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Abstract: Image forensics, besides understanding if a digital image has been forged, often aims at determining information about
image origin. In particular, it could be worthy to individuate which is the kind of source (digital camera, scanner or computer
graphics software) that has generated a certain photo. Such an issue has already been studied in literature, but the problem of
doing that in a blind manner has not been faced so far. It is easy to understand that in many application scenarios information
at disposal is usually very limited; this is the case when, given a set of L images, the authors want to establish if they belong
to K different classes of acquisition sources, without having any previous knowledge about the number of specific types of
generation processes. The proposed system is able, in an unsupervised and fast manner, to blindly classify a group of photos
without neither any initial information about their membership nor by resorting at a trained classifier. Experimental results
have been carried out to verify actual performances of the proposed methodology and a comparative analysis with two SVM-
based clustering techniques has been performed too.
1 Introduction

Digital images can be easily manipulated by common users
for disparate purposes so that origin and authenticity of the
digital content we are looking at is often very difficult to be
assessed without uncertainty. Hence technological
instruments which allow to give answers to basic questions
regarding image source and image originality are needed [1,
2]. However, by focusing on the task of assessing image
origin, the aspects to be studied are mainly two: the first
one is to understand which kind of source has generated
that digital image (e.g. a scanner, a digital camera, a
computer graphics software) [3–6] and the second one is to
succeed in determining which is the specific sensor that has
acquired such a content (i.e. the specific brand and/or
model of a camera) [7, 8]. In this paper, the first aspect is
focused. The generally adopted approach is to extract from
digital images, some robust and identifying features which
can permit to distinguish the various classes of devices (e.g
scanned images, photos, computer generated). Such features
are distinctive because they exploit some characteristic
traces left over the digital content during the operation of
image creation as described in [9]. Usually, such features
are extracted from a training set of images whose
provenance is known and used to train a classifier (e.g.
SVM). The trained classifier then is able to evaluate a
digital asset and establish which category it belongs to. The
first approach in this sense was introduced by Lyu and
Farid [5]. In this study, the authors use a statistical model
of 216-dimensional feature vectors calculated from the first
four order statistics of the wavelet decomposition to
discriminate between computer generated and natural
images. Based on the estimation of the noise pattern of the
devices Khanna et al. presented in [3] a method for
discriminating between scanned, non-scanned and computer
generated images. The basic idea in [3] is to analyse noises
of the scanner from row to row and column to column and
then combining them with the noise of the camera,
calculated as difference between the de-noised image and
the input one. A different approach was proposed in [4]
where a fusion of a set of device colour interpolation
coefficients and noise statistics to differentiate between
images produced by cameras, cell phone cameras, scanners
and computer graphics is introduced.
In this paper, on the other hand, the problem of blindly

grouping images belonging to a given set according to the
kind of acquisition source is faced (see a sketch of the idea
in Fig. 1). The aim of this method is to quickly identify in
a generic bunch of photos, taken (created) by different
sources, which of them have been acquired by a camera or
a scanner or computer-generated by means of a computer
graphics software, without any type of previous knowledge.
This has already been studied in literature to blindly
distinguish among brands and models of a certain device
(e.g. a digital camera) [10–12], but never, to the best of our
knowledge, to classify images according to their acquisition
sources. It is out of the scope of the present work to
distinguish among different brand/model relates to each
source device.
The paper is organised as follows: Section 2 provides some

motivations which are behind the idea of using this kind of
blind clustering also in relation with a training-based
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Fig. 1 Clusters obtained with our method starting from a bunch of images without any initial information about their membership
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classification and Section 3 introduces the proposed method.
In Section 4 experimental results are presented and Section 5
concludes the paper.
2 Motivations

In practical forensic applications, very often it is necessary to
reliably discriminate between natural and computer generated
multimedia data [13, 14], because of the fact that computer
softwares are able to create highly realistic image contents
that can be, for a human being, impossible to be
distinguished from the natural ones. To succeed in
discerning between highly realistic CG images and images
acquired by digital cameras would be invaluable especially
in real forensic scenario such as child pornography [15].
Furthermore separating scanned images [6] from the others,
it is also important because the knowledge of an image
acquisition source can be helpful in determining the
authenticity and the provenance of the image, as well as in
tracing back who was responsible for creating it.
Blind image clustering by means of unknown acquisition

sources could be also interesting in circumstances similar to
the following. Let us consider the case, for instance, in
which a group of images are attributed to a person (e.g.
found in his hard disk drive) because apparently taken by
his personal camera (e.g. names of digital files, EXIF of the
photos etc.) and let us imagine that establishing if some of
these pictures have been fraudulently inserted within this set
is crucial for steering the investigation in a specific
direction. A forensic analyst could be willing to carry out
an initial analysis to discern those images taken by a
camera from those ones artificially prepared through a
330
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computer graphic software and/or digitised by means of a
scanner, without having any information about the possible
composition of such image set (we assume that the EXIF
information of such images cannot be trusted). Once images
acquired by a device, that is, a digital camera, are
individuated through our proposed blind method, other
forensic tools such as that one presented in [10], could be
launched onto such a subset to determine how many
cameras have generated those images: this procedure could
also improve performances of the second method.
In addition to this, when operating in a real forensic

scenario, often available instruments are limited and
knowledge at disposal are a few; hence in such a situation
there is the need to perform an analysis restricted to the
dataset under examination without any side information. On
the other side, it could be remarked that working ‘blindly’
could be not only an operating requirement but also the
chance to work without depending on, for example, a
trained classifier that, although it should offer superior
performances, it is inevitably influenced by the
characteristics of the images used for training according to
their format, quality, compression, image content (textured/
smooth), acquisition device, processing tools and so on.
This is especially true when the distinctive features, adopted
for the classification, are strongly dependent from the image
content (e.g. denoising features, DWT features etc., see
Section 3.1). Furthermore, training-based classifiers have to
be completely retrained if just one new distinctive feature is
included to improve class characterisation and/or if a
different kind of image has to be added (e.g. computer
graphic images generated with superimposed a specific
pseudo-realistic noise) into the clustering process. In both
cases, blind clustering is easier to be applied, but,
IET Image Process., 2015, Vol. 9, Iss. 4, pp. 329–337
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nevertheless, it is not alternative to training-based
classification, in fact this last could be used for a more
in-depth analysis (e.g. link between obtained cluster and the
type of device) and, above all, when stronger operative
resources are available.
Fig. 3 Feature extraction for each RGB component of an image

a and b From image denoising
c From DWT analysis
d From linear prediction
3 Proposed method

We present a novel approach for blind grouping images taken
by different sources based on a spectral partitioning [16]. A
schema of the whole system is pictured in Fig. 2. The first
step consists in a pre-processing phase, performed on the
whole dataset, to extract some features distinctive of each
class and then a similarity matrix is computed. In the
second step, a clustering procedure is performed allowing to
distinguish among different devices.
In particular, for each image l (l = 1, …, L) in the dataset, a

feature vector vi is computed, composed by 111 elements (37
features for each RGB component). The considered features
will be described in detail in the following Subsection 3.1.
However, it is worth to point out that the selected features
are fundamentally a mixture of selected features coming
from [3, 4]; the main guideline in such a choice was mainly
led by the need to find a trade-off between distinctiveness
and computational burden. As we will show in Section 4.3
the choice of our features set has been demonstrated a very
good selection respect to considering the features [3, 4]
separately. In addition to this, a diverse denoising filter [17]
was used to better take into account characteristics of the
sensor related to sensor pattern noise. In particular, features
based on colour-filter-array, proposed in [4], have been
discarded: this was done basically because the
computational burden was too heavy compared with the
actual improvement given in terms of performance in the
classification. Such experimental results have been
preparatory for the definition of the whole procedure and
they are included in Sections 4.3 and 4.4.
After the features have been calculated then the similarity

matrix S is computed. In our approach, the similarity matrix
is specified by the normalised correlation between the
feature vectors of each image. The similarity matrix
afterward will be a L × L symmetric matrix (see the end of
Subsection 3.1 for details).
After the similarity matrix S has been computed, the

clustering phase is performed. In particular, the spectral
partitioning class of algorithms is exploited [16]. At the end
of the clustering procedure, the number of clusters K is
Fig. 2 Outline of the proposed framework
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obtained, which represents the actual number of sources
which generated the given L images.
3.1 Pre-processing step: features extraction and
similarity matrix computation

It is possible to subdivide the features taken into account in
three different classes (an overview is reported in Fig. 3).
The first class of the considered features is based on the
idea that a residual pattern noise exists in images obtained
from digital cameras and scanners. On the contrary, the
residual noise present in computer generated images does
not have structures similar to the pattern noise of cameras
and scanners. A number of 15 features is obtained for each
image accordingly to the paper in [3] for each RGB
component (see Fig. 3a).
The mean, standard deviation, skewness and kurtosis of

ρrow(i) and ρcol( j) are the first eight features [ f1:f8], that is,
the correlation between the noise residual In, obtained with
the Mihcak filter [17] from the original image I(M ×N ) and
I rn, I cn , respectively, which have been computed by the
331
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following equation

I rn(1, j) =
1

M

∑M
i=1

In(i, j); 1 ≤ j ≤ N (1)

I cn (i, 1) =
1

N

∑N
i=1

In(i, j); 1 ≤ i ≤ M (2)

The standard deviation, skewness and kurtosis of I rn and I cn
correspond to features [ f9:f14]. The last feature for every
input image is given by the following:

f15 = 1−
∑N

i=1 rcol(j)∑M
i=1 rrow(i)

( )
∗ 100 (3)

Others features, based on image denoising, are obtained by
applying different types of denoising algorithms to the input
image and by computing the mean and the standard
deviation of the log2 of the estimated noise magnitudes (see
Fig. 3b). We applied five different denoising techniques
accordingly to [4]: linear filtering with an average filter of
size 3 × 3, with a Gaussian filter of size 3 × 3 and standard
deviation 0.5, median filtering 3 × 3, Wiener adaptive image
denoising (kernel sizes 3 × 3 and 5 × 5) and, in addition to
what happens in [4], a Mihcak filter [17] as sixth one.
These six denoising algorithms capture different statistical
properties of the sensor noise giving us 12 different features
[ f16:f27].
To achieve the second class of features (see Fig. 3c),

discrete wavelet transform (DWT) is applied to the image,
to measure the statistical properties of sensor noise in the
frequency domain [4].
As a first step, the image is normalised as

˜I (i, j) = I(i, j)
1

MN

∑M
k=1

∑N
l=1 I (k, l)2

( )1/2 (4)

Then a two-dimensional one level wavelet decomposition of
Ĩ , to obtain the LH1, HL1, HH1 sub-bands, is performed.
The mean μ and the variance σ2 of the sub-band
coefficients are computed. The variances constitute the first
three features ( f28, f29, f30) of the second set of features.
Then the goodness of fitting a Gaussian distribution
N (mY , s

2
Y ) to the distribution of each wavelet sub-band

coefficients is quantified to obtain additional features. Let
p(y) and q(y) denote the probability density functions of the
Gaussian distribution N (mY , s

2
Y ) and the distribution of the

sub-band wavelet coefficients, respectively, we quantify the
goodness of Gaussian fitting by measuring the distance
between p(y) and q(y) as∑

i

p(yi)− q(yi)
∣∣ ∣∣Dy (5)

where i is the index of the histogram bins, Δy is the width of
the bin

∑
i q(yi)Dy = 1 and p(yi) and q(yi) denote the

histogram values at the bin centres. This gives three other
features ( f31, f32, f33).
Finally, the last class of features is obtained from

neighbourhood prediction by measuring the error in the
prediction of neighbouring pixels in smooth regions of the
image [4] (see Fig. 3d ). This is based on the observation
that the image acquisition noise in the smooth regions of
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the image results in prediction errors which can provide
forensic evidence about the origin of the image. Given an
image I, we first normalised it to obtain Ĩ , as in (4) and
identified its smooth regions by comparing the local
gradient values with a threshold (in our implementation the
Prewitt operator with a threshold equal to 2 has been used).
The pixels in the chosen smooth regions are then expressed
as a weighted summation of its neighbourhood values to
obtain a set of linear equations. More specifically, each
pixel value bi in a given region is predicted using a linear
model on its eight surrounding neighbours

b̂i =
∑8
k=1

xkai,k (6)

The absolute prediction errors are then obtained as
Db = b̂− b

∣∣ ∣∣. The mean and the variance of Δb computed
in smooth regions, subdivided in bright and dark areas
according to the median of normalised intensities of all
image pixels, constitute our third set of four statistical noise
features ( f34, f35, f36, f37).
Hence the number of the extracted features is totally of 111

(37 × 3 bands) per image and a vector of feature vi, whose
dimension is 111, can be computed to represent every
image. Being L the number of images belonging to the
dataset, a similarity matrix S can be obtained by calculating
the normalised correlation (represented by⊗ in (7)) among
the feature vectors of each image. The similarity matrix
afterwards will be a L × L symmetric matrix. The diagonal
elements of S will be 1 representing the auto-correlations.

si,j = vi ⊗ vj; i, j = 1, 2, . . . , L (7)
3.2 Clustering step: the normalised cuts algorithm

The basic idea of this spectral partitioning method is to refer
to the to-be-clustered images as points in a feature space that
can in turn be regarded as nodes in a weighted undirected
graph [16]. The edges, connecting each pair of nodes/
images, are weighted by means of a chosen similarity
function w(i, j), being i and j two nodes of the graph. In
our case the weights w(i, j) are the correlations stored in the
matrix S, described in the previous Section 3.1. A graph
G = (V, E) is partitioned into two disjoint graphs A and B
by simply removing edges connecting the two parts. The
total weight of the edges removed during partitioning gives
a computation of the degree of dissimilarity between these
two parts: this is called the cut value and computed as

cut(A, B) =
∑

u[A,v[B

w(u, v) (8)

In [16], the authors propose a ‘disassociation measure’, as a
fraction of the total edge connections to all the nodes in the
graph, called the normalised cut (Ncut) and defined as in
the following

Ncut(A, B) = cut(A, B)

assoc(A, V )
+ cut(A, B)

assoc(B, V )
(9)

where the ‘association measure’ (assoc(.,.)) represents the
total connections from nodes in A to all nodes in the graph
IET Image Process., 2015, Vol. 9, Iss. 4, pp. 329–337
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Table 1 Device/software for each different source

Sources Device/software Amount

camera Nikon D80 (10 Mp) 10
Nikon Coolpix S220 (10 Mp) 10
Sony DSC-W130 (8 Mp) 69
Canon PS A570 (5 Mp) 11

CG Maya, AutoCAD, miscell.
Photoshop, Cinema 4D,

3D studio max
scanner Canon CanonScan Lide 60 50

Canon CanonScan L110 50

Table 3 TPR/FPR for different values of t and distances of the
couple (TPR, FPR) from (0,1) in the ROC space

t TPR FPR Distance

0.82 0.77 0.09 0.244
0.83 0.75 0.11 0.272
0.84 0.79 0.10 0.235
0.85 0.81 0.11 0.220
0.86 0.77 0.14 0.271
0.87 0.76 0.17 0.289
0.88 0.76 0.16 0.287
0.89 0.73 0.17 0.324
0.90 0.70 0.20 0.357
0.91 0.66 0.25 0.422
0.92 0.61 0.25 0.467
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(similarly for association of B). The number of groups
segmented by this method is controlled directly by the
maximum allowed Ncut that represents the threshold t of
the proposed method. See [16] for more details of the
implementation and Section 4.1 for considerations about the
threshold evaluation.
4 Experiments

To verify the performances of the presented blind clustering
procedure, the system has been tested on a dataset
populated by 300 pictures taken by three different sources
(100 from four diverse digital cameras, 100 computer
graphics generated and 100 from two different scanners, as
reported in detail in Table 1). In particular, the digital
cameras have been set to their maximum resolution which
was obviously different one from each other, ranging from
5 M pixels to 10 M pixels and stored in JPEG format;
computer graphics images were downloaded from the web
(www.realsoft.com, www.3dlinks.com, www.maxon.net and
Google Images) in JPEG format. The scanned images have
been acquired at two different resolutions of 600 and 800 dpi
and saved in TIFF format. For each image a central 1024 ×
1024 block is used for features extraction, then we
computed the 111 features, described in Section 3.1, then
we create the similarity matrix S. Initial tests, although not
reported in the paper, have been done to define the
dimension of the central block to take and the choice of
1024 × 1024 has been deemed a good trade-off between the
amount of data to analyse and computational complexity. In
Table 1 are reported in detail the sources of the different
classes of digital images used in our experiments.
Images contain very general contents and represent

landscapes, groups of persons, buildings, cars, objects,
fruits and so on. Both highly textured and smooth images
are present in the dataset (e.g. large zones picturing sky or
sea).
Table 2 Composition of the 21 test sets

Cam CG Scan Cam CG Scan Cam CG Scan

30 100 90 70 40 100 20 80 80
40 100 80 70 50 90 30 80 70
50 100 70 70 60 80 40 80 60
60 100 60 70 70 70 50 80 50
70 100 50 70 80 60 60 80 40
80 100 40 70 90 50 70 80 30
90 100 30 70 100 40 80 80 20

Permutation of each test set over the three classes (e.g.
30-100-90/100-30-90/30-90-100) generates 63 data-sets.
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To augment the number of experimental tests, such set of
300 images has been used as a repository to generate
different test-sets with diverse characteristics. In particular,
according to Table 2, 21 distributions of images among the
three classes (camera, CG and scanner) have been chosen
(all the three classes/sources are represented in this case).
To achieve the highest variability, the number of elements
within each category is very different, the total number of
images over the three groups is not always the same and,
above all, photos are randomly selected each time from the
initial set of 300. By permuting the distributions in Table 2
onto the three classes, 63 data-sets have been obtained
finally for a global amount of around 13 000 images. Such
63 data-sets have constituted the ground truth for the
experimental tests whose results are presented in the sequel
of Section 4. More specifically, each of the following test
will be launched over every dataset and a confusion matrix
depicting the classification performance will be achieved.
4.1 Threshold evaluation

First of all, as evidenced in Section 3.2, it is necessary to set
the best working threshold t, relatively to the proposed
procedure, to be used afterwards during all the successive
comparative tests. To do so we have resorted at the 63
data-sets. For each experiment a confusion matrix is
achieved and then the 63 confusion matrixes are averaged
obtaining the overall result. Confusion matrix computation
(see Table 4 for reference) permits to individuate, with
respect to a ground truth, how many elements of a class
have been correctly classified (values on the diagonal) and
how many have been wrongly assigned to the other classes
(values out of the diagonal). In this section, we set up the
value of the threshold t by means of receiver operating
characteristic (ROC) curves through the analysis of the
performance, in terms of true positive rate (TPR) and false
positive rate (FPR), on the 63 data-sets. More in detail: the
TPR is a measure stating how many images are allocated in
the correct cluster, with respect to the cardinality of the
cluster, known by the ground truth; similarly, the FPR
Table 4 Confusion matrix with t = 0.85 obtained with the
proposed method

(%) Camera CG Scanner

camera 86.0 1.9 12.1
CG 7.8 83.8 8.4
scanner 11.0 16.7 72.3
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Fig. 4 ROC space

Table 6 Confusion matrix obtained with k-means without
silhouette coefficient but knowing K = 3

(%) Camera CG Scanner

camera 90.2 2.6 7.2
CG 4.1 93.0 2.9
scanner 3.6 11.6 84.8
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states how many images are erroneously assigned to a cluster,
with respect to the number of images actually not belonging
to it. In formulae, TPR and FPR can be computed as in (10)

TPR = TP/(TP+ FN)

FPR = FP/(FP+ TN) (10)

where the used notations have the following meaning:

† TP (true positives): the number of images that are assigned
to the correct cluster.
† FN (false negatives): the number of images that are not
assigned to the correct cluster.
† FP (false positives): the number of images that are assigned
to a wrong cluster.
† TN (true negatives): the number of images correctly not
assigned to a cluster.

According to the ROC curve approach, the threshold t was
varied within the range [0.7:0.95] with a step of 0.01 (such a
working range has been set up by means of preliminary
trials). For each fixed value of t, the proposed method was
launched over the 63 data-sets, as explained previously and
a final confusion matrix has been achieved; from such
confusion matrix a couple of (TPR, FPR) for each of the
found classes can be computed according to (10) and then
by averaging over the classes a couple (TPR, FPR) is
determined. Such couple represents a point in the ROC
space (TPR against FPR) as pictured in Fig. 4.
Hence the best possible threshold t would yield a point in

the upper left corner of the ROC space, corresponding to
FPR = 0 (no FP) and TPR = 1 (no FN). By using a criterion
of minimum euclidean distance from the ideal point located
Table 5 Confusion matrix with t = 0.85 obtained with the
proposed method on a dataset of 300 images (100 Camera, 100 CG
and 100 Scanner)

(%) Camera CG Scanner

camera 85.0 3.0 12.0
CG 3.0 93.0 4.0
scanner 12.0 16.7 72.0
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in the upper left corner, we can select topt = 0.85 as the best
value. This can also be appreciated in Table 3 where the
distances with respect to the ideal point, TPR and FPR
according to different t values are shown (only a sub-range
of t values is reported). Thus having selected the optimal
threshold topt that will be used for all the experimental
tests, we can also check the performances of the proposed
method in such case; the confusion matrix for the selected
threshold is reported in Table 4. In such a table and in the
following, the names Camera, CG and scanner refer at the
knowledge of the ground truth: the method, being
completely blind is able to clustering but not to assign the
type of source to each obtained cluster. Such result points
out a good performance, in fact 86% of the images,
acquired by a camera, are correctly assigned, whereas those
ones generated by computer graphics achieve a percentage
of 84% and 72% is obtained for the scanner case. This last
percentage for the scanner is a bit discrepant with respect to
the other two, but, however, it is in line, in terms of general
trend, with what happens also when other clustering
algorithms are used (e.g see Table 6). This behavior seems
to be determined by the blind clustering procedure that is
not based on a trained classifier, in fact, this does not
happen when SVM-based techniques are considered (see
Table 9).
Once the threshold t has been fixed at 0.85, we have

launched an experiment over a new dataset, composed by
300 images (100 for each of the three categories belonging
to the same devices shown in Table 1) and results are
reported in Table 5. It can be appreciated that results are in
line with what expected.
4.2 Comparison between clustering procedures

After having adequately designed and set-up the proposed
method, we have performed a comparison with a
well-known clustering procedure: the k-means clustering.
The k-means algorithm seeks to minimise the average
squared distance between points in the same cluster [18].
The implementation adopted for k-means is that provided
by Matlab Statistics Toolbox, setting the input parameters
Distance = correlation, Replicates = 10 and other parameters
at default. However, to be used in the proposed application
scenario, it is necessary to overcome a major drawback of
the k-means algorithm, namely the assumption that the
number of clusters (sources) is given. This assumption is a
crucial input for the k-means algorithm that affects both
performance and accuracy. In fact, when k-means, knowing
the number of expected clusters (K = 3), is itself tested over
the 63 data-sets, the obtained results (see Table 6) show an
undoubted performance improvement with respect to the
proposed spectral clustering (see Table 4) that anyway does
not require such initial information as input. However, this
is not the case of our blind application scenario, in which
no knowledge is given.
IET Image Process., 2015, Vol. 9, Iss. 4, pp. 329–337
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Table 8 Confusion matrix obtained with k-means and choice
of K by means of the silhouette coefficient

(%) Camera CG

camera 96.5 3.5
CG 4.2 95.8
scanner 52.5 47.5

Table 7 Comparison between spectral clustering and k-means
(input K = 3) when the test set is composed by 100 images
coming from a single source

(%) Camera CG Scanner

proposed method 90.0 4.0 6.0
k-means 60.0 19.0 21.0
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As a quick actual proof for that, if we consider a dataset
composed by images coming from only one source (e.g.
100 images taken by digital cameras), the results for the
k-means clustering with K = 3, whose previous
performances were very good, drastically decrease with
respect to the proposed method, as shown in Table 7.
To overcome such a problem and adapt k-means to be

usable in this framework, we employed the ‘silhouette
coefficient’ [11] as a measure for the clustering quality and
as an instrument to a-posteriori choose the best clustering
situation on the basis of the number of K clusters. The
silhouette coefficient of an element si is computed as
follows: first, we compute the average distance of si from
the other elements in the same cluster, let ai denote this
distance. Then, for each cluster C that does not contain si
we compute the average distance of si from all the elements
in C. Let bi denote the average distance to these clusters.
Then the silhouette coefficient of si is defined as

SCi = (bi − ai)/max(ai, bi) (11)

the value of the silhouette coefficient varies between −1 and
+1. In our case, a value near −1 indicates that the image is
badly clustered, whereas a value near +1 indicates that the
image is well-clustered.
We apply this calculation at each loop of the algorithm and

at every element in the data we are examining; more precisely:
at the iteration q it is calculated a global measure of the
silhouette coefficient SCq by averaging the silhouette
coefficients related to each element that belongs to a certain
cluster and taking the average value with respect to all the
current k clusters. Then, it is found the maximum
coefficient over all the iterations obtained and the
corresponding index q* is chosen as the iteration that has to
be taken as the best cluster partition.
In Fig. 5 is reported the values of the silhouette coefficient,

computed each time onto the 63 data-sets, against different K
input clusters in a range from K = 2 till K = 30 (K again
represents the number of expected clusters).
Generally, the bigger (close to 1) the silhouette coefficient

the better the clustering provided by the k-means algorithm:
Fig. 5 Silhouette coefficient values against K number of expected
clusters
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hence the choice falls on K = 2. Consequently, the
confusion matrix for the k-means clustering evaluated for
K = 2 is reported in Table 8.
It is worth to point out that the k-means clustering with the

use of silhouette coefficient fails to properly classify the three
classes (camera, computer graphics and scanner) obtaining
only two groups. In fact in Table 8, the two clusters
obtained are assigned to Camera and Computer Graphics
classes, respectively. On the other hand, the images of the
class scanner are almost equally split in the Camera and
Computer Graphics clusters. On the contrary, the proposed
procedure, based on spectral clustering, properly detects the
number of classes demonstrating the validity of the
proposed procedure for a blind classification scenario as
already demonstrated.
4.3 Comparison with SVM-based techniques

Finally we make a comparison of our proposed blind method
(with t = 0.85) against two well-known techniques for device
identification based on SVM training [3, 4]. We used the
dataset of 300 images (as before 100 images for each
source): 80 images are used for the training set and 20
images for the test set for each kind of source. It is
important to note that only 60 images are used to test our
method since it does not require a training phase; this issue
gives an advantage from the point of view of the execution
time, especially regarding the pre-processing phase. Then
we perform 50 experiments defined by different
permutations of the training and test set whose cardinality
always were of 80 and 20 images, respectively, for each
source (a ratio of 4/1); this has determined that, at the end,
50 × 60 = 3000 images have been used for test session,
against 50 × 240 = 12 000 images used for the training
session of the two SVM-based methods. It is
straightforward that such circumstance is very challenging
for the proposed method and that the SVM-based
techniques are expected to perform better by resorting a
trained classifier, but the intent was to comprehend how
competitive was the proposed methodology hence to avoid
the need of a learning phase. The results for each
considered method are then averaged over the 50
experiments and reported in Table 9.
Finally, the result of our method is reported in Table 10.

The obtained results, although are lower than the method
presented in [4], as expected, are however in line with what
obtained by the SVM-based method in [3]. In this case,
Table 9 Confusion matrix for the SVM-based technique in [3]
and in [4], respectively, (result [3]/result [4]).

(%) Camera CG Scanner

camera 74.4/97.1 17.8/3.3 7.8/0.0
CG 4.6/14.2 81.0/85.4 14.4/0.4
scanner 6.0/7.0 20.0/1.0 74.0/92.0
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Table 10 Confusion matrix for the proposed technique (Ox

states for spurious clusters)

(%) Camera CG Scanner O1

camera 83.6 1.8 9.4 5.2
CG 3.6 80.1 8.8 7.5
scanner 13.8 8.4 72.0 5.8
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being the number of available images for the test phase quite
limited (each time only 60), it can be observed that,
sometimes, the proposed method tends to wrongly generate
a fourth spurious cluster (O1) which contributes to worsen
the performances. Anyway, it is necessary to point out
again that our method works with no training information
so the result could be considered very encouraging.
Finally, to have an idea of the impact of the features on the

general performances, we have carried out a further
experiment over the previous test set of 3000 images. We
have substituted, within the proposed method, the features
introduced by the work in [3] and in [4], respectively, to
evaluate the obtained results when working in a blind
application scenario (see Tables 11 and 12). It can be seen
that in the first case (Table 11), images are overspread
whereas in the second case (Table 12) images coming from
camera and scanner are mixed. This behaviour shows that
using a mixture of features improves the performance of our
blind method and justifies such a choice. Furthermore our
features selection also represents a good trade-off between
distinctiveness and computational burden (see Section 4.4).

4.4 Considerations about execution time

First of all, it is necessary to highlight that from the point of
view of computational time, our method is preferable with
respect to SVM methods because, obviously, the time for
training is not required at all. Also from the point of view
of features extraction, which is the cumbersome part of the
various computation phases, the proposed technique is
competitive with the other two. In fact, with reference to
the experimental tests presented in Section 4.3 which were
obtained with code implementation in Matlab (Version
R2010a for Windows 64 bits) running on a Dell Precision
T1500 Intel Core i7 (CPU 2.80 GHz, RAM 4 GB), the
average time per image for feature extraction was for the
Table 11 Confusion matrix for the proposed technique but
considering features proposed in [3] (Ox states for spurious
clusters)

(%) Cam CG Scan O1 O2 O3 O4

cam 86.0 0.0 0.0 0.0 10.0 2.0 2.0
CG 12.0 48.0 6.0 8.0 12.0 4.0 10.0
scan 6.0 8.0 40.0 12.0 6.0 12.0 16.0

Table 12 Confusion matrix for the proposed technique but
considering features proposed in [4] (Ox states for spurious
clusters)

(%) Cam CG Scan O1 O2

cam 94.0 4.0 0.0 0.0 2.0
CG 36.0 54.0 4.0 0.0 6.0
scan 95.0 0.0 3.0 2.0 0.0
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proposed method of 53s which is higher with respect to the
2.33s for the method in [3] but it is extremely lower than
6 m 39s for the one in [4]. This last aspect confirms again
that the proposed procedure offers a good trade-off between
source classification reliability and limited computational
complexity, which, together to the chance to work without
the need of a trained classifier, provide desirable
characteristics for a real-life forensic scenario.

5 Conclusions

A new clustering procedure to classify a generic bunch of
images according to the acquisition sources, without
resorting at any side information, has been presented.
Experimental results confirm that such proposed method
permits to achieve good performances in terms of clustering
reliability and is also competitive with SVM-based
technique, although not requiring a trained classifier. It also
allows good results for non-uniform data-sets demonstrating
the adaptability of our method to a real case. Future works
will be dedicated to improve the criterion for threshold t
selection and to individuate more distinctive features.
Furthermore, the procedure will be evaluated in a more
challenging scenario in which a dataset can be composed
by images with different quality, compression and
post-processing settings.
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