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Abstract

In this paper, we present and experiment a novel ap-

proach for representing texture of 3D mesh manifolds us-

ing local binary patterns (LBP). Using a recently proposed

framework [37], we compute LBP directly on the mesh sur-

face, either using geometric or photometric appearance.

Compared to its depth-image counterpart, our approach is

distinguished by the following features: a) inherits the in-

trinsic advantages of mesh surface (e.g., preservation of the

full geometry); b) does not require normalization; c) can

accommodate partial matching. In addition, it allows early-

level fusion of the geometry and photometric texture modal-

ities. Through experiments conducted on two application

scenarios, namely, 3D texture retrieval and 3D face recog-

nition, we assess the effectiveness of the proposed solution

with respect to state of the art approaches.

1. Introduction

The advancement of 3D imaging technologies resulted in

a new generation of acquisition devices capable of capturing

the geometry of 3D objects in the three-dimensional phys-

ical space. The geometric information captured by such

3D acquisition devices is typically in the form of a cloud

of points, which represents the three-dimensional coordi-

nates of a set of samples of the 3D object surface. However,

the direct processing of these point clouds is not convenient

or even possible, so that other representation formats have

been established. Depth images are one of the most com-

monly used imaging modality, since they permit a direct

extension to the depth dimension of many computer vision

and pattern recognition solutions developed for analyzing

the photometric information in 2D images. Though the pos-

sibility of a straightforward extension of 2D techniques is

attractive, this modality loses the full 3D geometry, by re-

ducing it to a 2.5D projection. The full 3D shape informa-

tion is instead preserved and encoded in a simple, compact

and flexible format by the triangular mesh manifold modal-

ity. This is widely used in many fields, such as animation,

medical imaging, computer-aided design, terrain modeling,

etc. The recent advances in shape scanning and modeling

have also allowed the integration of both photometric and

geometric information into a single support defined over a

3D mesh-manifold. However, despite the abundance and

the richness of the mesh manifold modality, the number of

solutions for representing the geometry of 3D objects is still

limited, and not comparable with the large variety of meth-

ods available in 2D.

(a) (b) (c)

Figure 1. Example 3D objects with different 3D textures: (a)

3D geometric texture, characterized by repeatable patterns of the

mesh surface; (b) 3D photometric texture attached to the triangular

mesh. In this case, the textural information is most present in the

photometric appearance of the mesh, rather than in the geomet-

ric appearance; (c) Combination of 3D geometric and photometric

texture on a 3D mesh manifold.

An evidence of this is given by the lack of efficient

descriptors to represent the texture component associated

to 3D objects. This motivated us to focus on this aspect

that can reveal new possibilities in 3D objects retrieval and

recognition. In particular, two different meanings are asso-

ciated here to the broad term “texture”: On the one hand, we

consider the 3D geometric texture as a property of the sur-

face, distinct from the shape, which is characterized by the

presence of repeatable geometric patterns (see Fig. 1(a)).

These patterns can be seen as geometric corrugations of the

surface that do not alter the overall 3D shape, but rather

change the local smoothness and appearance of the surface.
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This can result in 3D objects that show similar or equal

shape, but very different 3D geometric texture; On the other,

the 3D photometric texture attached to the mesh is related

to the photometric appearance of the surface as captured

by a 2D imaging sensor (see Fig. 1(b)). Being attached to

the triangular mesh, this property of the 3D surface is rep-

resented in the RGB domain. This represents a different

concept from the 2D texture, since it is represented on the

mesh, rather than on the image plane, though using the same

RGB domain of the 2D counterpart. These two properties

may also be present together, for a 3D object characterized

by both the combined 3D geometric and photometric tex-

ture (see Fig. 1(c)). For capturing these two aspects of the

3D object appearance on a triangular mesh support, consol-

idated approaches do not exist. In this work, we present

a novel approach for holding both aspects within a single

framework. We believe it is the first of its kind to address

this problem, to the best of our knowledge.

1.1. Related work

In the literature, the problem of representing the 3D ge-

ometric texture has been not addressed directly; rather, the

3D geometric texture has been managed as a component

of the surface shape either recurring to 3D shape descrip-

tors [15, 29], that in the large part are not adequate to cap-

ture 3D geometric texture, or resorting to the 2D case by

applying 2D descriptors to planar projections of the 3D sur-

face, in the form of depth images. In addition, the photo-

metric properties of the surface have either been not consid-

ered or have been addressed following the obvious solution

of processing the 2D texture image separately in the pla-

nar domain. But, similarly to the case of depth images, this

loses the possibility to represent occluded parts or closed

surfaces as a whole, and hinders the possibility of an early

fusion of geometric and photometric descriptors.

In this paper, we address the above shortcomings build-

ing on the framework of Local Binary Pattern (LBP). Since

its first formal definition by Ojala et al. [27, 28], the LBP

has established itself as one of the most effective local shape

descriptors for image representations. It has been originally

introduced for representing 2D textures in still images, but

its computational simplicity and discriminative power at-

tracted the attention of the image processing and pattern

recognition community for other tasks. Rapidly, LBP has

found applications in visual inspection [10, 23], remote

sensing [13, 22, 34], face recognition [2, 3, 38, 40], facial

expression recognition [33], and motion analysis [9, 36].

However, the LBP-based methods developed so far oper-

ate either on photometric information provided by 2D color

images or on geometric information in 2D depth images.

The few solutions that extract surface features directly in

3D (typically in the form of surface normals), resort to the

2D case by converting the 3D extracted features to depth

values, and then use ordinary LBP processing on 2D im-

ages [19, 32, 31]. 3D-LBP approaches advanced the state

of the art and proved to be competitive with other classes

of methods. However, their applications is hindered by the

intrinsic limitations of the 2D image support. Indeed, most

if not all 3D-LBP approaches operate on depth images, in

which depth is mapped to a gray level via 2D projection.

As such, depth images require normalization to accommo-

date with pose variation. Yet, they still remain vulnerable to

self-occlusions (caused for instance by lateral areas of the

nose). Recently, LBP construction on triangular mesh man-

ifolds has been introduced by Werghi et al. [37]. The mesh-

LBP framework keeps the simplicity and the elegance char-

acterizing the original LBP, while relieving the recognition

process from the need for normalization, and preserving the

full 3D geometry of the shape.

1.2. Our contribution and paper organization

In this paper, we target the problem of representing the

texture properties of 3D mesh manifolds for retrieval and

recognition applications. As a main contribution of this

work, we propose a solution, which is based on the recently

proposed mesh-LBP concept [37], to address the above

challenges. In particular, to the best of our knowledge, this

paper is the first one to present and apply a unified frame-

work, which enables an elegant and effective representation

of 3D geometric and photometric texture. Two novel solu-

tions have been proposed and investigated: 1) A retrieval

approach of 3D objects based on the 3D geometric texture

of the surface using the mesh-LBP representation. To the

best of our knowledge, this is the first attempt to exploit 3D

geometric texture rather than 3D shape to perform 3D re-

trieval; 2) A mesh-LBP based face representation that can

be constructed over triangular mesh manifolds. This rep-

resentation relieves the recognition process from the need

for normalization, while it preserves the full 3D geometry

of the shape. Furthermore, mesh-LBP construction allows

boosting recognition by offering an elegant framework for

fusing, over a mesh support, photometric texture and shape

information at data and feature level, in addition to score

and decision level. To the best of our knowledge, this work

is the first one to propose texture and shape fusion for face

recognition using LBP patterns constructed on the mesh.

The rest of the paper is organized as follows: In Sect. 2,

we give an overview on the mesh-LBP concept; In Sect. 3,

the 3D texture retrieval scenario is introduced and the mesh-

LBP results are presented in comparison to other state of

the art solutions; In Sect. 4, we describe how mesh-LBP

is used for constructing face representation, and for fusing

shape and appearance information. Experimental results for

face recognition are exposed in Sect. 4.2 and Sect. 4.3, re-

spectively, for the BU-3DFE and the Bosphorus datasets;

Concluding remarks are discussed in Sect. 5.
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2. LBP descriptor on the mesh

In its simplest form, an LBP is an 8-bit binary code ob-

tained by comparing a pixel’s value (e.g., gray level, depth)

with each pixel’s value in its 3× 3 neighborhood. The out-

come of this comparison is 1 if the difference between the

central pixel’s value and its neighbour pixel’s counterpart is

less or equal than a certain threshold, and 0 otherwise. The

so obtained local description can be refined and extended

at different scales by adopting circular neighbourhoods at

different radii and using pixel sub-sampling.

Werghi et al. [37] elegantly extended the LBP concept to

the 3D mesh manifold by proposing a simple yet efficient

technique for constructing sequences of facets ordered in a

circular fashion around a central facet. The principle of the

approach consists in categorizing the facets on the contour

defined by a central facet’s edges in two categories, namely,

the Fout facet and the Fgap facets. An Fout facet (respec-

tively, an Fgap facet) shares an edge (respectively, a single

vertex) with a central facet (referred by fc in Fig. 2).

Figure 2. Ordered ring construction: From the initial Fout facets

formed by the three ordered facets fout1, fout2, and fout3 that

are adjacent to the central facet fc, a sequence of Fgap facets

located between each pair 〈fout1, fout2〉, 〈fout2, fout3〉, and

〈fout3, fout1〉 are extracted. The Fgap facets have exactly one

vertex on the initial three-edge contour of the central facet fc, and

they are dubbed so because they look like filling the gap between

the Fout facets. This procedure produces a ring of facets ordered

in a circular fashion around the central facet fc.

Starting with three–clockwise or anticlockwise–ordered

Fout facets (fout1, fout2, and fout3 in Fig. 2), the con-

struction algorithm iteratively extracts the Fgap facets lo-

cated between each pair of consecutive Fout facets follow-

ing the same order in which the Fout facets have been ini-

tially arranged, and closing the loop at the pair composed by

the last Fout facet (the third one) and the first one. The out-

come of this procedure is a ring of ordered facets arranged

clockwise or anticlockwise around the central facet. From

this ring, a new sequence of ordered Fout facets located on

the ring’s outer-contour can be extracted, thus allowing the

ring construction procedure to be iterated, and to generate

a sequence of concentric rings around the central facet (see

Fig. 3). The so obtained structure of ordered and concentric

rings around a central facet forms an adequate support for

computing LBP operators (referred as mesh-LBP in [37]) at

different radial and azimuthal resolutions, while preserving

the simplicity of the original LBP.

Figure 3. By iterating the procedure of Fig. 2, using as new set of

Fout facets the sequence of facets that share an edge on the outer

contour of the current ring, a sequence of rings of ordered facets

can be generated.

Let h(f) be a scalar function defined on the mesh, which

can incarnate either a geometric (e.g., curvature) or photo-

metric (e.g., color) information. The mesh-LBP operator, as

proposed in [37], is defined as follows:

meshLBP r

m
(fc) =

m−1
∑

k=0

s(h(fr

k
)− h(fc)) · α(k) , (1)

s(x) =

{

1 x ≥ 0
0 x < 0

,

where r is the ring number, and m is the number of facets

uniformly spaced on the ring. The parameters r and m con-

trol, respectively, the radial resolution and the azimuthal

quantization. The discrete function α(k) is introduced for

the purpose of deriving different LBP variants. For exam-

ple, α(k) = 2k results into the mesh counterpart of the ba-

sic LBP operator firstly suggested by Ojala et al. [27]; with

α(k) = 1, we obtain the sum of the digits composing the

binary pattern. In the experiments, we will refer to these

two functions by α1 and α2, respectively.

To cope with mesh tessellation irregularities, the scalar

function h(f) is interpolated and sub-sampled across each

ring, allowing thus to maintain a constant azimuthal quanti-

zation. In [37] it is shown that this technique copes to a large

extent with mesh irregularity. Invariance with respect to the

position of the first facet in the ring is assured by selecting

the closest face to the center of mass of the central facet’s

neighbourhood. The presence of uniform patterns has been

also investigated in [37], and it has been found that the ma-

jority of patterns have a number of 0-1 transitions below 4.

In the rest of the paper, we exploit the mesh-LBP in

two different surface analysis applications, which involve

both local and global representations, namely, 3D texture

retrieval (Sect. 3), and 3D face matching (Sect. 4).

3. Retrieval based on 3D geometric texture

This experiment aims to assess the mesh-LBP potential

for detecting a specific type of texture in a given surface.

Such capacity is useful in “3D texture retrieval” applica-

tions, where a sample of specific 3D texture (probe texture)

is available, and we want to automatically detect regions, in
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a gallery surface, matching that particular sample. Poten-

tial applications of this scenario can be found in 3D med-

ical imaging, or 3D terrain relief inspection. To the best

of our knowledge, we are the first to attempt retrieving 3D

geometric texture on a mesh manifold. However, elabo-

rating a full scheme for 3D texture retrieval is beyond the

scope of this paper. Rather, we aim to showcase the poten-

tial of the mesh-LBP and its performance for such a task

in comparison with other standard descriptors. Therefore,

we just used a naive template-matching-like method, where

the gallery mesh surface is browsed, and at each facet a tex-

ture descriptor is computed and compared to its probe tex-

ture model counterpart using a given metric (i.e., the Bhat-

tacharyya distance in this application). Facets exhibiting a

low distance (i.e., below a certain threshold) are selected

as a potential match. Of course, this exhaustive search ap-

proach is prone to inefficiency issues, but addressing this

aspect is out of the scope of the present treatment.

Figure 4. Surfaces extracted from the bird, pot and owl models,

and their corresponding position, highlighted with a rectangle, in

the probe models.

In the experiments, we considered as gallery a repre-

sentative set of three surfaces (Fig. 4), exhibiting different

global and local shape characteristics. These surfaces were

extracted from the bird, pot, and owl objects in the “MIT

CSAIL textured 3D models database” [1]. The order of the

aforementioned objects reflects an ascending level of sur-

face complexity and 3D texture richness. The bird instance

contains basically two free-from surfaces, one is smooth

and the other is textured. The pot surface is composed

of a single cylindrical surface exhibiting different types of

3D texture patterns. The owl surface, which is the most

complex one, encompasses different free-from textured sur-

faces. The set of probe textures is composed of three in-

stances extracted from the three surfaces, as shown in Fig. 4.

The experiment consists in searching each probe within its

corresponding surface, and then assessing the detection and

retrieval capacity of the different descriptors. In so doing,

we computed the α1 and α2 mesh-LBP variants, using the

Gaussian curvature (K), mean curvature (H) and angle be-

tween facets normal (D) as surface functions. In addition,

we compared the mesh-LBP with other standard 3D surface

descriptors including: the Shape Distribution variants [29],

namely, the distance between a fixed point and one random

point on the surface (D1), the distance between two ran-

dom points on the surface (D2), the square root of the area

of the triangle between three random points on the surface

(D3), the cube root of the volume of the tetrahedron be-

tween four random points on the surface (D4), the angle

between three random points on the surface (A3); and the

Spin-Images [15]. In the case of the shape-distribution de-

scriptor, results are reported only for the D4 variant, since

it provided the best result when compared with the D1, D2,

D3 and A3 variants. In addition, we also tested the recently

proposed Intrinsic Shape Context (ISC) [17].

Figures 5(a), (b) and (c) show the maps of the Bhat-

tacharyya distance computed at each facet and the related

retrieval results for the bird, pot and owl objects, respec-

tively. Referring to the distance maps (first row of each

case), we can assert that the shape-distribution D4 practi-

cally shows no possibility for detecting the searched tex-

ture. The spin-images looks partially spotting the textured

regions in the distance maps for the bird and the pot sur-

faces, whereas its corresponding owl map indicates neat in-

capacity. The ISC does not indicate a particular ability for

spotting the probe texture apart for the owl model, but with

a significant false detection rate. These observations are

confirmed in the texture retrieval results (second row of the

cases (a), (b) and (c)), which indicate a nearly total failure

in recovering the searched texture.

On the opposite, the mesh-LBP distance maps indicate a

neat superior performance across the three surfaces, though

with different levels. For the α1 variant (shown in the three

middle columns), the K and D results clearly indicate an

ability of detecting the searched texture for the bird and the

pot surfaces, as compared with the H . The same is noticed

for the owl surface. These observations are confirmed by the

retrieval results, whereby K and D instances show the best

performance across the three surfaces. For the α2 operator

variant (shown in the three rightmost columns), the distance

maps show an overall improvement, particularly visible in

the pot and the owl results. We can observe that for the

three surfaces, the regions in the related maps look more

compact and localised when compared with their α1 coun-

terparts. The appearances of these maps suggest an even

more ability in texture retrieval, which has been confirmed

in the detection results depicted in the last row of each case.

4. Face recognition by fusing shape and 3D

photometric texture

The effectiveness of LBP in 2D face recognition has

been demonstrated in [3] and in several subsequent works.

Motivated by these results, in the following, we investigate

if a similar capability exists for the mesh-LBP counterpart.

In so doing, we propose an original face representation ap-

proach that in addition to exploiting the mesh-LBP capa-

bility of capturing 3D texture, it also includes in a unified

framework a mesh-LBP descriptor derived by the photomet-
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D4 Spin Images ISC
meshLBP α1

K H D

meshLBP α2

K H D

(a)

(b)

(c)

Figure 5. Results for the bird, pot and owl surface are reported in (a), (b) and (c), respectively. Two rows are reported in each case: the

upper row represents the distance map obtained with the Bhattacharyya distance; in the lower row, the region on the mesh where the probe

texture is best identified is highlighted in blue. For mesh-LBP, the α1 and α2 operators are evaluated, in combination with the surface

functions Gaussian curvature K, mean curvature H , and angle between facets normal D. Comparison with Shape Distribution variant

D4, Spin Images and ISC are also reported in the first three columns. (Figure best viewed in soft-copy).

ric (appearance) component attached to the mesh surface.

In the standard LBP-based face representation [3], a 2D

face image is divided into a grid of rectangular blocks,

then histograms of LBP descriptors are extracted from each

block and concatenated afterwards to form a global descrip-

tion of the face. To extend this scheme to the 3D face mani-

fold, we need first to partition the facial surface into a grid of

regions (the counterpart of the blocks in the 2D-LBP), com-

pute their corresponding histograms, and then group them

into a single structure. Our method encompasses the follow-

ing stages: 1) Construction of a grid of points on the face

surface, to obtain an ordered set of regions; 2) Computa-

tion of an histogram of the mesh-LBP descriptors computed

on the surface region centered at each point of the grid; 3)

Concatenation of the regional histograms into a structure

encoding either a global or partial description of the face;

4) Performing the face matching.

In the first step (see Fig. 6(a)), the plane formed by the

nose tip and the two eyes inner-corner landmark points is

initially computed. We choose these three landmarks be-

cause they are the most accurate detectable landmarks of

the face, in addition to be robust to facial expressions. From

these landmarks we derive, via simple geometric calcula-

tion, an ordered and regularly spaced set of points on that

plane. Afterwards, the plane is tilted slightly, by a con-

stant amount, to make it more aligned with the face ori-

entation, and then we project this set of points on the face

surface, along the plane’s normal direction. The outcome

of this procedure is an ordered grid of points (see Fig. 6(b)),

which defines an atlas for the regions that divide the facial

surface. Around each grid point, we extract a neighbour-

hood of facets. These can be defined by the set of facets

confined within a geodesic disc or a sphere, centered at

that grid point. In the second step, we compute a multi-

resolution mesh-LBP descriptor, using (1), for each facet

in a region, considering both shape-valued and appearance-

valued functions. In the third step, the histograms of these

descriptors are computed and integrated into a single his-

togram describing either the whole face or part of it (see

Fig. 7(a)). In the last step, we employ a basic minimum dis-
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tance classifier using χ2 distance, as we aim at showcasing

the performance enhancement that our 3D face representa-

tion can bring to face recognition, rather than demonstrating

its superiority over other competitive schemes.

(a)

(b)

three bands TMB TM

Figure 6. (a) Construction of the face grid; (b) On the left scan,

partition of the grid points into a top (T), middle (M) and bottom

(B) band is reported, whereas in the center and right scans all the

points in the three bands (TMB), and only the points in the top and

middle (TM) bands are shown, respectively.

4.1. Fusion of mesh-LBP descriptors

Four levels of fusion are typically considered in biom-

etry applications, namely, data, feature, score, and deci-

sion [30]. As mentioned by Osaimi et al. [4], it is believed

that low-level fusion performs better than its higher level

counterparts (score and decision) [14]. Looking at the spec-

trum of region methods fusing 2D appearance and 3D shape

modalities, we found much concentration in the score-level

category [11, 12, 21, 24, 25], as compared to the feature-

level [18, 21, 26]. The work of [21], in particular, fused

LBP features derived from depth and texture image.

Given the consensus on the advantageous aspects of

multi-modal face recognition [8], mesh-LBP allows boost-

ing recognition by offering an elegant framework for fusing,

over a mesh support, texture and shape information at data

and feature level, in addition to score and decision level, no-

ticeably. To the best of our knowledge, this work is the first

one to propose texture and shape fusion for face recognition

using LBP patterns constructed on the mesh.

In our approach, we have investigated a score-level fu-

sion (score fus) and two variants of feature-level fusion

(feat fus). We have chosen the sum rule for the score-

level, as it has been proven to be the optimal one [16]. In the

first variant of the feature-level, we simply concatenate the

two mesh-LBP regional histograms, corresponding to the

shape and the appearance functions. For example, consid-

ering an azimuthal quantization m = 12 and α1, we obtain

a 13-bins histogram for each function, thus leading to a one-

dimensional 26-bins histogram for each radial resolution r,

that is a r × 26 histogram. In the second variant, we used

(a)

(b)

Figure 7. (a) Global histogram construction: Region histograms

are computed and then concatenated into a global histogram. (b)

Examples of regional histogram variants obtained with m = 12,

r = 7 and α1: (left) A 7× 13 unimodal histogram corresponding

to a shape function; (middle) A 7 × 26 feat fus1 histogram ob-

tained by concatenating two 7 × 13 histograms corresponding to

a shape function and a photometric function (gray level); (right) A

2D section of a feat fus2 7 × 13 × 13 histogram obtained with

a shape function and a photometric function.

a 2-D accumulator that counts for the co-occurrences of the

mesh-LBP corresponding to the shape and the appearance

functions. For the same aforementioned parameters’ values,

we obtain an r× 13× 13 histogram (Fig. 7(b) depicts some

examples). In the rest of the paper, we will refer to these

first and second variants by feat fus1 and feat fus2, re-

spectively.

4.2. Face recognition results on BU-3DFE dataset

The BU-3DFE database from Binghamton Univer-

sity [39] contains scans of 56 males and 44 females, ac-

quired in a neutral plus six different expressions (anger,

disgust, fear, happiness, sadness, and surprise). Apart of

the neutral expression, all the other facial expressions have

been acquired at four levels of intensity. This combination

results in a total of 2500 scans. Actually, we note that level-

1 scans already exhibit significant disparity from the neutral

expression, especially for the disgust, fear, happy and sur-

prise expressions, as it can be noticed in Fig. 8(a). We con-

sidered as gallery the set of neutral scans, while the expres-

sive scans are used as probes. Scans in this database con-

tain both shape and appearance data. The purpose of using

the BU-3DFE is to assess the performance of our method,

in particular our fusion schemes, with respect to facial ex-

pressions. In addition, the appearance image captured by

the scanner comprises two views of the face at about +45◦

and -45◦. This gives to the 2D texture image the neces-

sary angle to expose the side parts of the face, thus avoiding

auto-occlusions, mainly due to the nose, that can occur in

the case a single frontal image of the face is captured.

We set the radial resolution r and the azimuthal quan-
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(a) (b)

Figure 8. BU-3DFE: (a) 3D face scans (with texture) of a sample

subject showing, from left, the neutral, anger, disgust, fear, happy,

sad, and surprise expressions (the level-1 of intensity is shown in

each case); (b) The appearance image acquired by the scanner with

two 45
◦ side views of the face.

tization m to 7 and 12, respectively. To account for the

effects of facial expressions, we segmented the grid points

into three bands, dubbed top (T), middle (M) and bottom

(B). Then, we tested our recognition approach considering

the full grid (TMB) and the top and middle bands (TM)

only (see Fig. 6(b)). The TM option allows us to neutralize

to some extent the shape changes manifesting at the lower

part of the face, and caused by the mouth in particular. The

TMB and the TM grids contain 35 and 26 points, respec-

tively. For the choice of the local descriptors we tested, in

a preliminary experimentation, a variety of descriptors that

include the mean (H) and the Gaussian (K) curvatures, the

curvedness (C), and the shape index (SI), in combination

with α1 and α2. We found that the H and C descriptors

perform best than the rest, so we will report results related

to these descriptors. Results for the mesh-LBP descriptor

based on the gray-level (GL) on the mesh are also reported.

Table 1 shows the probe scans categorized into the six

different facial expressions, and recognition rates are re-

ported for each category separately. We also included

results obtained with three variants of the interest-points

method proposed in [7], and which have been applied on

the same database. Methods in [18, 35] also used the BU-

3DFE database for 3D face recognition, but they are not

directly comparable with our due to the different settings.

The work in [35] limited the analysis to consistently labeled

scans with expression intensities 3 and 4 that do not show

large variations in illumination and geometry (total of just

212 scans of 81 subjects out of 2500 scans of 100 subjects).

The approach in [18] is based on training multiple SVMs,

thus dividing the dataset into two halves of 1200 scans each,

one used for training and the other for test. Depending on

the fact the intensities 1-2 or 3-4 are used for training, the

rank-1 recognition rate is 97.7% and 98.7%, respectively.

From Table 1, we first notice that our method outper-

forms [7] even with variants using single modality (see

scores related to H and C). The disgust category, which

is the most radical expression, exhibits the lowest rate

(93.50% for lower level distortions). The distribution of the

best scores, highlighted in bold, clearly indicates the recog-

nition enhancement brought by the fusion schemes. Also,

we can observe that most of the best scores have been ob-

tained with the feature-level fusion variants. This observa-

tion is confirmed in the over-all results, whereby the con-

figuration using 〈α2, feat fus1, H〉 scores the best perfor-

mance. Also, we can notice that our framework preserves

an overall reasonable performance for the higher expression

amplitudes level-3 and level-4.

4.3. Face recognition results on Bosphorus dataset

The Bosphorus database [5] contains 4666 scans of 105

subjects. The subjects were scanned in different poses,

action units, and occlusion conditions. We assess the

multi-modal variant 〈TMB,H, χ2〉 of our method on the

database’s subsets corresponding to the seven facial expres-

sions, Lower Face Action Unit (LFAU), Upper Face Ac-

tion Unit (UFAU), and Combined Action Unit (CAU). Scans

with Yaw Rotation (YR), Pitch Rotation (PR), and Cross

Rotation (CR) are instead excluded from our analysis at this

stage. We compared our method with Berretti et al. [7]

and Li et al. [20], which used the same experimental pro-

tocol. Sandbach et al. [31] and Bayramoglu et al. [6] used

also the same database, but for facial expression and ac-

tion unit recognition purpose rather than face recognition.

Their experimental setting is also different than ours. They

employed, respectively, AdaBoost and Random Forest clas-

sifiers, and a 10-fold cross-validation scheme, whereas our

method used a simple minimum-distance classifier.

An overview of the comparison results depicted in Ta-

ble 2 shows that our framework outperforms the methods

in [7] and [20]. In more details, the H mesh-LBP shape

descriptor (columns 4 and 9) is quite competitive for the α2

variant, whereby it scores either better or slightly less than

these two methods at nearly all the subset instances. The

same can also be observed for α1 fusion variants, which

show a better overall scores. The α2 fusion scores better

across all the subset instances, reflecting thus a neatly supe-

rior performance.

5. Discussion and conclusions

In this paper, we presented two original contributions

that derive from the application of the mesh-LBP frame-

work on triangular mesh manifolds:

• A 3D retrieval paradigm based on the 3D texture of a

mesh surface. While qualitative, and despite employ-

ing basic techniques for descriptor comparison, the ex-

periments on 3D texture retrieval revealed the great po-

tential of the mesh-LBP descriptors and the incapac-

ity of the standard descriptors for such a task. This

paradigm brings an adequate solution for 3D texture

analysis and retrieval in imaging modalities for which

photometric information is lacking or not reliable;

• An approach for constructing a multi-modal LBP-

based face representation on a triangular mesh-model.
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Level-1 & Level-2 Expressions Level-3 & Level-4 Expressions

Descriptors An Di Fe Ha Sa Su All An Di Fe Ha Sa Su All

[7]

HOG 90.0 87.5 88.8 88.1 90.6 85.0 88.3 81.3 75.6 78.8 80.6 82.5 76.9 79.3

SHOT 93.8 90.6 91.9 90.0 94.4 88.8 91.6 87.5 78.8 85.6 79.4 90.0 79.4 83.4

GH 90.6 85.0 84.4 85.6 90.6 82.5 86.5 86.3 79.4 80.0 79.4 85.0 78.8 81.5

α1

GL 83.0 72.5 83.0 83.5 86.0 81.5 81.6 67.0 49.5 71.0 69.0 76.5 71.5 67.4

H 89.0 74.5 83.5 89.0 96.5 93.0 87.6 73.5 48.0 68.0 79.0 85.0 84.0 72.9

C 88.5 68.0 79.5 86.0 93.0 91.5 84.4 69.0 43.5 65.5 73.5 82.5 83.5 69.6

feat fus1 H 95.5 86.5 92.5 94.5 97.0 97.5 93.9 82.5 67.5 86.0 86.5 94.0 94.0 85.1

feat fus1 C 94.5 83.0 91.0 94.5 96.5 97.5 92.8 82.0 59.5 86.0 87.0 92.0 93.5 83.3

feat fus2 H 94.0 85.5 91.5 95.0 97.5 96.5 93.3 83.0 66.5 85.5 87.5 93.0 93.5 84.8

feat fus2 C 94.0 83.0 90.5 92.5 97.5 97.5 92.5 82.5 62.0 85.0 86.5 93.5 93.0 83.8

score fus H 95.0 86.5 92.5 95.0 97.0 98.0 94.0 83.0 67.5 86.5 87.0 94.0 93.5 85.3

score fus C 94.5 85.5 92.5 94.5 97.0 97.5 93.6 82.5 61.0 86.5 88.0 92.5 93.5 84.0

α2

GL 88.0 82.0 87.5 89.5 91.0 87.5 87.6 72.5 58.0 80.0 77.5 81.0 85.5 75.8

H 96.5 90.0 95.5 98.0 99.0 99.5 96.4 92.5 72.5 90.5 92.5 98.0 99.5 90.9

C 97.0 89.0 95.5 98.0 99.0 99.5 96.3 92.0 69.0 89.5 92.5 97.5 99.5 90.0

feat fus1 H 98.0 93.5 96.5 98.0 98.5 99.5 97.3 94.5 80.0 92.5 95.5 98.5 99.5 93.4

feat fus1 C 97.5 92.5 96.0 98.0 99.0 99.5 97.1 94.0 73.5 91.0 94.5 97.5 99.5 91.7

score fus H 98.0 93.5 96.5 98.0 98.5 99.5 97.3 94.5 80.0 92.5 95.5 98.5 99.5 93.4

score fus C 97.5 92.5 96.0 98.0 99.0 99.5 97.1 94.0 73.5 91.0 94.5 97.5 99.5 91.7

Table 1. BU-3DFE: Rank-1 recognition rate obtained for the different expression subsets compared with [7].

α1 α2

[7] [20] GL H feat fus2 feat fus1 score fus GL H feat fus1 score fus

Neutral 97.9 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 10.00

Anger 85.9 88.7 95.8 81.7 97.2 95.8 97.2 93.0 93.0 94.4 94.4

Disgust 81.2 76.8 85.5 53.6 85.5 89.9 89.9 91.3 76.8 92.8 92.8

Fear 90.0 92.9 92.9 81.4 98.6 98.6 98.6 98.6 92.9 98.6 98.6

Happy 92.5 95.3 83.0 68.9 88.7 89.6 91.5 92.5 87.7 97.2 97.2

Sad 93.9 95.5 97.0 83.3 97.0 97.0 98.5 98.5 97.0 98.5 98.5

Surprise 91.5 98.6 95.8 93.0 97.2 98.6 98.6 100.0 98.6 100.0 100.0

LFAU 96.5 97.2 97.1 87.9 97.1 97.4 97.6 99.2 96.2 99.1 99.1

UFAU 98.4 99.1 98.6 95.8 99.8 99.5 99.8 100.0 98.8 100.0 100.0

CAU 95.6 98.8 100.0 94.7 100.0 100.0 100.0 100.0 98.8 100.0 100.0

All 95.7 96.9 96.7 88.3 97.1 97.6 97.9 98.8 96.1 99.0 99.0

Table 2. Bosphorus: Rank-1 recognition accuracy obtained for some subsets of the database in comparison to [7] and [20].

It is the first approach that integrates shape and ap-

pearance information in LBP-patterns derived from a

mesh support. The combination of mesh-model and

LBP-based face recognition will open-up new hori-

zons that go quite beyond the limits imposed by the

depth image constraints. We proposed a face represen-

tation that encompasses a face-centric grid to which

is attached, at each point of it, LBP histograms con-

structed using geometric and photometric data. Con-

trary to its depth-image counterpart, this representa-

tion supports partial facial matching, and does not re-

quire normalization. In addition, it preserves the full

geometry of the facial shape, which might be partially

lost in depth images because of self-occlusions. The

experiments conducted with BU-3DFE and Bospho-

rus database showcased the boosting of the recogni-

tion performance brought by our fusion framework,

and its superiority with regard to the most closest ap-

proaches. We have showed that our framework can be

easily adapted to different fusion schemes, in particu-

lar the early stage fusion.

The comparison of the α1 and α2 mesh-LBP functions

across the different experiments, gives more credentials to

the second one. However, the compactness of the the α1 de-

scriptor, and the resulting lower computational complexity

required to compare descriptors, vote for this solution when

time constraints are relevant. In both applications, despite

using a basic minimum distance classifier, we showcased

the powerfulness of the mesh-LBP descriptors for shape

analysis, and the performance enhancement that the mesh-

LBP fusion framework can bring in recognition tasks.

Finally, we want to point out the mesh-LBP is more ap-

propriate for the class of manifold objects exhibiting texture

or shape variation. So, it is more related to intra-class clas-

sification/retrieval, where objects in the class have a simi-

lar global structure and different local shape characteristics.

While the mesh-LBP is not meant for simplified and opti-

mized mesh, where the mesh uniformity is corrupted.
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and geometry based person independent 3d facial action unit

detection. In Int. Conf. on Biometrics, pages 1–6, Madrid,

Spain, June 2013. 7

[7] S. Berretti, N. Werghi, A. Del Bimbo, and P. Pala. Match-

ing 3D face scans using interest points and local histogram

descriptors. Computers & Graphics, 37(5):509–525, Aug.

2013. 7, 8

[8] K. Bowyer, K. Chang, and P. Flynn. A survey of approaches

and challenges in 3D and multi-modal 3D+2D face recogni-

tion. Computer Vision and Image Understanding, 101:1–5,

Nov. 2006. 6

[9] L. Cai, C. Ge, Y. Zhao, and X. Yang. Fast tracking of

object contour based on color and texture. Int. Journal of

Pattern Recognition and Artificial Intelligence, 23(7):1421–

1438, Nov. 2009. 2

[10] L. Cao, J. Luo, F. Liang, and T. Huang. Heterogeneous fea-

ture machines for visual recognition. In Int. Conf. on Com-

puter Vision, pages 1095–1102, Kyoto, Japan, Sept. 2009.

2

[11] K. Chang, K. Bowyer, and P. Flynn. An evaluation of mul-

timodal 2-D and 3-D face biometrics. IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 27(4):619–624, apr

2005. 6

[12] K. I. Chang, K. Bowyer, and P. J. Flynn. Multimodal 2-d and

3-d biometrics for face recognition. In IEEE Int. Workshop

on Analysis and Modeling of Faces and Gestures, pages 187–

194, Nice, France, Oct. 2003. 6

[13] D. Guo, V. Atluri, and N. Adam. Texture-based remote-

sensing image segmentation. In Int. Conf. on Multimedia

and Expo, pages 1472–1475, Amsterdam, The Netherlands,

July 2005. 2

[14] A. Jain, A. Ross, and S. Prabhakar. An introduction to bio-

metric recognition. IEEE Trans. on Circuits Systems and

Video Technology, 14(1):4–20, Jan. 2004. 6

[15] A. E. Johnson and M. Hebert. Using spin images for efficient

object recognition in cluttered 3D scenes. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 21(5):433–449,

May 1999. 2, 4

[16] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining

classifiers. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 20(3):226–239, Mar. 1998. 6

[17] I. Kokkinos, M. Bronstein, R. Littman, and A. Bronstein. In-

trinsic shape context descriptors for deformable shapes. In

Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, pages 159–166, Providence, Rhode Island, USA, June

2012. 4

[18] Y. Lei, M. Bennamoun, and A. A. El-Sallam. An efficient

3D face recognition approach based on the fusion of novel

local low-level features. Pattern Recognition, 46(1):24–37,

Jan. 2013. 6, 7

[19] H. Li, L. Chen, D. Huang, Y. Wang, and J. Morvan. 3D

facial expression recognition via multiple kernel learning of

multi-scale local normal patterns. In Int. Conf. on Pattern

Recognition, pages 2577–2580, Tsukuba, Japan, Nov 2012.

2

[20] H. Li, D. Huang, P. Lemaire, J.-M. Morvan, and L. Chen.

Expression robust 3D face recognition via mesh-based his-

tograms of multiple order surface differential quantities. In

IEEE Int. Conf. on Image Processing, pages 3053–3056,

Brussels, Belgium, Sept. 2011. 7, 8

[21] S. Li, C. Zhao, M. Ao, and Z. Lei. Learning to fuse 3D+2D

based face recognition at both feature and decision levels. In

Int. Work. on Analysis and Modeling of Faces and Gestures,

pages 44–54, Beijing, China, Oct. 2005. 6

[22] A. Lucieer, A. Stein, and P. Fisher. Multivariate texture-

based segmentation of remotely sensed imagery for extrac-

tion of objects and their uncertainty. Int. Journal of Remote

Sensing, 26(14):2917–2936, 2005. 2
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