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a b s t r a c t

Understanding if a digital image is authentic or not, is a key purpose of image forensics.
There are several different tampering attacks but, surely, one of the most common and
immediate one is copy-move. A recent and effective approach for detecting copy-move
forgeries is to use local visual features such as SIFT. In this kind of methods, SIFT matching
is often followed by a clustering procedure to group keypoints that are spatially close.
Often, this procedure could be unsatisfactory, in particular in those cases in which the
copied patch contains pixels that are spatially very distant among them, and when the
pasted area is near to the original source. In such cases, a better estimation of the cloned
area is necessary in order to obtain an accurate forgery localization. In this paper a novel
approach is presented for copy-move forgery detection and localization based on the J-
Linkage algorithm, which performs a robust clustering in the space of the geometric
transformation. Experimental results, carried out on different datasets, show that the
proposed method outperforms other similar state-of-the-art techniques both in terms of
copy-move forgery detection reliability and of precision in the manipulated patch
localization.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, digital crime is growing at a rate that far
surpasses defensive measures. Sometimes a digital media
content such as an image or a video, may be found to be
incontrovertible evidence of a crime or of a malevolent
action. By looking at a digital data as a digital clue,
multimedia forensics technologies are introducing a novel
methodology for supporting clue analysis and providing
an aid for making a decision on a crime [1,2]. Multimedia
forensics deals with developing technological instruments
All rights reserved.
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which generally allow to determine, without any addi-
tional information inside the image (e.g. a watermark), if
that asset has been tampered with or which has been the
adopted acquisition device. In particular, tampering detec-
tion refers to the problem of assessing the authenticity of
digital images [3], and this is the topic of this paper.

Information integrity is fundamental in a trial, but it is
clear that the advent of digital pictures and relative ease of
digital image processing makes today this authenticity
uncertain. An example of this problem, that recently
appeared in a Tunisian newspaper, is given in Fig. 1; here
the photo has been tampered with in order to make the
crowd appear larger. It demonstrates that this kind of
manipulation is used more and more often in news and
advertising campaigns. Modifying an image to change the
meaning of what is represented in it could be crucial when
this digital data is used in a court of law, where it can be
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Fig. 1. The figure reports the photo published on the front page of Le
Maghreb, a Tunisian newspaper, on January 2012. The photo was digitally
altered duplicating the crowd to appear larger.
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presented as basic evidence to influence the judgment.
Furthermore, in case of tampering, it would be interesting
to understand what kind of manipulation has been
applied: for example if an object or a person has been
covered, if a part of the image has been cloned, if some-
thing has been copied from another image, and so on.

In this paper we address this issue, in particular by
detecting if a copy-move attack has taken place (i.e. when
the attacker creates his feigned image by cloning an area of
the image onto another zone) and by localizing the tampered
area in the image. The proposed method relies on scale
invariant features transform (SIFT) [4] and features matching,
and improves our previous work [5,6] by introducing a new
robust clustering phase based on the J-Linkage algorithm [7],
and an accurate forgery localization procedure. The localiza-
tion of the duplicated region has been set up on the basis of
the clusters obtained in the previous phase. This is done
using ZNCC (zero mean normalized cross-correlation)
between the original image and the warped image obtained
from the estimated geometric transformation occurred in the
tampering attack. In order to obtain an accurate localization,
it is necessary to have an effective clustering procedure (like
the one presented in this paper) that is able to guarantee a
good estimate of the geometric transformation.

The rest of this paper is organized as follows. In Section
2, we discuss the existing works concerning the detection
of copy-move forgeries. Section 3 presents the proposed
copy-move forgery detection and localization method,
while Section 4 contains experimental results. Conclusions
are finally drawn in Section 5.

2. Related works

As discussed earlier, copy-move manipulations involve
concealing or duplicating one region in an image by
overlaying portions of the same image on it. In order to
address the problem, researchers have developed various
techniques which can be classified into two main cate-
gories: block-based and visual feature-based methods.

2.1. Block-based methods

These methods seek a dependence between the image
original area and the pasted one, by dividing the image into
overlapping blocks and then applying a feature extraction
process in order to represent the image blocks through a
low-dimensional representation. Different block-based
representations have been previously proposed in the litera-
ture such as principal component analysis (PCA) [8,9], dis-
crete cosine transform (DCT) [10] and discrete wavelet
transform (DWT) [11,12], for both tasks of copy-move detec-
tion [10,11,13,9] and image splicing [14]. Recently, in the
study of Bashar et al. [15], the authors proposed a duplication
detection approach that can adopt two robust features based
on DWT and kernel principal component analysis (kPCA). A
different kind of features are used in [16], in fact the authors
choose the averages of red, green and blue components with
other four features, computed on overlapping blocks,
obtained by calculating the energy distribution of luminance
along four different directions. To improve the computational
complexity of these methods, in [17] the authors proposed to
use the radix sort for sorting the feature vectors of the
divided sub-blocks, as an alternative to lexicographic sorting,
which is commonly adopted. However, all these methods
assume that the copied region has not undergone any post-
processing such as scaling, rotation and JPEG compression.

To deal with this issue, a preliminary work by Mahdian
et al. has been presented in [18] where the authors
proposed a block-based representation calculated using
blur invariants. They used PCA to reduce the number of
features and a k-tree to identify the interested regions.
Authors in [19] proposed a different kind of feature that is
based on the Fourier–Mellin transform that is invariant to
small rotation and resizing of the copied regions. However,
the technique fails when the rotation and the resizing are
significant. This method was improved in [20] in which
better rotation invariance was achieved by taking projec-
tions along angular directions instead of radius direction.
However, also in this case the scale invariance seems to be
valid only over a small range, and the number of false
positives yielded is quite high.

Recently, methods more robust to reflection, rotation and
scaling have been proposed in the literature. In [21] over-
lapping blocks of pixels are mapped into log-polar coordi-
nates, and then summed along the angle axis, to obtain a one-
dimensional descriptor invariant to reflection and rotation.
Wang et al. [22] proposed the use of circle region instead of
square block and adopt as feature the mean of the intensities
of the circle region with different radii to overcome the effect
of rotation. Ryu et al. [23] exploited the Zernike moments as
features since their magnitude is algebraically invariant to
rotation transformation. To this end, a more general approach
is presented in [24], in which is reported a technique to better
detect variations in rotation and scaling in the copied part by
introducing a post-processing phase for the block selection,
instead of the widely used shift vectors. The authors called
this stage same affine transformation selection (SATS) and it is
collocated after the feature extraction and block matching
phases. In particular, they show that any set of rotation-
invariant features like [21–23] can benefit from the inclusion
of this processing step in the pipeline.

2.2. Visual feature-based methods

It has been demonstrated that block based methods often
result in significant false positives. Moreover, invariance to
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geometrical transformations and to other manipulations like
flipping, brightness changes and blurring is hard to establish
[24]. Feature-based techniques try to avoid these problems
by choosing to match features in the image, instead of blocks,
using local visual features like scale invariant feature trans-
form (SIFT) or speed up robust features (SURF). In particular,
these features have been widely used for image retrieval
and object recognition due to their robustness to several
geometrical transformations (e.g. rotation, scaling and affine
transformation).

Some works have recently appeared on copy-move for-
gery detection based on SIFT [25,6] or SURF features [26]. In
the work of Pan and Lyu [25], SIFT features are chosen in
order to localize the copied region through the use of a
correlation map. However, quantitative results on a realistic
dataset are not given and the method does not consider the
case of multiple forgeries accurately. Multiple copy-move
forgeries are instead managed in [6] by performing a robust
SIFT feature matching procedure and then a clustering of the
keypoints coordinates in order to separate the different
cloned areas. Anyway, the method is used only for copy-
move detection and not for accurate tampering localization.
Kakar and Sudha [27] proposed to use MPEG-7 features in
order to detect and localize copy-move forgeries, by following
a very similar framework to [6].

Although methods such as [6,27] have demonstrated
good performance in copy-move detection, sometimes clus-
tering and localization could be unsatisfactory. In particular
in those cases in which the copied patch contains pixels that
are spatially very distant among them, and when the pasted
area is near to the source. In such cases, a better estimation of
the cloned area is necessary in order to obtain an accurate
forgery localization. In this paper we address this problem
and we present a novel approach based on an adaptation of
the J-Linkage algorithm.
3. The proposed method

We present a novel approach for detecting copy-move
forgeries based on SIFT features and J-Linkage clustering. A
schema of the whole system is shown in Fig. 2. The first
step consists of SIFT feature extraction and keypoint
matching, the second step is devoted to the clustering
and forgery detection, while the third one localizes the
copied region, if a tampering has been detected. We
Test (tampered) image SIFT feature extraction
and matching

Clustering and forg
detection

Fig. 2. An outline of the proposed framework. The framework is composed by t
matching, the second step performs clustering and forgery detection, the thir
extraction matching. (c) Clustering and forgery detection. (d) Localization result
summarize the whole procedure for tampering detection
and localization in Algorithm 1.
3.1. Feature extraction and keypoint matching

The first step in our approach is based on SIFT features
since they are robust to scaling, rotation and affine transfor-
mations that are well-suited for the detection of copy-move
forgeries as has been recently demonstrated in [25,6]. We
detect keypoints that are stable local extrema in the scale
space and, for each of them, a feature vector is computed
from a local pixel area around the detected point. Given a test
image I, let S≔fs1;…; sng be the list of n interest points taken
from this image, where si ¼ fxi; f ig is a vector containing the
keypoint coordinates xi ¼ ðx; yÞ and f i is the feature descrip-
tor of the local patch around the keypoint (i.e. an histogram
of gradient orientations of 128 elements).

In the presence of a copy-move manipulation the
extracted SIFT keypoints from the copied and the original
regions have similar descriptor vectors. Therefore, match-
ing among SIFT features is adopted to detect if an image
has been tampered with and, subsequently, localize such
forgery. The simplest approach to match keypoints is to fix
a global threshold on the Euclidean distance between
descriptors but, due to the high-dimensionality of the
feature space, this approach obtains a low accuracy
because some descriptors are much more discriminative
than others. For this reason Lowe [4] considers, given a
keypoint, not only the distance with the first most similar
keypoint but also with the second one; in particular, he
uses the ratio between the distance to the candidate match
and the distance to the second similar feature point (i.e.
the so-called 2NN test). To declare a match, this ratio must
be lower than a fixed threshold τ (often equal to 0.6). This
technique works well when a region is copied one time,
but not if it is copied several times. To deal with this case,
we use a generalization of Lowe's matching technique
(g2NN test) recently proposed by Amerini et al. [6].

The g2NN starts from the observation that in a high-
dimensional feature space such as that of SIFT features,
keypoints that are different from the one considered share
very high and very similar values (in terms of Euclidean
distances) among them. Instead, similar features show low
Euclidean distances respect to the others. The idea of the
2NN test is that the ratio between the distance of the
Duplicated regions localization

Localization Result

b)a)

d)c)
ery

hree steps: the first step consists of SIFT feature extraction and keypoint
d step localizes the forgery. (a) Test (tampered) image. (b) SIFT feature
.
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candidate match and the distance of the 2nd nearest
neighbor is low in the case of a match (e.g. lower than 0.6)
and very high in case of two “random features” (e.g. greater
than 0.6). Our generalization consists in iterating the 2NN
test between di=diþ1 until this ratio is greater than τ (in our
experiments we set this value to 0.5). If k is the value in
which the procedure stops, each keypoint in correspondence
to a distance in fd1;…; dkg ðwhere 1≤konÞ is considered as
a match for the inspected keypoint. Using this g2NN strategy
on all the keypoints S, we obtain a set of q matched pairs
P≔fp1;…;pqg, where pi ¼ ðs; s′Þ. It allows, in the following
steps, to identify the duplicated regions and therefore detect
if the image has been tampered with.
3.2. The J-Linkage clustering and our copy-move detection
strategy

A way to detect possible duplicated regions is to use a
clustering algorithm on the coordinates of the keypoints
such as a hierarchical agglomerative clustering (HAC)
procedure as in [6]. Following this approach, the clustering
is performed by taking into account only the coordinates
of the matched pairs and not the matching constraint
between points. This method, like all the others clustering
on spatial location, has two main drawbacks: (i) the
inability to separate duplicated regions that are close to
each other and (ii) the difficulty to identify a patch as
single, when it contains keypoints with a non-uniform
spatial distribution (see Fig. 3c). For these reasons, we
proposed to design a clustering technique that does not
work in the spatial domain of matched points but in the
transformation domain. In particular, we introduce an
adaptation of the J-Linkage algorithm [7] that is able to
solve the aforementioned main drawbacks of a spatial
clustering procedure (see Fig. 3d).

The clustering starts with a random sampling on
matched pairs, in order to generate m affine transforma-
tion hypotheses. For each pair, a preference set vector (PS)
is defined indicating which transformations the pair pre-
fers. Formally, given a matched pair p and m transforma-
tions T ≔fT1;…; Tmg, the preference set vector PSðpÞ is
defined as fPS1ðpÞ;…; PSmðpÞg, in which PSiðpÞ is defined
as following:

PSiðpÞ ¼
1 if p is an inlier of Ti;

0 otherwise:

(
ð1Þ

It means that the distance between the model Ti and the
matched pair p is less than a fixed threshold. In this way
each pair is represented in a conceptual space f0;1gm. Since
the matched pairs between the original and the duplicated
regions share similar transformations, they will have
similar conceptual representations.

The preference set vectors are then used in a hierarch-
ical agglomerative clustering in order to find the transfor-
mations between the original and the cloned areas. This
clustering algorithm starts by assigning each preference
set vector to a cluster; then, for each step of the algorithm,
the two clusters with smallest distance in the conceptual
space are merged. The preference set vector of a cluster is
computed as the intersection of the preference sets of
matched pairs, and the distance between two clusters is
computed as the Jaccard distance (Jδ) between the respec-
tive preference sets. Given two sets A and B, the Jaccard
distance is defined as

JδðA;BÞ ¼
jA∪Bj−jA∩Bj

jA∪Bj ; ð2Þ

this distance measures the overlapping degree of two sets.
Identical sets have distance equal to 0, while disjoint sets
have distance 1. According to this distance, the cut-off
value of the clustering is set to 1, which means that
elements are merged until their preference sets overlap
(or more intuitively until matched pairs share the same
transformation). As a result of this procedure, each cluster
will have at least one transformation shared by all its
matched pairs. If more transformations fit with all the
elements contained in the cluster, they should be very
similar; therefore the final transformation is estimated by
least squares fitting. In our algorithm, all the transforma-
tions that fit with a number of elements less than a fixed
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Fig. 3. (a) Original images. (b) Tampered images: purple lines depict the cloned regions. (c) Clustering results with HAC. (d) Clustering results obtained
with the proposed method.
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threshold N are discarded in order to remove possible
outliers; this aspect has been further investigated in the
experimental section in which different detection results
are given changing this N value. Finally, if one transforma-
tion (or more) is detected, our system declares that the
image has been altered by a copy-move attack.

Two aspects need to be clarified: how to sample the
matched pairs for the transformation estimation and how
to compute a geometric transformation hypothesis.
D1

z'

r

Fig. 4. Representation of our sampling strategy.
3.2.1. Sampling strategy
The strategy used to select a minimal sample set of

matched points in [7], i.e. the original J-Linkage imple-
mentation, is based on the method of Kanazawa et al. [28].
It randomly selects an initial pair p¼ ðs; s′Þ, from all the
pairs P, and it chooses from the remaining correspon-
dences by fixing a high probability in the proximity of the
first point s. More precisely, let xi be the coordinate of the
keypoint s, a new point xj is selected with the following
probability:

PðxjjxiÞ ¼
0 if xj ¼ xi

1
Z

exp−∥xj−xi∥2

s2
if xj≠xi

8><
>: ð3Þ

where Z is a normalization constant and s is chosen
heuristically (in [7] this parameter is set to 0.2). Following
this procedure, the final set of points depends significantly
on the parameter s. This fact may result to a choice of the
points that are too close or too far among them, leading to
a rough estimation of the transformation. Moreover, this
strategy is not able to deal with multiple cloned regions.

For these reasons, we have introduced a novel selection
strategy (an example of this method is shown in Fig. 4).
Firstly, as in the previous method, we randomly select a
matched pair p¼ ðs; s′Þ from the set P. Then, we define
two sets O and D of w nearest neighbors to the keypoint
coordinates of s and s′, respectively. In our experiments we
fixed the parameter w to 12. The other k pairs that are
necessary to find a minimal sample set for the transforma-
tion estimation (k¼2 in the case of an affine homography),
are obtained randomly by selecting pairs from
P≔fðs; s′Þ1;…; ðs; s′Þqg, such that s∈O and s′∈D.

As previously mentioned, the proposed strategy is able to
handle multiple cloned regions. For example, if an original
area is copied two times (e.g. D and D1 in Fig. 4) a SIFT point
in O would match, respectively, with a SIFT point in D and in
D1. On the other hand in such a case, the strategy proposed by
Kanazawa et al. should choose points by only considering the
spatial proximity to the first point s. In this way, it would
happen that a pair r1 is formed by a point z close to s inO, but
its corresponding point z1 is far from s′. This may lead to an
inaccurate estimation of the homography between the regions
O and D. Instead our method is able to choose a pair by
considering the proximity both to s and s′, for example the
pair r′. Following the same procedure, the method is able to
accurately estimate also the homography between the regions
O and D1.

3.2.2. Computing a geometric transformation hypothesis
The coordinates of the matched pairs previously

selected, fðx; x′Þ1;…; ðx; x′Þkþ1g, are used to estimate the
geometric transformation hypothesis. In particular, we use
affine transformations in order to model the geometric
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distortions between the original and the copied regions
(such as scaling, rotation, and shearing).

Formally, this kind of transformation can be expressed
in matrix form as

x′
y′
1

0
B@

1
CA¼

a11 a12 tx
a21 a22 ty
0 0 1

2
64

3
75

x

y
1

0
B@

1
CA¼H

x

y
1

0
B@

1
CA

where a11; a12; a21 and a22 encode the rotation and scaling
directions deformation, while tx and ty are the translation
factors. An affine transformation has six degrees of free-
dom, corresponding to the six matrix elements, then the
transformation can be computed from three matched pairs
that are not collinear. In particular, to compute this
estimation, we use the normalized direct linear transfor-
mation (DLT) algorithm for affine homography (see Hartley
and Zisserman [29]). So, given a set of correspondences
(x1; x2;…; xðkþ1Þ) and (x′1; x′2;…;x′ðkþ1Þ), the algorithm
minimizes the following objective function:

∑
kþ1

i ¼ 1
∥x′i−Hxi∥2: ð4Þ

This linear method allows to quickly determine the m
affine transformation hypotheses instead of a non-linear
algorithm. In fact, in order to generate a good transforma-
tion hypothesis, m should be high due to the random
sampling of the pairs (in our experiments m¼500).

3.3. Localizing duplicated regions

If an image is detected as a forgery, our system allows
to obtain an accurate localization of the duplicated regions.
This is another improvement with respect to our previous
method [6]. The basic idea of our localization approach is
that, given the estimated transformation between two sets
of matched pairs, we can extend this transformation to the
underlying dense regions in which it was really done. In
fact, all pixels of the original region RO are related to the
pixels of a duplicated region RD, through the same trans-
formation T (expressed in matrix form as HÞ
RD ¼HRO; RO ¼H−1RD: ð5Þ
Applying the estimated transformation on the entire
image, we will obtain a warped image in which the region
RO will overlap the region RD (see Fig. 2). In the same way,
applying the inverse transformation H−1, the region RD

will overlap the region RO.
In order to localize the duplicated regions, we use a

block-wise correlation measure based on zero mean nor-
malized cross-correlation (ZNCC) between the gray-scale
of the original image I (Fig. 2a) and the warped image W
(Fig. 2b). It is computed as

ZNCCðxÞ ¼ ∑v∈ΩðxÞðIðvÞ−IÞðWðvÞ−W Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑v∈ΩðxÞðIðvÞ−IÞ2ðWðvÞ−W Þ2

q ; ð6Þ

where ΩðxÞ is a 7 pixels neighboring area centered at every
pixel x of I; IðvÞ andWðvÞ denote the pixel intensities at the
location v; I and W are the average pixel intensities of I
and W, respectively, computed on ΩðxÞ. Once the correla-
tion map is obtained, we apply a Gaussian filter of size 7
pixels with standard deviation 0.5 in order to reduce the
noise (Fig. 2c). Next a binary image is created by thresh-
olding the correlation map (th¼0.55). We discard all the
small isolated regions that have an area less than 0.05%.
Finally, mathematical morphological operations are used
to fill eventually holes in the binary image (Fig. 2d).

4. Experiments

We have evaluated the performance of the proposed
method both from the point of view of forgery detection
capability (authenticity detection) and also for what concerns
the ability to recover copied areas (patch localization). Firstly,
the proposed method is set up and improved by means of the
design of a novel sample set selection strategy (Section 4.3).
Here we provide also evidence about the effectiveness of our
approach, both in terms of detection and localization, on a
novel realistic dataset called MICC-F600. Successively, we
present a comparison with our previous work [6] to evaluate
the improvement in terms of reliability in image forgery
detection (Section 4.4). Finally, a comparison regarding the
capacity to localize manipulated patches is carried out
towards other state-of-the-art techniques (Section 4.5).

It has to be noticed that our method is also very
competitive in terms of computational time. In contrast to
other popular methods, our approach is able to effectively
detect and localize copy-move forgery in a full-resolution
image (e.g. 800�600 pixels) in around 8 s on an Intel Q6600
with 4-GB RAM. This is a key aspect since several techniques
are not used in real applications because of their computa-
tional complexity. For instance, block-based methods are
very expensive since features need to be extracted from
millions of blocks and they need to be sorted out. As an
example, two of the most popular approaches of this kind of
techniques [10,8] are able to process the same images in
around 295 s and 71 s, respectively, according to our pre-
vious experiments on processing time requirements [6].

4.1. Data collections

Experimental results are reported on three different
datasets: MICC-F2000 [6], SATS-130 [24], MICC-F600. For
each of these, an example image is shown in Fig. 5.

The MICC-F2000 dataset, introduced in [6], is composed of
images with disparate contents coming from the Columbia
photography image repository [30] and from a personal
collection. Such a dataset consists of 2000 photos of
2048�1536 pixels: 1300 are original while 700 are tampered.
The tampered images are obtained by applying 14 attacks
such as translation, rotation, scaling, or a combination of
them. The duplicated patches (corresponding to an average
size of 1.12% of the whole image) are rectangular and they
have not been accurately segmented and spatially well
separated from the original areas (see for example Fig. 5, on
the top).

The second dataset is the SATS-130, adopted in [24] and
made available by the authors. It is composed of 130
tampered images of different resolutions (from 420�300
to 3888�2592 pixels) and it does not contain not-tampered
photos, so it cannot be used for image authenticity detection
tests. Forged images are obtained starting from 10 original



Fig. 5. Example images of the adopted datasets: MICC-F2000 (top), SATS-130 (center), and MICC-F600 (bottom). The second column reports the ground-
truth masks.

I. Amerini et al. / Signal Processing: Image Communication 28 (2013) 659–669 665
images in which the copied regions are rotated by an angle
which ranges from 01 (pure translation) to 1801, with steps of
151. An example for this dataset is reported in Fig. 5 (center).
The patch localization binary masks are available and we
have used this dataset as a benchmark for the evaluation of
the proposed method in patch localization with respect to
other state-of-the-art methodologies.

Finally, we have introduced a novel dataset named
MICC-F600, containing realistic and challenging tampering
attacks (Fig. 5, bottom). It has been derived from the first
two datasets, from other images provided by the authors
of SATS-130 (Riess et al. [24]), and other images with
multiple copied regions produced by ourselves. The
images have different resolutions ranging from 800�533
to 3888�2592 pixels. MICC-F600 has been constructed
with the aim to generalize, as much as possible, the kind of
images under analysis. It consists of 600 images: 448
original, taken randomly within the 1300 original of
MICC-F2000, and 152 forged, created starting from 38
non-tampered images (10 taken from SATS-130 and 28
new ones) in the following manner:
�
 38 images in which a region is duplicated once through
a translation;
�
 38 images in which a region is duplicated twice or
three times through a translation;
�
 38 images in which the copied region is rotated by 301;

�
 38 images in which the copied region is rotated by 301

and scaled by 120%.
The MICC-F600 dataset is very challenging, it does not
contain only forged images and, furthermore, the fake
ones have not been created automatically and the tamper-
ing regions have different sizes and shapes. The manipu-
lated patches have been cut out and post-processed to fit
well in a realistic fashion within the area in which they
have been pasted. Duplicated regions are not always
spatially well separated (e.g. Fig. 8d), their shapes can be
quite challenging such as a fountain or a tree (e.g. Fig. 8b
and f). Moreover, several images contain multiple copy-
move cloning (e.g. Fig. 8a, e, h).
4.2. Evaluation criteria

To carry out performance evaluations, two set of
metrics have been considered. In the case of authenticity
detection, true positive rate (TPR) and false positive rate
(FPR) have been computed; TPR is the fraction of tampered
images correctly identified as such, while FPR is the
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Table 1
Comparison of different sample-set sampling strategies: our method vs
Kanazawa et al. [28].

(%) N¼8 N¼9 N¼10

Ours [28] Ours [28] Ours [28]

TPR 82.11 79.60 81.60 76.61 80.79 78.81
FPR 9.54 12.20 7.27 8.68 6.59 7.27
FP 0.30 0.24 0.31 0.24 0.31 0.41
FN 6.34 8.59 6.59 8.47 6.62 12.27
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fraction of original images that are not correctly identified

TPR¼ images detected as forged being forged
forged images

;

FPR¼ images detected as forged being original
original images

:

It is worth to state that authenticity detection is here
intended by referring to the whole image, not only to the
tampered patches. Thus, an image is labeled as forged if at
least an affine transformation is estimated between a
couple of image regions.

On the other side, the performance on patch localization
is computed as the percentage of erroneously matched
pixels FP (i.e. false positives) and erroneously missed pixels
FN (i.e. false negatives). Formally, let R1 be the copied
region, Ri (i41) be the i-th duplicated region, and B the
unchanged background; then FP and FN are defined as

FP ¼
jmatches in Bj

jBj ð7Þ

and

FN ¼ jmissed matches inð⋃iRiÞj
jð⋃iRiÞj

ð8Þ

where low values of FP and FN indicate high localization
accuracy.

4.3. Results on MICC-F600 dataset

As previously introduced, our method detects an image
as forged if there is at least one affine transformation that
fits at least between a number N of points of an image area
and other N points of another image zone. The choice of
the value N is crucial because it obviously impacts on TPR
and FPR. In this section, we set up the value of N by means
of ROC curves through the analysis of the performance, in
terms of TPR and FPR, on the MICC-F600 dataset.

In Fig. 6 we report the authenticity detection results,
obtained by varying the parameter N within the interval
½3;…;16� (N¼3 is the minimal number of points required
for the estimate of an affine transformation). The best
possible detection method would yield a point in the
upper left corner, corresponding to FPR ¼ 0% (no false
positives) and TPR¼ 100% (no false negatives). It is to be
noted that if we consider as valid, for instance, a set of
points N¼4, the system achieves a good TPR (89.47%), but
it shows a high FPR (38.4%). However, this effect is
drastically reduced when we consider transformations
that have a greater consensus (i.e. N≥7), where we achieve
good performance with a still high TPR, around 80%, and a
low FPR, around 6%. By using a criterion of minimum
Euclidean distance from the ideal point located in the
upper left corner, we can select N¼9 as the best value that
will be used for the rest of the experiments. In fact, with
this setting our algorithm gives a TPR equal to 81.6% and a
FPR of 7.27%.

To support such a choice, we have also analyzed the
localization performance in terms of FP and FN by varying
the parameter N as before (see Fig. 7). It can be noticed
that, differently from what happened to TPR and FPR, the
variability interval of FP and FN is quite small. In fact, FP
remains almost constant (from 0.4% to 0.24%) while FN
slightly increases (from 5.58% to 7.83%). The increment of
FN is mainly caused by the fact that with a high N some
forged images are not correctly detected, so in these cases
FN is equal to 1. Based on this analysis, we can see that the
previous choice to assume N¼9 is plausible (i.e. it returns
a FP of 0.31% and a FN of 6.59%).

4.3.1. A new strategy for the selection of the sample set
To further augment the performance of the proposed

method, we have designed, as already assessed in Section 3,
an improved selection strategy to collect the minimal
sample set necessary to estimate the geometric transforma-
tion between the original and the copied area. Such a new
strategy is compared with that one described in Kanazawa
et al. [28], which is used by default in the original J-Linkage
algorithm. Table 1 presents the performance of our method
in terms of both authenticity detection (TPR vs FPR) and
patch localization (FP vs FN), obtained by applying the two
different strategies. Results are reported for three values of
the parameter N (8, 9 and 10). It is possible to point out that
the new strategy basically improves the performance for all



Table 2
Comparison between our proposed method and [6].

(%) Dataset Ours Amerini et al. [6]

TPR MICC-F600 81.6 69.0
FPR 7.27 12.5

TPR MICC-F2000 94.86 93.42
FPR 9.15 11.61
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the values of N. In particular, if we consider the results
obtained with N¼9 (the “set up value”), we can observe a
growth in terms of TPR from 76.61% to 81.60%. This is due to
the fact that the estimate of the geometric transformation
between the original and the copied area, is more accurate
and stable than in [28].

4.3.2. A qualitative analysis
Hereafter, we show in Fig. 8 some examples to qualita-

tively evaluate the results achieved by the proposed
method. It can be appreciated how the technique is able
to accurately segment source and destination patches, also
in very challenging cases. The shapes of the copied areas
are not usually regular (see for example Fig. 8e–g). Often,
the original and the cloned area are very close to each
other (Fig. 8b, d and e). Furthermore, images contain
multiple copy-pasted couples (e.g. Fig. 8a and e) and also
cases with multiple cloning (e.g. Fig. 8h). Finally, it is
interesting to notice that a specific situation like patch
flipping (Fig. 8c, in which the two horses have been
flipped) is managed properly too.

4.4. Comparison with our previous method (Amerini et al.
[6])

After having adequately designed and set-up the pro-
posed method, we have performed a comparison with our
previous work (Amerini et al. [6]), both on the basis of
MICC-F600 and MICC-F2000 datasets. In fact, the two
methods share the same SIFT extraction and matching
procedure, but differs substantially in the clustering phase:
the proposed method, based on an improved variant of J-
Linkage, carries out clustering in the domain of the
transformation parameters, while the second one [6]
implements a classical spatial clustering in the image
domain (agglomerative hierarchical clustering). Table 2
shows the results of the comparison in terms of TPR and
FPR (a comparison on patch localization is not feasible
because the method in [6] does not deal with that).

The proposed technique achieves superior perfor-
mances: 12% of improvement for TPR and 5.2% of reduc-
tion for FPR. Such a gain is mainly due to the capacity to
handle forged images containing pasted areas partially
Fig. 8. Examples of patch localizat
overlapped or very close to the original regions. This issue
is well evidenced in Fig. 9. The situation in Fig. 9 (top),
though clustering is not correct, does not affect detection
performances because the image is rightly labeled as
forged anyway; but in the case in Fig. 9 (bottom), the
image is wrongly assigned as authentic, being the source
and destination areas too close to be distinguished as
separated. It is interesting to evidence that in the case of
MICC-F2000 dataset (see Table 2), the performance is high
for both techniques; this confirms that such a dataset is
less challenging and that the proposed method still out-
performs the previous one, though with a reduced gap
both in TPR and FPR.

4.5. Comparisons on patch localization with other relevant
methods

To make a comparison on the issue of patch localiza-
tion, we have used the SATS-130 dataset [24]. In fact, such
a dataset allows a complete benchmarking with several
algorithms, since the authors of this dataset have reported
in their paper [24] about the performance in terms of
patch localization (FP and FN) of the most relevant
methods.

In Table 3, we report the results of three of these
methods, with and without the usage of the SATS (same
affine transformation selection) approach, as proposed by
the authors in [24]. SATS is a post-processing method that
can smoothly replace the widely used shift-vectors. In
particular it can detect arbitrary variations in rotation and
scaling in the duplicated region. These methods are
claimed to be scale and rotation invariant, so they are
comparable with the proposed approach; for sake of
ion on the MICC-F600 dataset.



Fig. 9. Two example of the results obtained with different clustering strategies: (left) in the spatial domain (HAC) and (right) in the transformation
parameter domain (the proposed method).

Table 3
Test on the SATS-130 dataset: patch localization.

Method FP (%) FN (%)

INT2 [21] 4 96
INT4 [22] 24 66
MOM3 [23] 0.4 88

INT2 [21] + SATS [24] 0 22
INT4 [22] + SATS [24] 0 41
MOM3 [23] + SATS [24] 0 23

Our method 0.66 16.34
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conciseness only the best performing three have been
taken into account and hereafter briefly explained. The
first technique (i.e. INT2 [21]) proposed a method to detect
duplicated regions even when the copied portion have
experienced reflection, rotation or scaling. To achieve this,
overlapping blocks of pixels are re-sampled into log-polar
coordinates, and then summed along the angle axis, to
obtain a one-dimensional descriptor invariant to reflection
and rotation; moreover, scaling in rectangular coordinates
results in a simple translation of the descriptor. The
method named INT4 [22], achieves robustness to copied
region rotation by firstly reducing the image dimension
through a Gaussian pyramid and then extracting four
features for each circle block. The feature vectors are then
lexicographically sorted and similar vectors will be
matched according to a certain threshold value. Finally,
the technique denominated MOM3 [23] uses the Zernike
moments feature vectors to grant copy-move localization
in the presence of copied patch rotation.

It is immediate to observe that the proposed method
outperforms all the others, in both fashions (with and
without SATS approach), by obtaining a FP around zero and
a FN of 16.34%.
5. Conclusion

In this paper a new technique based on SIFT features to
detect and localize copy-move forgeries has been pre-
sented. The main novelty of the work consists in introdu-
cing a clustering procedure which operates in the domain
of the geometric transformation; such a procedure has
been properly improved to deal with multiple cloning too.
Experimental tests have been carried out on different
datasets containing various typologies of fake images and
also original ones. Results confirm that the proposed
method outperforms other similar state-of-the-art techni-
ques both in terms of copy-move forgery detection relia-
bility and of precision in the localization of the
manipulated patches.
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