling strategy gives better results for both values of b, in
terms of MOTA, MOTP, and Height; (2) since we have all the detec-
tions, MOTA is high also for the fixed strategy. MOTP is higher with
our policies, due to the possibility of zooming. (3) reducing b
encourages to focus on the tracked targets (i.e., lower MOTP)
instead of capturing new items. The best value for b should be a
compromise between tracking accuracy and the capability of cap-
turing novel targets.

In the second test, we introduce a real implementation of the
HOG detector, enriching the realism of the simulation, and there-
fore introduce in the implementation the term in Eq. (14). Results
are in Table 6 and in general are dramatically lower than those in
Table 5 because of the many false positives and missed detections
from the HOG detector. The improvement of the ‘smpl’ method
with respect to the competitor strategies is evident considering
MOTA, this is due to term in Eq. (14) that pushes the camera to
increase the zoom with respect to the previous case of the ideal
detector. The MOTP is slightly better for the ‘fix’ strategy, but this
is due to the fact that it is computed only for the targets correctly
tracked, that are less than for the ‘smpl’ case.
the tracked targets trajectories and the PTZ field of view (black); (b) field of view for
the exploration map that is used to compute the exploration term of Eq. (23); and (d)
jectories and covariances.



Fig. 9. An illustration of camera management with two targets. Targets are marked with their 3D bounding box, the covariance spread of the filter estimate is given by the
ellipse. The camera chooses the position automatically, according to the reward function defined in the paper. The resulting behavior produces the following patterns: (1–8)
The camera ‘jumps’ between the targets to maximize their localization precision; (9–12) once the two targets are well localized, the camera widens its field of view to search
for novel targets (best in colors). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Synthetic data, ideal detector: comparison among standard strategies and the non-
myopic information theoretic strategy with occlusion handling with different
horizons �h; c ¼ 0:9;M ¼ 100. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ �h ¼ 1 �h ¼ 2 �h ¼ 3

MOTA (%) 94.6 87.6 79.7 97.0 95.6 92.1
(MOTP [m]) (0.26) (0.36) (0.45) (0.21) (0.21) (0.21)
Height [pix] 49.1 102.6 64.4 89.0 88.6 94.7

# Dets 278.3 75.8 55.5 214.2 210.2 203.3
Zoom [x] 1 2.54 2.46 2.07 2.11 2.23
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9.3. Real trials for the myopic strategy

We also tested our system with a real-time off-the shelf IP PTZ
camera, Sony SNC-RZ30P. In order to estimate the calibration
parameters of the PTZ camera while moving we use a method sim-
ilar to [62]. The action set A is made of 462 actions corresponding
to the following grid: 14 values for pan � 11 tilt � 3 zoom. The step
between two pan angles is 10.4�, for the tilt is 4.3�, and the zoom
values are 1�, 6� and 9�. We set b ¼ 0:667 and used the ‘intg’
approach, due to the real-time constraints. The whole system
works online at about 15 fps for the tracker and 3 fps for the action
selection. Some frames (videos are in supplementary material) are
shown in Fig. 9 with a detailed description. The method produces a
camera which is able to fully autonomous move in the scene,
according to the utility cost, and resulting in a ‘‘reasonable’’ behav-
ior without any supervision from a human operator or other sen-
sors. Effective implementations of computer vision algorithm on
PTZ camera are really few, and as far as we know it is the first time
a sophisticated algorithm is successfully applied to a stand alone
PTZ camera.
10. Non-myopic experiment

10.1. Synthetic experiments for the non-myopic strategy

A first session considers a perfect detector, whose performance
does not decay for smaller targets, but still worsens as the target
gets occluded. Results are in Table 7; �h ¼ 1 indicates the myopic
approach, �h ¼ 2;3 address the non-myopic strategy, with horizon
2 and 3, respectively.

Many observations can be made: (1) for all the three values of �h
and in terms of MOTA and MOTP our approach outperforms the
other competitors. (2) The ‘fix’ strategy is the best among the com-
petitors: actually, it detects a large number of targets (see #Dets),
even when they are small, due to the perfect detector. The
improvement of the myopic approach (�h ¼ 1) is mainly due to
the zooming on the targets (see Zoom [x]), which both creates
more reliable tracks (higher MOTA) and better localization (lower
MOTP). In this scenario the non-myopic approach �h ¼ 2;3 does
not improve the MOTA metric but provides higher resolution
images for the targets. This happens because typically the set of
tracked targets is divided on the future steps, hence the camera
precisely focuses on few targets at each time. Anyway being the
detector ideal, the targets are detected even when they are small
in the image, for this reason the MOTA is at is maximum value
for �h ¼ 1. For a deeper understanding of the non-myopic approach,
Fig. 10 visualizes the action selection process: the information gain
for all the reachable actions is evaluated considering the contribu-
tion of each target at each horizon.

In the second session we substitute through Eq. (14) the ideal
detector with another one, which simulates the HOG performance.
Results are in Table 8, leading to considerations similar to the pre-
vious test. In addition, the presence of a realistic detector brings in
general to lower MOTA and MOTP scores. The #Dets in the ‘fix’ case
decreases dramatically (it cannot zoom for taking care of the detec-
tor) and in general all the comparative approaches are better in
this respect In fact, our strategies know that they need to zoom
more (see the Zoom values) to possibly get a detection. From these
simulations, it seems that the best horizon is (�h ¼ 2). This indicates



Fig. 10. View of the environment for the synthetic experiments in two consecutive frames, t ¼ 23;24. In each of the two frames, some useful data are shown. (a) Image plane
for the PTZ on the synthetic scenario; (b) top view of the ground plane where the targets are moving, their movement is limited in a square area of 15 � 15 m; (c) information
gain Iðxt ;ot jatÞ for the 10 best poses (the contribution from the 3 horizon weighted by c is highlighted), for each target at each horizon this term is computed using Eq. (7), the
two terms aðatÞ and HðxþÞ are shown in the other two plots, (d) and (e). This figure shows a case in which the myopic and non-myopic strategy would choose 2 different
actions: at t ¼ 23 the non-myopic chooses action 1, whereas the myopic would choose action 2, since it cannot predict that waiting to look the red target at t ¼ 24 would
bring an higher global information gain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Synthetic data, realistic detector: comparison among standard strategies and the non-
myopic information theoretic strategy with occlusion handling with different
horizons �h; c ¼ 0:9;M ¼ 100. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ �h ¼ 1 �h ¼ 2 �h ¼ 3

MOTA (%) 56.6 58.8 14.0 72.8 80.8 71.6
(MOTP [m]) (0.45) (0.46) (0.67) (0.29) (0.31) (0.32)
Height [pix] 57.7 106.4 84.4 122.3 119.5 123.1

# Dets 54.5 38.3 15.0 89.8 75.0 81.1
Zoom [x] 1 2.54 2.50 2.62 2.66 2.71

Table 10
PETS dataset, HOG detector: comparison among standard strategies and the non-
myopic information theoretic strategy with occlusion handling with different
horizons �h; c ¼ 0:9; b ¼ 0:4;M ¼ 100. Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ �h ¼ 1 �h ¼ 2 �h ¼ 3

MOTA (%) 21.6 19.0 �3.6 60.5 64.1 70.5
MOTP [m] (0.35) (0.52) (0.51) (0.30) (0.34) (0.33)
Height [pix] 19.5 37.7 28.5 37.9 34.9 38.9

# Dets 1886 370 581 1292 1353 1231
Zoom [x] 1.00 2.00 1.48 2.00 1.79 2.01
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a natural limit of the system in going too far in the future, and this
is reasonable. If the target abruptly changes directions, when close
to the boundaries of the limited area, the EKF engine is not able to
predict far in future the probability density for the target’s posi-
tion. Thus, an action selected relying on such prediction could
not be the best.

10.2. Realistic experiments on the S2-L1-View1 PETS sequence for the
non-myopic strategy

In Table 9 we report the results on the PETS sequence using the
ground truth as detector. As it can be seen the non-myopic
approach obtain slightly better performance than the myopic ver-
sion in terms of accuracy (MOTA). The best horizon is �h ¼ 2 since
Table 9
PETS dataset, using the detections from GT (except in case they are occluded):
comparison among standard strategies and the non-myopic information theoretic
strategy with occlusion handling with different horizons �h; c ¼ 0:9; b ¼ 0:4;M ¼ 100.
Best results are reported in bold.

Strategy ‘fix’ ‘patrol’ ‘rnd’ �h ¼ 1 �h ¼ 2 �h ¼ 3

MOTA (%) 80.6 50.7 30.6 79.7 82.1 76.1
(MOTP [m]) (0.20) (0.40) (0.39) (0.16) (0.17) (0.18)
Height [pix] 19.9 38.5 29.3 34.9 35.0 36.1

# Dets 2160 414 567 1631 1542 1536
Zoom [x] 1.00 2.00 1.55 1.79 1.79 1.86
we obtain the highest MOTA value and an high accuracy in the
localization. In this first setting the detector is not affected by
the target size: all the non occluded targets, even at very low res-
olution (less than 20 pixels) are correctly detected. For this reason
the ‘fix’ strategy has the second best MOTA. Anyway, the zooming
capability of the camera helps in the localization. In fact, the MOTP
is lower for �h ¼ 1;2;3 and results in a higher average size of targets
on the image plane 36:1 pixels for �h ¼ 3 while the ‘fix’ strategy
obtain 19:9 pixels.

In the second test, we introduce a real implementation of the
HOG detector, enriching the realism of the simulation. Since we
noticed that the HOG detector was performing quite well on this
dataset, better than the expected performance (Fig. 4), we did
not put the detection term in the estimation (Kd ¼ þ1; r0 ¼ þ1).
The results are in Table 10. Even in this case, the non-myopic
approach does considerable better than the myopic version, as wit-
nessed by the MOTA score. In this case, the best horizon is �h ¼ 3
since the dynamics of the targets is simpler, with less changes in
directions. Therefore, our model (and the EKF dynamics) can pre-
dict the future target trajectories with more reliability.
11. Conclusions

In this paper, we propose a novel solution to perform sensor
management of a single PTZ camera for multiple target tracking.
Such solution considers the detector performance at different
image resolutions and occlusion ratios. Moreover, it considers the
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effects of a different camera pose to targets localization. To further
improve the tracking performance we apply a non-myopic
approach which considers future occlusions among targets in
selecting the next actions. We analyze the characteristics and dem-
onstrate the effectiveness of our approach through, synthetic
experiments, realistic simulations and effective real-time trials
on a real PTZ camera.

Appendix A. Measurement accuracy while zooming

Assuming a constant image measurement error and perfect cal-
ibration, world coordinate localization is much more accurate if the
backprojection is performed using zoomed views (i.e. long focal
length).

We derive analytically the expression that allows to appreciate
how zoom affects the measurement equation in the recursive fil-
tering formulation. Measurement uncertainty is mainly oriented
along the direction of instantaneous depth because of the panning
camera capability. According to this, uncertainty can be quantified
assuming a 1D projective camera parametrized by the tilt angle h
in the instantaneous plane rotating around the vertical camera axis
and focal length f.

Without loss of generality let’s consider that the principal point
lies at the image center:

K ¼
f 0
0 1


 �
: ðA:1Þ

We further have:

R ¼
cos hð Þ � sin hð Þ
sin hð Þ cos hð Þ


 �
: ðA:2Þ

The 1-D camera projection matrix P ¼ K½Rjt� results in:

P ¼
f cos hð Þ �f sin hð Þ 0
sin hð Þ cos hð Þ �d


 �
; ðA:3Þ

where t ¼ ½0� d�> and d is the camera distance with respect to the
scene plane. Being the scene plane Z ¼ 0, the 1D homography from
world to image can be computed from Eq. (A.3):

H ¼
f cos hð Þ 0
sin hð Þ �d


 �
: ðA:4Þ

The inverse:

H
�1 ¼

1
f cos hð Þ 0
sin hð Þ

f cos hð Þd �d�1

" #
; ðA:5Þ

can be used to compute the back-projected uncertainty of a given
noise uncertainty � assumed in the camera image sensor and com-
pute its backprojection d. Without loss of generality and for the sake
of simplicity, let’s define:

x1 ¼
0
1


 �
; x2 ¼

�
1


 �
; ðA:6Þ

their corresponding backprojected points:

x01 ¼ H
�1x1 ¼

0
�d�1


 �
; ðA:7Þ

x02 ¼ H
�1x2 ¼

�
f cos hð Þ

sin hð Þ�
f cos hð Þd� d�1

" #
; ðA:8Þ

are used to compute:

d ¼ x02 � x01 ¼
�d

sin hð Þ�� f cos hð Þ : ðA:9Þ
Given �; h and d, the value of d can be increased by increasing the
focal length (i.e. performing zoom-in).

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2014.12.001.
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