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Face Recognition by Super-Resolved 3D Models
From Consumer Depth Cameras
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Abstract— Face recognition based on the analysis of 3D scans
has been an active research subject over the last few years.
However, the impact of the resolution of 3D scans on the
recognition process has not been addressed explicitly, yet being
an element of primal importance to enable the use of the new
generation of consumer depth cameras for biometric purposes.
In fact, these devices perform depth/color acquisition over time
at standard frame-rate, but with a low resolution compared
to the 3D scanners typically used for acquiring 3D faces in
recognition applications. Motivated by these considerations, in
this paper, we define a super-resolution approach for 3D faces
by which a sequence of low-resolution 3D face scans is processed
to extract a higher resolution 3D face model. The proposed
solution relies on the scaled iterative closest point procedure to
align the low-resolution scans with each other, and estimates the
value of the high-resolution 3D model through a 2D box-spline
functions approximation. To evaluate the approach, we built—
and made it publicly available—the Florence Superface dataset
that collects high-resolution and low-resolution data for about
50 different persons. Qualitative and quantitative results are
reported to demonstrate the accuracy of the proposed solution,
also in comparison with alternative techniques.

Index Terms— 3D face recognition, 3D super-resolution,
2D Box-splines, rigid registration.

I. INTRODUCTION

IN RECENT years, many approaches have been proposed
to support person recognition by the analysis of 3D face

scans. This research area is attracting an increasing interest,
with several challenging issues successfully investigated, such
as 3D face recognition in the presence of non-neutral facial
expressions [1]–[3], occlusions [4], [5], and missing data
[6], [7], to say a few. Existing solutions have been tested
following well defined evaluation protocols on consolidated
benchmark datasets, which provide a reasonable coverage of
the many different traits and characteristics of the human face,
including variations in terms of gender, age, ethnicity, hair
style and occlusions due to external accessories (i.e., eye-
glasses, caps, scarves, hand gestures covering part of the face,
etc.) [8], [9]. The resolution at which 3D face scans are
acquired changes across different datasets, but it is typically
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the same within one dataset. In doing so, the difficulties
posed by considering 3D face scans with different resolutions
and their impact on the recognition accuracy have not been
explicitly addressed in the past. Nevertheless, there is an
increasing interest for methods capable to perform recognition
across scans acquired with different resolutions. This is mainly
motivated by the introduction in the marketplace of a new
generation of low-cost, low-resolution 4D scanning devices
(i.e., 3D plus time), such as Microsoft Kinect or Asus Xtion
PRO LIVE. In fact, these devices are capable of a combined
color-depth (RGB-D) acquisition over time (at about 30fps),
with a resolution of 18ppi at a distance of about 80cm
from the scanning device. The spatial resolution of such
devices is lower than that made possible by high-resolution
3D scanners, such as the Minolta Vivid or 3dMD. But these
high-resolution scanners are also costly, bulky and highly
demanding for computational resources. Despite the lower
resolution, the advantages in terms of cost and applicability of
consumer cameras motivated some preliminary works aiming
to perform face detection [10], continuous authentication [11]
and recognition [12]–[14] directly from the depth data of low-
resolution frames of the Kinect camera. Furthermore, based
on the opposite characteristics evidenced by 4D low-resolution
and 3D high-resolution scanners, new applicative scenarios can
be devised, where high-resolution scans are likely to be part
of gallery acquisitions, whereas probes are expected to be of
lower resolution and potentially acquired with 4D cameras.

In this context, evaluating the impact on the recognition
accuracy of matching low-resolution probes against high-
resolution gallery scans is certainly an issue, but an even
more challenging task with potentially wider applications is
given by the reconstruction of one super-resolved face model
out of a sequence of low-resolution depth frames acquired
by a 4D scanner. In fact, constructing a higher resolution
3D model from a sequence of low-resolution 3D scans could
pave the way to more versatile 3D face recognition methods
deployable in contexts where acquisition of high resolution
3D scans is not convenient or even possible. For example, at
a police roadblock, a police patrol has to verify the identity
of a suspect individual which is stopped for a control. A 4D
camera could be used to acquire a short 3D sequence from
which a super-resolved model can be derived to support 3D
face recognition. In a very different scenario, a user in front of
a PC equipped with a 4D camera could use a super-resolution
framework to construct an avatar of sufficient quality to make
the individual recognizable in any virtual environment s/he
uses for communication or entertainment purposes. Again, a
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4D camera could be used to acquire a short 3D sequence, and
use it to produce a super-resolved face model of sufficient
accuracy to support effective recognition at a check-in totem
of an airport, rather than in front of an ATM or at a bank
entrance.

Based on these premises, in this work we aim to provide
an effective super-resolution approach specifically tailored for
3D faces that can help reducing the gap between low- and
high-resolution acquisitions in several applicative scenarios.

A. Related Work

Formerly introduced for 2D still images, super-resolution
aims at recovering one high-resolution image from a set
of low-resolution images possibly altered by noise, blurring
or geometric warping [15]–[19]. Super-resolution approaches
proposed in the specific context of 3D data can be grouped in
two classes: Approaches that apply the super-resolution in the
2D space and then use multiple super-resolved 2D images to
reconstruct a super-resolved 3D model [20]; And approaches
that operate directly in the 3D space by applying a super-
resolution approach to 3D data [21]–[24]. In the following,
we focus our review on the methods of the second class.

The approach proposed in [23] is conceived to operate
on data provided by time-of-flight cameras. These data are
upsampled and denoised by using information from a high-
resolution image of the same scene that is taken from a
viewpoint close to the depth sensor. The denoising module
exploits the relations between depth and intensity data, such
as the joint occurrence of depth and intensity edges, and
smoothness of geometry in areas of largely uniform color.
The approach proposed in [22] also targets processing of data
provided by time-of-flight cameras. However, this solution
relies on an energy minimization framework that explicitly
takes into account the characteristic of the sensor, the agree-
ment of the reconstruction with the aligned low resolution
maps and a regularization term to cope with reconstruction
of sparse data points. In general, approaches that deal with
3D data representing multiple objects in complex scenes focus
on the relevance of accurate reconstruction in correspondence
to discontinuities of the depth value that are associated with
object boundaries. However, this issue is less relevant if the
3D data represent a single object with smooth surface such
as a face. Previous work that focus on super-resolution of
3D faces are reported in [21] and [24]. In [21], a learning
module is trained on high resolution 3D face models so as
to learn the mapping between low-res data and high-res data.
Given a new low-res face model the learned mapping is used
to compute the high-res face model. Differently, in [24] the
super-resolution process is modeled as a progressive resolution
chain whose features are computed as the solution to a MAP
problem. In both cases, the adopted framework is validated on
synthetic data, that is, using high-resolution 3D face models,
down-sampling and adding random noise to these models and
then adopting the super-resolution framework to reconstruct
a super-resolved 3D face that is compared to the original
high-resolution 3D face model. However, the fact that low
resolution models are artificially derived from high resolution

ones may bias the effectiveness of learning and MAP mod-
eling. Differently, an unbiased estimation of the accuracy of
the super-resolution should use truly real data: Comparing a
3D face model acquired with a high-resolution scanner to a
super-resolved 3D face model reconstructed from facial data
acquired by a low resolution scanner.

Methods in [25], [26], and [27] approach the problem of
noise reduction in depth data by fusing the observations of
multiple scans to construct one denoised scan. In [25], the
Kinect Fusion system is presented, which takes live depth data
from a moving Kinect camera and creates a high-quality 3D
model for a static scene object. Later, dynamic interaction has
been added to the system in [28], where camera tracking is
performed on a static background scene and the foreground
object is tracked independently of camera tracking. Aligning
all depth points to the complete scene model from a large
environment (e.g., a room) provides very accurate tracking of
the camera pose and mapping [25]. However, this approach
is targeted to generic objects in internal environments, rather
than to faces. In [26], a 3D face model with an improved
quality is obtained by a user moving in front of a low-
cost, low resolution depth camera. The face is represented
in cylindrical coordinates, which enables efficient filtering
operations. The model is initialized with the first depth image,
and then each subsequent cloud of 3D points is registered to
the reference one using a GPU (Graphics Processing Unit)
implementation of the ICP (Iterative Closest Point) algo-
rithm. Temporal and spatial smoothing of the incrementally
refined model are also performed. The approach is validated
by comparing quantitatively the obtained 3D model to one
produced by high-resolution laser scanning. This approach
is used in [27] to investigate whether a system that uses
reconstructed 3D face models performs better than a system
that uses the individual raw depth frames considered for
the reconstruction. To this end, authors present different 3D
face recognition strategies in terms of the used probes and
gallery: In the first scenario, the probe is given by a single
raw depth frame (1F), which is compared against a gallery
comprising, respectively, a frame (1F), multiple frames (NF)
and a reconstructed 3D face model (3D) for each subject;
In the second scenario, a reconstructed 3D face model (3D)
is used as probe, which is compared against a gallery of
reconstructed 3D face models (3D). The reported analysis on
a small dataset of 10 subjects shows that the 3D-3D and the
1F-NF scenarios provide better results compared to the base-
line 1F-1F approach. Although the method is not conceived to
increase the resolution of the reconstructed model with respect
to the individual frames, it supports the idea that aggregating
multiple observations enhances the signal to noise ratio, thus
increasing the recognition results with respect to the solution
where a single frame is used.

B. Our Method and Contribution

In this paper, we present an original solution to derive
one super-resolution 3D face model from the low-resolution
depth frames of a sequence acquired through a depth scanner
(a Microsoft Kinect camera is used). The proposed approach
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relies on scattered data approximation techniques and operates
in three main processing steps: (i) First, for each depth frame
of the sequence, the region containing the face is automatically
detected and cropped; (ii) Then, the cropped face of the first
frame of the sequence is used as reference and all the faces
cropped from the other frames are aligned to the reference;
(iii) Finally, data obtained by aggregating these multiple
aligned observations are resampled at a higher resolution and
approximated using 2D-Box splines.

To validate the proposed approach and estimate the accu-
racy of the reconstructed super-resolved models, the The
Florence Superface v2.0 dataset has been constructed. For
each individual, the dataset includes one sequence of depth
frames acquired through a Kinect scanner as well as one
high-resolution face scan acquired through a 3dMD scanner.
In this way, the accuracy of the reconstructed super-resolved
model can be quantitatively measured by comparing the
reconstructed model to the corresponding high-resolution
scan.

In summary, the main contributions of this paper are:
• A complete approach to reconstruct a super-resolved 3D

face model from a sequence of low-resolution depth
frames of the face;

• A thorough evaluation of the proposed super-resolution
approach to demonstrate that: i) It produces a super-
resolved 3D model rather than just a denoised one;
ii) Use of the reconstructed super-resolved 3D face model
in recognition experiments improves face recognition
accuracy compared to the case in which a low resolution
depth frame is used;

• A public heterogeneous 3D face dataset, which includes
low-resolution depth sequences of the face as well as
high-resolution 3D face scans of the same subjects.

Preliminary ideas and results related to the proposed method
were first reported in [29]. With respect to our previous
work, we propose a new formulation of the super-resolution
approach, which now relies on the family of 2D Box-
splines approximating functions. In addition, we demonstrate
that our solution results in a super-resolved model, rather
than producing just a denoised surface. Furthermore, we
completely revised the experimental evaluation of the pro-
posed approach that now is performed on the The Florence
Superface v2.0 dataset and includes new experiments, where
the super-resolved models are used as probes to per-
form 3D face recognition against high-resolution gallery
scans.

The paper is organized as follows: The problem statement
and the basic notation are defined in Sect. II, together
with the face detection, cropping and alignment operations
performed on individual frames of 3D depth sequences; The
super-resolution approach based on facial data approximation
is described and validated in Sect. III. Experimental results
are reported and discussed in Sect. IV, where first the error
between super-resolved models and high-resolution scans
is computed, then performance measures of the recognition
accuracy using super-resolved models as probes against
high-resolution gallery are reported. Finally, discussion and
conclusions are given in Sect. V.

II. PROBLEM STATEMENT AND PROCESSING

OF DEPTH SEQUENCES

In the literature, the super-resolution process is typically
formalized on 2D still images as an inverse problem: The low
resolution images are the observations from slightly different
viewpoints of a high resolution image, the underlying scene.
It should be noticed that the relative motion between the scene
and the camera is a necessary prerequisite to guarantee that
pixels in the low-resolution images represent new samples
of the patches in the observed scene. No improvement on
resolution—if any, only in terms of denoising—would be
possible from images deriving from a fixed camera observing
a static scene.

The proposed approach targets the reconstruction of a
depth image of the face (image for short), which shows both
super-resolution and denoising, starting from a sequence of
low-resolution depth frames (frames in the following).
To simplify the notation and without loss of generality we
assume that each frame is defined on a regular low-resolution
grid � = [1, . . . , N] × [1, . . . , N]. The high-resolution image
is defined on a regular high-resolution grid � = [1, . . . , M]×
[1, . . . , M], being ζ = M/N the resolution gain. The forward
degradation model, describing the formation of low-resolution
frames from a high-resolution image, can be formalized as
follows:

X (k)
L = Pk(X H ) k = 1, . . . , K , (1)

being
{

X (k)
L

}K

k=1
the set of K low-resolution frames, X H the

high-resolution image, and Pk the operator that maps the high-
resolution image onto the coordinate system and sampling
grid of the k-th low-resolution frame. The mapping operated
by Pk accounts for four main factors: (i) The geometric
transformation of X H to the coordinates of the k-th low-
resolution frame X (k)

L ; (ii) The blurring effect induced by the
atmosphere and camera lens; (iii) Down-sampling; and (iv)
Additive noise.

The coordinate system of the high-resolution image X H is
aligned to the coordinate system of the first low-resolution
frame X (1)

L of the sequence, which is used as reference. That
is, the computation of the geometric transformation that maps
the coordinate systems of subsequent low-resolution frames is
operated by registering the low-resolution frames to the first
frame of the sequence. This is obtained through an iterative
procedure, which is applied using the cropped region of the
face detected in each frame (details on face detection, cropping
and frame registration are given in the remaining part of this
Section). The cumulated data obtained by the alignment of
data from the sequence of low-resolution frames to data in
the first low-resolution frame X (1)

L , represent a point cloud in
the 3D space. Points of the cloud are regarded as observations
of the value of the high-resolution image X H . The estimate of
this high-resolution image is formalized as the solution of a
scattered data approximation problem, as described in Sect. III.

A. Depth Frames Acquisition and Face Cropping

In our approach, low-resolution frames are acquired by a
Kinect scanner placed in front of a subject sitting at a distance
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Fig. 1. (a) Sample depth frame acquired by the scanning device. (b) Some cropped faces from the sequence of acquired frames. It can be observed as the
pose of the face varies from frontal to left and right side.

of about 80cm from the scanning device. It is assumed that the
sequence of acquired frames represents the subject while s/he
is slightly rotating the head to the left and right around the
vertical axis (the neck). In Fig. 1(a) a sample frame is shown
out of a sequence of depth frames acquired by the scanner.
Acquired frames are processed in order to crop each frame in
correspondence to the face of the subject. For this purpose, the
Face Tracking function supported by the device SDK has been
used. Some representative frames output by the face cropping
module for a sample sequence are shown in Fig. 1(b).

B. Registration of Subsequent Frames

Computation of the geometric transformation that aligns
low-resolution frames to a common reference system is per-
formed through a variant of the Iterative Closest Point (ICP)
procedure [30], which jointly estimates the 3D rotation and
translation parameters as well as the scaling one [31]. Let
x(k)

i be the 3D coordinates (x , y and the depth value z)
of the i -th facial point in the k-th frame X (k)

L . Registration
of facial data represented in X (k)

L to data represented in the
reference frame X (1)

L is obtained by computing the similarity
transform (translation, rotation and scaling) that best aligns the
transformed data to the data in the reference frame, that is:

min
R,S,t,p

⎛
⎜⎜⎝

∣∣∣X (k)
L

∣∣∣∑
i=1

∥∥∥R · S · x(k)
i + t − x(1)

p(i)

∥∥∥

⎞
⎟⎟⎠, (2)

being R an orthogonal matrix, S a diagonal scale matrix,
t a translation vector, |.| the cardinality of a set, and p :{

1, . . . ,
∣∣∣X (k)

L

∣∣∣
}

�→
{

1, . . . ,
∣∣∣X (1)

L

∣∣∣
}

a function that maps

indexes of facial points across the k-th and the 1-st frames. The
solution of Eq. (2), namely Rk, Sk, tk , is computed according
to the procedure described in [31]. To simplify the notation,
the overall effect of Rk, Sk, tk on the points x(k)

i acquired at the
k-th frame is indicated as Tk(x(k)

i ). Figure 2 shows facial data
acquired in two sample frames before and after the application
of the ICP procedure.

The ICP algorithm usually requires an appropriate initial-
ization to yield high registration accuracy. For this purpose,
alignment of the data in a generic frame X (k)

L to the data in
the reference frame X (1)

L is obtained by first applying to X (k)
L

the transformation computed for the previous frame X (k−1)
L .

In this way, the transformation of the (k-1)-th frame is used to

Fig. 2. Facial data acquired in two sample frames (one shown with red
and one with blue colors) before (a) and after (b) the application of the ICP
procedure. (Figure best viewed on soft-copy version.)

Fig. 3. Result of the alignment of points of the frames of a sample sequence
(blue points) to the points of the reference frame (red circles). (Figure best
viewed on soft-copy version.)

predict the transformation of the k-th frame, and ICP is used
for fine registration of the prediction against the reference.

The result of aligning a frame sequence to the first frame
(reference) of the sequence is summarized in Fig. 3. In this
plot, the points of the reference frame are shown with red
circles, whereas the points of the other frames of the sequence
after alignment are reported with blue points. These scattered
and irregularly distributed points are the input to the super-
resolution procedure.

III. SUPER-RESOLUTION APPROACH

Based on the procedure described so far, points of the
frames X (k)

L , k = 2, . . . , K are aligned to the data in the
first frame X (1)

L , used as reference. The first frame implicitly
defines a 3D Cartesian reference system (X, Y, Z) and its
associated sampling grid � = {1, . . . , N}×{1, . . . , N}. In this
reference system, the acquired values of the facial surface
are regarded as samples of a continuous function f 1(x, y)
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Fig. 4. The original sampling grid � is defined by the x- and y-coordinates
of points acquired in the reference frame. Data acquired in subsequent frames
are subject to ICP alignment and their projections on the XY plane do not fit
the sampling grid �. The super-resolution grid � is obtained by oversampling
the original grid � by a factor ζ (ζ = 2 in the Figure). (Figure best viewed
on soft-copy version.)

at the points of the grid �. As described in Sect. II-B, these
sampled values can be equivalently considered a point cloud
{x(1)

i } = {(xi , yi , f 1(xi , yi ))} in the 3D Cartesian reference
system (X, Y, Z). Data acquired in the second scan {x(2)

i } =
{(xi , yi , f 2(xi , yi ))} are expressed on the sampling grid �,
but they represent the face under the effect of a small rotation
angle (the user rotates the head during the data acquisition
process). ICP is used to determine the best similarity transform
T(2) that aligns the point cloud {x(2)

i } to the point cloud of
the reference frame {x(1)

i }. Under the effect of this similarity
transform, points of the point cloud {x(2)

i } are transformed
to T(2)(x(2)

i ). Therefore, the x− and y−coordinates of these
points are no longer aligned to the sampling grid �. In general,
this applies to all the point clouds acquired after the reference
one.

A graphic representation of this general scenario is provided
in Fig. 4. This evidences that the x− and y−coordinates of
points acquired in the reference frame implicitly define the
original sampling grid �, and data acquired in subsequent
frames, after ICP alignment, are scattered on the original
grid. The super-resolution grid � = {1, . . . , M} × {1, . . . , M}
is defined by oversampling the original grid � by a factor
ζ = M/N , representing the resolution gain. If only the data
of the reference frame were available, estimation of the value
of the face surface in correspondence to points of the super-
resolution grid � would rely on the interpolation of available
points {(xi , yi , f 1(xi , yi ))}, yielding no true super-resolution.
Differently, the availability of data from subsequent frames
enables the estimation of the value of the face surface using
a higher number of observations compared to the data of
the reference frame. This is obtained by gathering all data
from available frames and approximating these data through a
function �(x, y) defined on the super-resolution grid �.

Let us consider the set of points obtained by cumulating the
aligned observations across different frames and denote it as:

O ≡ {Pxl , Pyl , Pzl }L
l=1 =

K⋃
k=1

{
T(k)(x(k)

i )
}
, (3)

being L = ∑K
k=1

∣∣∣X (k)
L

∣∣∣. To estimate the values of the face sur-
face, observations in O are approximated by a function �(x, y)

Fig. 5. Plot of the 2D base function B0,0(x, y). Points of the lattice
correspond to 2D points with integer coordinates. The base function has non-
zero values only inside the region [−1, 1]×[−1, 1] that results from the union
of the four cells with one vertex on the point x0, y0 = (0, 0).

that is expressed through the 2D Box-splines model [32]–[34].
Following this model, the function �(x, y) is a weighted
sum of Box-splines obtained by shifting a 2D base function
B0,0(x, y) with local support. Given a 1D regular lattice
{x−M , . . . , x−1, x0, x1, . . . , xM }, with � = xi+1 − xi , the 1D
first degree (C0 continuity) base function b0(t) is defined as:

b0(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 i f t ∈ (−∞, x−1]
t−x−1

� i f t ∈ (x−1, x0]
x1−t
� i f t ∈ (x0, x1]
0 i f t ∈ (x1,∞) .

(4)

The shifted copy of the base function, centered on the
generic node xi of the lattice is computed as bi (t) = b0(t−xi ).
Extension of this framework to the 2D case is operated by
considering a 2D lattice {xi , y j } i, j = 0, . . . , M , whose
elements correspond to the nodes of the grid �. In this case,
the 2D base function B0,0(x, y) is computed as the tensor
product of the 1D base function:

B0,0(x, y) = b0(x)b0(y). (5)

The shifted copy of the base function, centered on the
generic node xi , y j of the lattice is computed as Bi, j (x, y) =
bi (x)b j (y). Functions Bi, j (x, y) are continuous, with local
support, and are zero for all points (x, y) such that ‖(x, y) −
(xi , y j )‖∞ > �. As an example, the plot of the 2D base
function B0,0(x, y) is shown in Fig. 5.

The approximating function �(x, y) is expressed as a
weighted combination of base functions centered at nodes of
the super-resolution grid �:

�(x, y) =
∑
i, j

wi, j Bi, j (x, y). (6)

Values of the weights wi, j are determined so as to yield the
best approximation of �(x, y) to the point cloud. In order to
determine the values of these weights, two types of constraints
are considered targeting the fit of �(x, y) to the points and the
regularity of �(x, y), in terms of continuity and derivability. In
the ideal case, �(x, y) would fit all the points. This constraint
is expressed by L equations of the form:

�(Pxl , Pyl) = Pzl l = 1, . . . , L, (7)

being L the overall number of points obtained by registering
all the K frames of the sequence (see Eq. (3)). Due to the form
of the basis functions (Eqs. (4)-(5)), �(x, y) is continuous
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Fig. 6. (a) Reference frame of a sequence. Three models reconstructed at
different resolutions are reported: (b) 104×157, same resolution as the original
(just denoising); (c) 207 × 313; (d) 413 × 625.

everywhere. Since �(x, y) is not derivable in correspondence
to the points of the lattice {xi , y j }, its smoothness is forced
by the following additional set of equations:

∂+�(x, y)

∂x

∣∣∣∣
xi ,y j

= ∂−�(x, y)

∂x

∣∣∣∣
xi ,y j

∂+�(x, y)

∂y

∣∣∣∣
xi ,y j

= ∂−�(x, y)

∂y

∣∣∣∣
xi ,y j

i, j = 1, . . . , M − 1. (8)

The left and right partial derivatives of Eq. (8) can be
obtained analytically. In fact, it can be easily shown that
combination of Eqs. (4)-(5) and (8) yields to the following
expressions:

−wi, j + wi+1, j = −wi−1, j + wi, j

−wi, j + wi, j+1 = −wi, j−1 + wi, j i, j = 1, . . . , M − 1.

(9)

These define a set of (M − 1)2 equations that combined
with the L equations of Eq. (7) represent a system of linear
equations in the M2 variables wi, j . Values of the variables wi, j

are computed by resolving a least-squares fit, which minimizes
the sum of the squares of the deviations of the data from
the model.

A. Super-Resolution Gain

In the following, we show that the proposed solution results
in a super-resolved surface, rather than just a surface denois-
ing. We start by showing in Fig. 6(b)-(d) the reconstruction of
a sample face at different resolutions, respectively, 104 ×157,
207 × 313 and 413 × 625. In the same Figure, the plot in (a)
shows the reference frame of the sequence.

Although, in theory, the resolution gain can be set arbitrarily,
the interest lies in the identification of the highest value
of the real resolution gain, beyond which the amount of

Fig. 7. Values of η(ζ ) measure the error between the model reconstructed
through the proposed super-resolution approach at the resolution gain ζ , and
the prediction (by bilinear interpolation) based on the model reconstructed at
the resolution gain ζ -1.

information encoded in the reconstructed surface does not
change: two reconstructions of a surface at two different
resolutions encode the same information if the reconstruction
at the higher resolution can be obtained by resampling and
interpolation of the reconstruction at the lower resolution.
For this purpose, we compare results of the proposed super-
resolution approach with those obtained through resampling
and interpolation of data at the original resolution. Assuming
� = [1, . . . , N] × [1, . . . , N] be the original sampling grid
and � = [1, . . . , M] × [1, . . . , M] the super-resolved one,
we measure the difference between the super-resolved model
reconstructed on the grid � and the predicted model obtained
by reconstructing the face model on the original grid � and
then increasing the resolution by resampling up to � and
predicting values at the new grid points by bilinear interpola-
tion. More formally, let Fζ be the super-resolved model at a
resolution M = ζ N . Let R(·) be the operator that resamples
an image by bilinear interpolation, doubling the size of the
input grid on both the x and y axis. The ratio η measures
the mean error between the predicted and the super-resolved
model:

η(ζ ) =
∑

i, j

∣∣R(Fζ−1) − Fζ

∣∣
ζ 2 N2 . (10)

At the lowest value of the resolution gain, ζ = 2, Fζ−1 is
the reconstruction of the facial surface at the original resolu-
tion. Resampling this surface by bilinear interpolation yields
R(Fζ−1) whose resolution is twice the original. Fζ is the
output of the super-resolved facial surface at a resolution twice
the original one. Values of η(ζ ) are expected to decrease for
increasing values of ζ . This is confirmed by the plot of Fig. 7,
showing the values η(ζ ) for ζ ∈ {2, . . . , 5}. For ζ = 2 the
error is computed between the bilinearly interpolated reference
frame and the super-resolved model at a resolution twice the
original one; For increasing values of ζ , the difference between
the predicted and the reconstructed models decreases showing
that the higher the resolution, the lower is the information
truly added by the super-resolved model compared to the
information predicted by interpolation.

IV. EXPERIMENTAL RESULTS

In the following, we report results of the experiments carried
out to evaluate the proposed super-resolution approach. In the
reported analysis, the following aspects have been addressed:
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• Accuracy of the super-resolution reconstruction. The
reconstruction error is computed between the super-
resolved models and the corresponding high-resolution
scans of the same subjects. Results reported in Sect. IV-
B show that the super-resolved models are closer than the
low-resolution scans to the corresponding high-resolution
scans;

• Reconstruction under different conditions. The accuracy
of the reconstructed model can be affected by several
factors, the most notables being the choice of the refer-
ence frame and the change of facial expression during
acquisition. In Sect. IV-C, we investigated the effects of
these two factors on the accuracy of the super-resolution
approach;

• Comparative evaluation. The accuracy of the super-
resolved models obtained with the proposed approach
has been compared, both qualitatively and quantitatively,
against two alternative solutions (Sect. IV-D);

• Accuracy of face recognition. The reconstructed facial
models have been used to perform person identification
with respect to a gallery of high-resolution scans. Results
in Sect. IV-E show that the use of super-resolved models
paves the way to face recognition using consumer depth
cameras. This is motivated by a clear improvement of the
recognition accuracy when compared to the recognition
performed using the low-resolution frames.

The study reported hereafter has been carried out on the The
Florence Superface dataset [29]1. The main features of the
dataset are summarized below.

A. The Florence Superface Dataset

Very few datasets exist for face analysis from consumer
cameras like Kinect (see for example the recently released
EURECOM Kinect Face Dataset [35], or the The 3D Mask
Attack Database (3DMAD) specifically targeted to detect face
spoofing attacks [36]). However, to the best of our knowledge,
no public dataset exists that provides, at the same time,
sequences of low resolution face scans acquired with 3D
consumer cameras and high resolution 3D scans of the same
subjects2. So, to overcome the lack of appropriate benchmark
collections and test our super-resolution approach, we con-
structed a proprietary dataset, which is released for free to the
research community for comparative evaluations.

The The Florence Superface dataset (UF-S) has been col-
lected from summer 2012 to spring 2013 at Media Integration
and Communication Center of University of Florence, with
the aim to support 3D face analysis across scans acquired
with different devices at different resolutions. The version
1.0 of the dataset included 20 subjects and was released
in October 2012 [29]. As part and further contribution of
this work, we release the version 2.0 of the UF-S that now

1The Florence Superface dataset, available at:
http://www.micc.unifi.it/datasets/4d-faces/

2The term “scan” is used in the following to refer to acquisitions performed
with the high-resolution scanner or with the Kinect sensor (in this latter case,
we also use the term “frame” as well). The term “model” is reserved instead
to the 3D model obtained from the proposed super-resolution approach.

includes 50 subjects. In particular, for each person enrolled in
the dataset, we captured in the same session:

• A 3D high-resolution face scan acquired with the 3dMD
scanner [37]. The scan comprises a 3D face mesh with
about 40,000 vertices and 80,000 facets, and a texture
stereo image with a resolution of 3341 × 2027 pixels.
The geometry of the mesh is highly accurate with an
average RMS error of about 0.2mm or lower, depending
on the particular pre-calibration and configuration. All the
high-resolution 3D scans are provided in OFF and VRML
format (with the texture image);

• A video sequence acquired with the Kinect camera.
Videos are captured so that the person sits in front of
the camera with the face at an approximate distance of
80cm from the sensor. During acquisition, the subject is
asked to rotate the head around the yaw axis so that both
the left and right side of the face are exposed to the
camera sensor. This results in video sequences lasting
approximately 10 to 15 seconds on average, at 30fps.
Each video is released as a sequence of frames in PNG
format with 16 bits gray scale (for depth) and 24 bits
color (for RGB). In both the cases, the size of the image
frames is 640 × 480.

The 3D high-resolution scans and the Kinect video
sequences are made available in the form produced by the
sensors, without any processing or annotation. Figure 8 shows
samples of the raw data acquired for two subjects. We point
out that in the super-resolution approach described in this
paper the RGB frames are not used. However, the dataset also
includes the RGB data as in some future work these could
provide additional clues for inter-frame data registration.

B. Accuracy of the Super-Resolution Models

This experiment evaluates the accuracy of the reconstructed
3D super-resolution model with respect to the 3D high-
resolution scan of a same subject. In addition, in order to
highlight the improved quality of the super-resolution model
with respect to the original depth frames captured by the
Kinect, we also considered the error between the first depth
frame of a sequence (reference frame) and the 3D high-
resolution scan. Choosing the first frame of a sequence as
reference frame is motivated by the fact that at the beginning
of the acquired video sequences, persons sit in front of the
camera looking at it, so that just a few areas of the face are
not visible to the sensor due to self-occlusion effects.

All the subjects in the UF-S v2.0 dataset have been used in
the experiments. In particular, for each subject we considered:
The high-resolution scan; The super-resolution (reconstructed)
model; and the low-resolution scan (this latter obtained from
the reference frame of the depth sequence). In all these cases,
the 3D facial data are represented as a mesh and cropped using
a sphere of radius 95mm centered at the nose tip (the approach
in [38] is used to identify the nose tip). To measure the
error between the high-resolution scan and the super-resolution
model of the same subject, they are first aligned through
the ICP registration algorithm [39]. Then, for each point of
the super-resolution model its distance to the closest point in



BERRETTI et al.: FACE RECOGNITION BY SUPER-RESOLVED 3D MODELS 1443

Fig. 8. Florence Superface dataset: (a) Sample scans acquired with the 3D high-resolution scanner (subject #003 and #011); (b) RGB-D frames sampled
from the Kinect video sequences of the subjects shown in (a). It can be observed that the head pose changes from frontal to left and right side, so that a large
part of the face is exposed to the sensor.

the high-resolution model is computed to build an error-map.
As an example, Fig. 9 shows for some representative subjects
(subject #009, #010, #011, #014, #016 and #019), one column
per subject, the cropped 3D mesh of the reference frame,
the super-resolution model, the high-resolution scan and the
error-map between the super-resolution model and the high-
resolution scan (after alignment).

a) Distance measure: The error maps, such as those
reported in Fig. 9, do not directly provide a distance value
to represent the dissimilarity between two models: Inter-vertex
distance measures have to be combined into a distance function
operating on two meshes that can have different resolutions.
To represent the average error of the reconstructed models
and reference frames with respect to high-resolution scans,
the Root Mean Square Error (RMSE) between two surfaces
S and S′ is computed considering the vertex correspondences
defined by the ICP registration, which associates each vertex
p ∈ S to the closest vertex p′ ∈ S′:

RM SE(S, S′) =
√√√√ 1

N

N∑
i=1

(pi − p′
i )

2, (11)

being N the number of correspondent points in S and S′.
Results obtained using this distance measure are sum-

marized in Table I. In particular, we reported the average
values for the RMSE computed between the high-resolution
scan and, respectively, the super-resolution model and the
reference scan. On the one hand, values in Table I measure
the magnitude of the error between the super-resolution model
and the high-resolution scan of same subjects; On the other,
they give a quantitative evidence of the increased quality of
the super-resolution model with respect to the reference scan.
This latter result is indeed an expected achievement of the

TABLE I

AVERAGE DISTANCE MEASURE COMPUTED BETWEEN THE 3D

HIGH-RESOLUTION SCAN AND, RESPECTIVELY, THE

SUPER-RESOLUTION MODEL AND THE REFERENCE

SCAN OF EACH SUBJECT. THE RELATIVE VARIATION

OF THE DISTANCE VALUES IS ALSO REPORTED

proposed approach, since the super-resolution models combine
information of several frames of a sequence. However, it is
interesting to note the substantial decrease of the error with
respect to the reference frame, as can be noted by looking
at the relative variation of the distance measure when passing
from the reference scan to the super-resolution model (last row
of Table I).

Measures in Table I provide an indication of the relative
improvement of the reconstructed model vs. the reference
frame. To better understand the actual improvement, it is worth
considering the value of the average inter-subject distance
between any two high-resolution scans of different subjects.
Results of this analysis are reported in Table II that also
shows the relative variation of the intra-subject distance values
of Table I compared to the inter-subject high-resolution dis-
tance values. It can be noticed that compared to the average
inter-subject distance, the accuracy of the super-resolution
models is considerably higher than the accuracy of the
reference scans.



1444 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 9, SEPTEMBER 2014

Fig. 9. Acquired/processed scans of the UF-S dataset. Each column corresponds to a different sample subject and reports: (a) The low resolution 3D scan
of the reference frame; (b) the super-resolution 3D model; (c) the high-resolution 3D scan. The error-map in (d) shows, for each point of the super-resolution
model, the value of the distance to its closest point on the high-resolution scan after alignment (distance increases from red/yellow to green/blue).

TABLE II

AVERAGE DISTANCE MEASURE COMPUTED BETWEEN ANY TWO

HIGH-RESOLUTION SCANS OF DIFFERENT SUBJECTS. THE RELATIVE

VARIATION OF THE INTRA-SUBJECTS DISTANCE VALUES

LISTED IN TABLE I IS ALSO REPORTED

This supports the idea that 3D face recognition across scans
with different resolutions can be performed. This aspect is
investigated in Sect. IV-E.

C. Reconstruction Under Different Conditions

Results reported in the previous Section have been obtained
under constrained conditions in terms of the number of frames
processed to extract the super-resolution model, the reference
frame used, and the acquisition protocol. In the following,
we analyze in more details the effects on the accuracy of the
reconstructed model induced by relaxing such conditions.

a) Varying the Number of Frames: In the analysis above,
the number of frames used in the reconstruction is kept con-
stant (i.e., K = 100 frames per subject are used). Actually, the
number of frames used in the reconstruction process affects the
accuracy of reconstruction to some extent. Figure 10 reports
the error between the high-resolution scan and the model
reconstructed using just the first k frames out of K . From
the plot, it can be observed as adding just a few frames to the
reference one determines an abrupt decrease of the error. This
can be motivated by the additional information carried on by
the new points included in scans of the face in slightly different
positions. This effect is also evident when subjects rotate the
head on one side, thus exposing new parts of the face to the
sensor (frames 10 to 20); After this point, the error decreases
smoothly, with no substantial changes after frame 60. Inter-
estingly, this analysis suggests that a reconstruction with
almost the same accuracy of the final super-resolved model
can be obtained by using just the first 40/50 frames of the
sequence.

b) Varying the Reference Frame: As discussed in Sect. II,
the proposed solution performs ICP registration of subsequent
frames of a sequence with respect to an initial (reference)
frame. In so doing, the first frame defines the projection plane
and the initial grid on it. This plane is used to project the
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Fig. 10. Mean reconstruction error with respect to the high-resolution scan
as a function of the number of frames used in the construction of the super-
resolved model.

points of all the subsequent registered frames of the sequence,
and to create the super-resolution grid. Due to this, the most
important aspect in the selection of the reference frame is
its frontal pose. Deviations from this condition can result into
erroneous or missing reconstruction of the parts of the face that
can be self-occluded by registering to a non-frontal reference
pose. In our case, the frontal pose of the initial frame is
guaranteed by the acquisition protocol that requires the user
to start looking to the camera.

The same result can be achieved by relaxing this constraint,
and using instead a solution to automatically detect a frontal
frame to be considered as the reference one. For instance,
the approach reported in [40] and [41] is capable to esti-
mate the location and orientation of a person’s head from
a sequence of depth frames, with an average error for the
yaw angle of 4◦ ± 7◦, that is always lower than 25◦. Accord-
ingly, to investigate the effect that the use of a non-frontal
reference frame has on the accuracy of the reconstruction,
we computed the super-resolution model using non-frontal
reference frames, with a yaw angle deviation up to 25◦ (i.e.,
angles of [−25◦,−20◦,−15◦,−7◦,+7◦,+15◦,+20◦,+25◦]
are used). The resulting super-resolution models are reported
in Fig. 11. The effect induced by accumulating points of
subsequent frames to a non-frontal reference pose can be
clearly observed, becoming particularly evident for angles of
about ±10◦/ ± 15◦. The error distance measure has been
also computed between the super-resolution models and the
corresponding high-resolution scan, as reported in Fig. 12.
Quantitative measures confirm that the approach can cope with
yaw deviations from the frontal pose up to about ±7◦/± 10◦,
whereas larger deviations become critical.

c) Acquisition with Facial Expression Changes: The con-
ceived acquisition protocol requires the user to have a neutral
and static facial expression during the data acquisition. In this
way, data extracted from different frames can be accurately
aligned to data of the reference frame. Changes of facial
expression during data acquisition may affect the accuracy of
reconstruction as the ICP procedure does not cope with elastic
deformations. As an example, Fig. 13 shows the error-map of
a super-resolution model extracted from data altered by non-
rigid deformation of the face during the acquisition process.
Figure 13(a) shows some sample RGB frames of a sequence,

whereas the super-resolution model and the corresponding
error-map are reported in Fig. 13(b). It can be observed the
overall accuracy of the reconstruction remains satisfactory,
although larger errors emerge in the mouth, eyebrows and eyes
regions.

D. Comparative Evaluation

The proposed approach has been compared against two
solutions that permit fusion of multiple frames acquired with a
Kinect sensor, with the aim to reconstruct an object or scene
with a better quality compared to raw data provided by the
Kinect sensor: The Kinect Fusion approach proposed in [25],
which is released as part of the Kinect for Windows SDK; the
commercial solution proposed by Volumental, which is given
as an online service [42] (for the reported experiments, we
used the data processing services available through the Free
account). Both these methods use an acquisition protocol that
requires the sensor to be moved around the object (supposed
to be fixed) or across the environment to scan. In the proposed
application, this protocol is implemented by asking the subject
to sit still, and moving the sensor around his/her head at a
distance of about 80 to 120cm, so as to maintain the best
operating conditions for the camera and capture a large view
of the face (i.e., the acquired sequence includes the frontal and
the left/right side of the face). Compared to the protocol used
for constructing super-resolved models, this paradigm is more
general, not being constrained to faces, but it also requires
substantial human intervention in the acquisition process and
an even more constrained scenario, where the subject must
remain still.

Since both the methods in [25] and [42] work online
on the depth stream produced by the Kinect sensor, we
performed an experiment where depth sequences are acquired
on-line for four subjects of the UF-S dataset (namely, subjects
#009, #014, #016 and #019), and the two methods are used
for reconstruction. Figure 14 shows the reconstructed models
obtained using the Kinect Fusion approach [25], and the
corresponding error-maps computed with respect to the high-
resolution scans. Compared to the super-resolution models
obtained with our approach for the same subjects (see Fig. 9(b)
and (d)), a general lower definition of face details can be
observed. Results for the same subjects and for the Volumental
approach [25] are reported in Fig. 15. The main facial traits
(i.e., nose, eyebrows, chin) are reasonably defined in the recon-
structed models, though finer details are roughly sketched,
especially in the mouth and eyes regions.

Using the error measure defined in Sect. IV-B, we also
evaluated quantitatively the distance between the models
reconstructed with the Kinect Fusion and the Volumental
approaches, and the corresponding high-resolution scans.
Results are reported in Table III, and compared with those
obtained by our approach. It can be observed, the proposed
approach scores the lowest error value.

E. Face Identification Accuracy

One of the goals of this paper is to demonstrate that the
use of super-resolution models enables more accurate face
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Fig. 11. Face models of a given subject reconstructed with respect to reference frames with a deviation of the yaw angle from the frontal pose (reference
angle equal to 0).

Fig. 12. Distance measure between super-resolution models and the corre-
sponding high-resolution scan as a function of the angular deviation of the
pose of the reference frame with respect to the frontal one.

Fig. 13. (a) Sample RGB frames of a sequence where the subject speaks
and shows non-neutral facial expressions. (b) The super-resolution model and
the corresponding error-map with respect to the high-resolution scan.

recognition compared to the use of low-resolution scans. For
this purpose, we consider a subject identification task in which
the gallery is composed of high-resolution scans, whereas
super-resolution models and low-resolution reference scans are
used as probes. Description and matching of gallery and probe
models is obtained according to the face recognition approach
proposed in [7], whose main features are as follows:

• The approach is based on the extraction and comparison
of local features of the face. First, SIFT keypoints
are detected from a depth image of the face and a
subset of them is retained by applying a hierarchical
clustering. In this way, a cluster of keypoints with
similar position and SIFT descriptors is substituted by a

Fig. 14. Kinect Fusion [25]: (a) Reconstructed 3D models; (b) error-maps
with respect to the high-resolution scans.

Fig. 15. Volumental [42]: (a) Reconstructed 3D models; (b) error-maps with
respect to the high-resolution scans.

“representative keypoint”, thus reducing the overall num-
ber of keypoints. Then, the relational information between
representative keypoints is captured by measuring how
the face depth changes along the surface path connecting
pairs of keypoints. The depth values along the path
represent a facial curve and can be regarded as the result
of sectioning the face by a plane passing from the two
keypoints and orthogonal to the surface. Face similarity is
evaluated by finding correspondences between keypoints
of probe and gallery scans, and matching the facial curves
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TABLE III

AVERAGE DISTANCE MEASURE COMPUTED BETWEEN THE 3D

HIGH-RESOLUTION SCANS AND THE RECONSTRUCTED MODELS

OBTAINED, RESPECTIVELY, WITH THE Kinect Fusion,

Volumental AND THE SUPER-RESOLUTION

METHOD PROPOSED IN THIS WORK

across the inlier pairs of matching keypoints. In doing
so, outlier keypoint correspondences are removed using
RANSAC. A statistical model is also used to associate
facial curves of the gallery scans with a saliency measure,
so that curves that model characterizing traits of some
subjects are distinguished from curves that are frequently
observed in the face of many different subjects. The
approach revealed good performance across different
datasets and also in the case of partial face matching.
This provides the 3D face recognition approach with the
required robustness to manage our scenario.

With this approach, we represented and compared the 3D
models used in the identification experiment. We included
the 50 high-resolution scans of the UF-S v2.0 subjects in
the gallery, and considered the reconstructed models and the
reference frames as probes. Recognition accuracy is evalu-
ated through the Cumulative Matching Characteristic (CMC)
curves. The accuracy of recognition obtained using the refer-
ence frames as probe set is the baseline used for comparison.
Figure 16 reports the CMC curves in the case the reference
frames (baseline) or the super-resolution models are used as
probes. The curves clearly show that super-resolution models
achieve a much higher recognition accuracy than raw frames,
improving the rank-1 recognition rate from about 58% to 88%.
This latter value is close to that obtained when the compar-
ison between different instances of high-resolution scans is
considered (represented by the green dashed line in the plot).

For the same gallery and probes, we also computed the
average intra-subject distances and the minimum inter-subject
distances as reported in Table IV. In this Table, the dis-
tances are computed with the measure defined in the 3D
face recognition approach that we used in the identification
experiment. The Table reports the mean and standard deviation
of the intra-subject distance values as well as the minimum
inter-subject distance value computed for high-res vs. high-
res models, low-res vs. high-res models and super-res vs.
high-res models, respectively. It can be noticed that for both
the high-resolution and super-resolution models, the mean
intra-subject distance value is lower than the minimum inter-
subject distance value, whereas this is not the case for the
low-resolution models. Compared to the use of low-resolution
models, the use of the super-resolution models decreases the
mean intra-subject distance yet preserving almost invariate the
value of the minimum inter-subject distance. This increase

Fig. 16. CMC curves obtained by applying the method in [7] to the super-
resolved probes and the reference frame probes (this latter is used as baseline
for comparison). Gallery scans are the high-resolution scans. The plot also
reports the case in which different instances of high-resolution scans are used
as probes (dashed line).

TABLE IV

DISTANCE STATISTICS OBTAINED USING THE FACE RECOGNITION

APPROACH IN [7]. DISTANCES BETWEEN HIGH-RESOLUTION SCANS

AND, RESPECTIVELY, THE HIGH-RESOLUTION SCANS, THE

SUPER-RESOLUTION MODELS AND THE LOW-RESOLUTION

REFERENCE FRAMES OF EACH SUBJECT ARE REPORTED

Fig. 17. CMC curves obtained by applying the method in [7] to the models
reconstructed with the proposed super-resolution approach, and with the
Kinect Fusion and Volumental methods. Gallery scans are the high-resolution
scans. The dashed line also reports the case in which high-resolution scans
are used as probes.

of the gap between mean intra-subject and minimum
inter-subject distance values results into higher recognition
accuracy.

Finally, using the same gallery as above, we performed
an identification experiment where the probes are the models
reconstructed with the proposed method, and with the Kinect
Fusion and Volumental approaches (see Sect. IV-D). Results
shown in Fig. 17, confirm the proposed method is capable
of achieving better performance than the Kinect Fusion and
Volumental.
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V. DISCUSSION AND CONCLUSIONS

In this paper, we have defined a super-resolution approach
that permits the construction of a higher-resolution face model
starting from a sequence of low-resolution 3D scans acquired
with a consumer depth camera. In particular, values of the
points of the super-resolution model are constructed by iter-
atively aligning the low-resolution 3D frames to a reference
frame (i.e., the first frame of the sequence) using the scaled
ICP algorithm, and estimating an approximation function
on the cumulated point cloud using Box-spline functions.
Qualitative and quantitative experiments have been performed
on the released Florence Superface dataset v2.0 that includes,
for each subject, a sequence of low-resolution 3D frames
and one high-resolution 3D scan used as the ground truth
data of a subject’s face. In this way, results of the super-
resolution process are evaluated by measuring the distance
error between the super-resolved models and the ground truth,
and by performing face recognition experiments using the
super-resolved models as probes and the high-resolution scans
as gallery. Results support the idea that constructing super-
resolved models from consumer depth cameras can be a viable
approach to make such devices deployable in real application
contexts that also include identity recognition using 3D faces.
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