
Contents lists available at ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 29 (2014) 831–843
http://d
0923-59

n Corr
Center, U

E-m
roberto
pierluig
andrea.
andrea.
journal homepage: www.elsevier.com/locate/image
Blind image clustering based on the Normalized Cuts criterion
for camera identification

I. Amerini a, R. Caldelli a,c,n, P. Crescenzi b, A. Del Mastio a, A. Marino d

a MICC - Media Integration and Communication Center, University of Florence, Florence, Italy
b DINFO - Department of Information Engineering, University of Florence, Florence, Italy
c CNIT - National Interuniversity Consortium for Telecommunications, Parma, Italy
d DI - Department of Computer Science, University of Milan, Milan, Italy
a r t i c l e i n f o

Article history:
Received 18 December 2013
Received in revised form
18 July 2014
Accepted 18 July 2014
Available online 30 July 2014

Keywords:
Image forensics
Source identification
Clustering
Normalized Cuts
x.doi.org/10.1016/j.image.2014.07.003
65/& 2014 Elsevier B.V. All rights reserved.

esponding author at: MICC - Media Integration
niversity of Florence, Florence, Italy.
ail addresses: irene.amerini@unifi.it (I. Amer
.caldelli@unifi.it (R. Caldelli),
i.crescenzi@unifi.it (P. Crescenzi),
delmastio@unifi.it (A. Del Mastio),
marino.it@gmail.com (A. Marino).
a b s t r a c t

Camera identification is a well known problem in image forensics, addressing the issue to
identify the camera a digital image has been shot by. In this paper, we pose our attention
to the task of clustering images, belonging to a heterogenous set, in groups coming from
the same camera and of doing this in a blind manner; this means that side information
neither about the sources nor, above all, about the number of expected clusters is
requested. A novel methodology based on Normalized Cuts (NC) criterion is presented and
evaluated in comparison with other state-of-the-art techniques, such as Multi-Class
Spectral Clustering (MCSC) and Hierarchical Agglomerative Clustering (HAC). The pro-
posed method well fits the problem of blind image clustering because it does not a priori
require the knowledge of the amount of classes in which the dataset has to be divided but
it needs only a stop threshold; such a threshold has been properly defined by means of a
ROC curves approach by relying on the goodness of cluster aggregation. Several experi-
mental tests have been carried out in different operative conditions and the proposed
methodology globally presents superior performances in terms of clustering accuracy and
robustness as well as a reduced computational burden.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Digital images can be easily manipulated by common
users for disparate purposes so that origin and authenticity
of the digital content we are looking at is often very difficult
to be assessed without uncertainty. Technological instru-
ments which allow to give answers to basic questions
and Communication

ini),
regarding image origin and image authenticity are needed
[1]. Both these issues are anyway connected and sometimes
are investigated together. However, by focusing on the task
of assessing image origin, the two main aspects are to be
studied: the first one is to understand which kind of device
has generated that digital image (e.g. a scanner, a digital
camera) [2–5] and the second one is to succeed in deter-
mining which is the specific sensor that has acquired such a
content (i.e. the specific brand and/or model of a camera)
[6–8]. The main idea behind this kind of approaches is that
each sensor leaves a sort of unique fingerprint on the digital
content it acquires due to some intrinsic imperfections of
the acquisition process. Usually this kind of fingerprint is
computed by means of the extraction of PRNU (Photo
Response Non-Uniformity) noise [9] from an image through
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a digital filtering operation. After that, the PRNU of the to-
be-checked image is compared with the pre-computed
PRNU fingerprints, belonging to a reference set, and then
it is assigned to a certain digital camera. Nowadays most of
the image source attribution approaches operate in a closed
set scenario, where an image is generated by one of n
known cameras available during training [9–12].

However, in a realistic situation, images could have
been generated by an unknown device not available in the
set of cameras under investigation; so it is important to
consider the source camera attribution problem in a open
set scenario. In particular, it could be the case, for instance,
in which the forensic analyst has a set of photographs in
hand and he wants to know if those images were taken by
the same camera or not. To find an automatic method to
solve this kind of problem could have important implica-
tion in the case of inspection of big amount of images like
photo repository on Internet (e.g. Picasa, Flickr) and on
social networks. Usually, in these circumstances, when the
number of cameras and images scales up, methods which
resort at the adoption of digest-based descriptors are
taken into account [13,14] to reduce computational burden
but maintaining performances in terms of classification
accuracy.

In [15] the image source attribution problem in an open
set scenario is faced attesting if a set of images were taken
by a specific camera by comparing each of these images to
a reference image. The constraint is that the digital camera
of the reference image is known even if the analyst does
not have physical access to it. Li in [16] proposed a
classification system to distinguish among images taken
by unknown digital cameras. First of all, PRNU is extracted
and enhanced from each image, which is used as the
fingerprint of the camera that has taken the image.
Secondly, an unsupervised classifier is applied to a training
set of PRNUs to cluster them into classes; centroids of
previously identified classes are used as the trained
classifier to test a new dataset.

Starting from the idea in [16], the paper in [17]
presented an improved approach working in a completely
open set scenario. The authors proposed to employ a blind
classification to group images taken by digital camera by
implementing a different enhancer function with respect
to [16] to improve PRNU quality and then a HAC clustering
procedure is presented. Another blind-classification
method to group digital camera images is presented in
[18], where the authors formulate the classification task as
a graph partitioning problem by using a multiclass spectral
clustering. A drawback of this method is the stop criterion,
so in [19] the usage of a Silhouette coefficient is proposed
to overcome this limitation. Nonetheless, the use of
Silhouette coefficient is not able to completely solve the
randomness of the multiclass spectral clustering, in fact,
the random selection of the starting point in the clustering
procedure implies multiple and sometimes very different
results in the classification of images.

In this paper, the problem of classifying images without
the use of a trained set is faced by overcoming the
randomness problem generated by the multi-class spectral
clustering. Such an improvement is mainly achieved by
resorting at a new and effective clustering procedure,
based on Normalized Cuts criterion [20], and by introducing
a novel and simple method to determine an automatic
stop criterion; such a criterion relies on the goodness of
cluster aggregation and the estimation of the cut-off
threshold is obtained by means of ROC curves [21].
Experimental results are provided to confirm that the
proposed technique permits to achieve higher perfor-
mances both in image grouping (in terms of true/false
positive rate – TPR/FPR) and of computational burden with
respect to the state-of-the-art methods.

The paper is organized as follows: Section 2 describes
the state of the art regarding multi-class spectral cluster-
ing method, while Section 3 presents the new proposed
one; in Section 4 experimental results are presented and
Section 5 concludes the paper. In Appendix A, a detailed
description of the evaluation metrics used for the experi-
mental tests is provided.
2. An analysis on multi-class spectral clustering

This section is dedicated to the analysis of the multi-
class spectral clustering (MCSC) method, as presented in
[18,22] (see Section 2.1). By following this approach, each
image is considered as a node in a weighted undirected
graph, thus making the clustering task to converge to a
graph partitioning problem, where images (nodes) belong-
ing to the same partition are assigned as acquired by the
same digital camera. However, such a technique has two
main open issues that will be discussed hereafter: firstly, it
provides results that strictly depend on the random start-
ing point and, secondly, it needs a stop criterion. In Section
2.2, an in-depth analysis on such issues is presented.

2.1. The MCSC algorithm

Given an image set I of N images (each one indicated as
Ii, i¼ ½1;N�), a weighted undirected graph G is defined on I
such as G¼ ðV ; ε;WÞ, where V ¼ fVig, i¼ ½1;N� is the set of
all nodes/images (Vi corresponds to Ii), and ε is the edge
set, whose elements are represented by the entries of the
affinity matrix W ¼ fwijg. The complete structure of the
graph can thus be characterized by means of its affinity
matrix W. Note that each image is described by its PRNU
noise, extracted as previously described in Section 1, and it
will be used for the whole clustering process; thus, in the
following, when the terms image or noise image will be
adopted, they will state for PRNU noise extracted from the
image, if not otherwise defined.

Partitioning the graph is accomplished by finding the
optimal relaxed solution of the eigensolution matrix of W;
the basic steps are presented hereafter:
1.
 Given the weight matrix W and the number of classes
K.

n

2.
 Find the optimal eigensolution Zn and normalize it to ~X .

3.
 Define a new working matrix Rn, having N rows and K

columns.

4.
 Select a random row of the matrix ~X

n
and assign it to

the first column of the matrix Rn.
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5.

Digital cameras used in the experiments.

Digital camera Brand and model
For k¼ 2:K , compute the product absð ~Xn � Rn

k�1Þ, and
iteratively increment, by this value, a vector c (dimen-
sions N by 1); then, assign to the k-th column of Rn the
i-th row of ~X

n

, where i¼ arg min c;

1 Canon EOS 400D DIGITAL
6.

2 Canon DIGITAL IXUS II
3 Canon DIGITAL IXUS i zoom
4 Panasonic DMC-FX12
5 Panasonic DMC-LZ5
6 FujiFilm FinePix J20
7 Olympus FE-120,X-700
8 Samsung VP-MS11
Repeat:
– compute ~X ¼ ~X

n � Rn;
– build the matrix Xn (N – number of classified images

– by K – number of classes) assigning, for each n-th
row (i.e. for each image), 1 to the k-th column
corresponding to the class the n-th image belongs
to, and 0 elsewhere;

– compute the Singular Value Decomposition of XnT ~X
n

and let it be UΩUT ;
– re-compute Rn as ~U � UT ;
until the deviation in the trace of Ω is lower than the
machine precision.
7.
 Output Xn, i.e. the optimal discrete solution.
Refer to [22] for a more detailed description of the
procedure. It is worth noting that the MCSC algorithm is
based on the initial knowledge of the number of expected
classes K, but, in our application scenario, it is not
possible to a priori know how many digital cameras are
involved in the clustering task; therefore, in [18] the
MCSC procedure is repeated iteratively, starting from
K¼2 and increasing, at each iteration, the number of
expected groups. This is done until a cluster composed of
only one node (image) is found. The cycle then stops and
the classification achieved at the previous iteration
(K ¼ KSTOP�1) is assumed to be the optimal one. When
implementing and testing the algorithm proposed in [18],
the so-called Basic MCSC, we had to deal with two major
problems: the first one is the random selection of the row
of ~X

n
in the initialization of Rn (step 4 in the previously

mentioned procedure) and the second is the stop criter-
ion for the definition of the optimal number of classes.
The random selection of a row of ~X

n

impacts onto the
repeatability of the experiments; this means that a
different final clustering can be achieved on the same
image dataset and, consequently, diverse performances in
image classification are obtained. It is interesting to
notice that such an initialization-dependant difference
is quite relevant and, on the other side, the stop criterion
which requires to find a single image/node in a cluster
does not actually take into account of the inner cluster
homogeneity and of the inhomogeneity among clusters.
Thus, we studied the behavior of Basic-MCSC by means of
TPR (True Positive Ratio), whose definition is introduced in
Appendix A; TPR basically permits to understand how
many images are correctly grouped together. In particular,
we analyzed the performances on a number of 500 tries
for each of 4 selected sets (see hereafter). The images
composing all the sets come from 8 different cameras
(see Table 1).
Set 1:
 300 images, coming from cameras 1–6, 50 images
per camera.
Set 2:
 400 images, coming from all the 8 cameras in
Table 1, 50 images per camera.
Set 3:
 300 images, from cameras 1–6, distributed as 70,
70, 70, 30, 30, 30 images per camera.
Set 4:
 440 images, from cameras 1–6, non-uniformly
distributed as 30, 150, 80, 20, 60, 100 images per
camera.
In Fig. 1, TPR over the 4 different sets is presented.
To improve the readability, only 100 of the 500 tries have
been shown; the behavior outside this range is qualita-
tively similar to this anyway. It is worthy to notice that the
method's performances are not stable at all because of the
random initialization and, furthermore, a high variance
with respect to the average (the dotted lines in Fig. 1) is
evidenced for all the tested data-sets.

2.2. Some variations

After that, we have tried to modify the algorithm in
order to better understand which is the real impact of
randomization issue. We have calculated the random
index i, in the above algorithm, outside of the K-cycle
(step 5), thus having a single value for all the k values
within each of 500 tests. In Fig. 2, TPR over Set 1 and Set 2
with such a variation is presented (results achieved for Set
3 and Set 4 were similar and so they are omitted).

Experiments demonstrate that a very limited improve-
ment is anyway obtained when applying the above
explained modification to the basic algorithm which how-
ever maintains its performance variability due to its
intrinsic randomness. Successively, we have tried to rede-
fine the stop criterion, trying to introduce a measure
which was not only based on the cardinality of a cluster
(one image in a cluster as in [18]) but fundamentally on
the internal homogeneity and the external inhomogeneity
of the clusters. To do so, we introduced the usage of the
Silhouette coefficient, which has been successfully used in
[17,19]. Silhouette coefficient si combines both the mea-
sures of cohesion (inside clusters) and separation (among
clusters). For each noise image, the coefficient si is simply
computed as

si ¼ bi�ai ð1Þ
where
�
 ai (cohesion): the average correlation of the noise
image Ii with all other noise images in the same cluster;
�
 bi (separation): the average correlation of the noise
image Ii with all other noise images in each one of the



Fig. 1. MCSC algorithm: TPR computed on 500 tries (for the sake of readability only 100 tries are reported) over 4 different sets: (a) Set 1, (b) Set 2, (c) Set 3,
and (d) Set 4.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

n. tries

TP
R

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

n. tries

TP
R

Fig. 2. MCSC algorithm with the random index i fixed within each try: TPR computed on 500 tries (for the sake of readability only 100 tries are reported)
over 2 different sets: (a) Set 1 and (b) Set 2.
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Table 2
The Basic MCSC algorithm and its variation with Silhouette coefficient:
mean values of TPR and FPR over the 4 different sets.

Datasets Basic MCSC (%) Silhouette MCSC (%)

mean TPR mean FPR mean TPR mean FPR

Set 1 53.76 0.1481 86.70 0.1367
Set 2 62.54 0.8093 86.25 0.2364
Set 3 59.12 0.0873 65.79 0.1717
Set 4 34.68 0.4881 73.67 1.5296
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other clusters, taking the minimum value with respect
to all clusters.

It is possible to note that a very negative value of si
comes from a separation value bi which is highly negative
and a cohesion ai which is very positive: this is the desired
situation, indicating that clusters are highly homogeneous
inside each one and highly separated among each other.
The procedure aims therefore to find the smallest si value
to succeed in a correct classification. To introduce the
Silhouette coefficient as stop criterion within the algo-
rithm (now renamed Silhouette MCSC), we have made the
following modifications. Let K be the number of clusters
and N the number of to-be-clustered images, by starting
from K¼1 (i.e. all the images in only one cluster), we
iterate the clustering and the Silhouette coefficient com-
putation up to K¼N (i.e. only one image in each cluster).
The chosen clustering configuration is the one correspond-
ing to the lowest Silhouette coefficient value. In Fig. 3, TPR
for 100 tries on Set 1 and Set 2 is presented again (results
achieved for Set 3 and Set 4 were similar).

As it is possible to note, the mean values of TPR are
improved by introducing the Silhouette coefficient stop
criterion: TPR becomes significantly higher (almost 30%).
Furthermore, there is also a marked difference with
respect to the trend of the original stop criterion, resulting
in a reduced variability of values; this is also true for all the
sets used in this analysis stage. In Table 2 the mean values
of TPR and, for the sake of completeness, FPR for Sets 1–4
are reported. It is possible to note that introducing the
Silhouette coefficient improves the performances in terms
of TPR while FPR remains similar.

3. The proposed method

In recent years, spectral clustering has become one of
the most popular modern clustering algorithms as it out-
performs traditional clustering algorithms [23–25] in
terms of computational efficiency and speed. These tech-
niques make use of the spectrum (eigenvalues) of the
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Fig. 3. MCSC algorithm with the Silhouette coefficient: TPR computed on 500 tri
sets: (a) Set 1 and (b) Set 2.
similarity matrix of the data to perform dimensionality
reduction before clustering in fewer dimensions. The
previously presented Multi-Class Spectral Clustering tech-
nique (see Section 2.1), though it shows such welcomed
features, evidences some drawbacks: firstly, it depends
upon performance variability due to its random initializa-
tion and, secondly, it needs a criterion to select the best
number of K clusters. To overcome such inconveniences, in
this section we introduce and discuss another spectral
clustering method, named Normalized Cuts method [20],
which does not require to initially know the number of
expected clusters (though it asks for a termination criter-
ion itself) and does not present any randomness in
performance.

3.1. The algorithm

Given a graph G¼ ðV ; EÞ, the edges E connecting each
pair of nodes/images are weighted by means of a chosen
similarity function wði; jÞ, with i and j being two nodes of
the graph. The graph G is partitioned into two disjoint
graphs A and B (A⋃B¼ V and A⋂B¼∅) by simply remov-
ing edges connecting the two parts. The total weight of the
edges removed in the partition activity gives a computa-
tion of the degree of dissimilarity between these two
parts: this is called the cut and is computed as

cutðA;BÞ ¼ ∑
uAA;vAB

wðu; vÞ ð2Þ
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es (for the sake of readability only 100 tries are reported) over 2 different
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The optimal bipartition of a graph is obtained by means of
the minimization of the cut value. However, it was noted
that the minimum cut criteria favor cutting small sets of
isolated nodes in the graph because the cut defined in Eq.
(2) increases with the number of edges going across the
two partitioned parts. To avoid such an unwanted beha-
vior, in [20], the authors proposed a different disassocia-
tion measure, as a fraction of the total edge connections to
all the nodes in the graph, called the normalized cut (Ncut)
and defined as in the following:

Ncut A;Bð Þ ¼ cutðA;BÞ
assocðA;VÞþ

cutðA;BÞ
assocðB;VÞ ð3Þ

where the association measure represents the total con-
nections from nodes in A to all nodes in the graph
(similarly for association of B) and it is defined as

assocðA;VÞ ¼ ∑
uAA; tAV

wðu; tÞ ð4Þ

Consider the graph G¼ ðV ; EÞ shown in Fig. 4, which is
composed of two complete graphs L and R, with 6 nodes
each, linked by two edges (a,c) and (b,d), where a; bAL and
c; dAR, and by a node x that does not belong to L and R and
is linked to a and c. If we consider the partition of V into
A¼ L [ R and B¼ fxg, then we have that cutðA;BÞ ¼ 2:
moreover, any other partition would produce a cut value
greater than 2. Hence, with respect to the cut value, this
partition is optimal. If we consider, instead, the normalized
cut value, since assocðA;VÞ ¼ jEj and assocðB;VÞ ¼ 2, we
have that Ncut A;Bð Þ ¼ 2= E þ2

241
���� . On the other hand, if

we consider the partition of V into A¼ L [ fxg and B¼R,
then we have cutðA;BÞ ¼ 3, assocðA;VÞ ¼ ððjV j�1Þ=2Þ
ððjV j�1Þ=2�1Þþ4¼ 34 and assocðB;VÞ ¼ ððjV j�1Þ=2Þ
ððjV j�12Þ=�1Þþ3¼ 33. Hence, in this case we have that
Ncut ¼ 3

34þ 3
33o1, and this partition would be preferred.

The example can be generalized by considering two
complete graphs with n nodes: once again the normalized
cut value of the first partition would be greater than 1,
while the normalized cut value of the second partition
would be Oð1=n2Þ, so that this latter partition would be
preferred.

Though minimizing normalized cut exactly is NP-com-
plete, an approximate discrete solution can be found
efficiently in a real value domain. G¼ ðV ; EÞ being a graph
to be partitioned into two sets A and B; let x be an
indicator vector of dimension N¼ jV j, where xi ¼ 1 if the
node i belongs to A and �1 otherwise, and let also
dðiÞ ¼∑jwði; jÞ be the total connection from node i to all
other nodes, and D an N�N diagonal matrix with d on its
diagonal. On the basis of such assumptions, the problem of
minimizing the normalized cut can be rewritten as (see
Fig. 4. An example of a graph in which a cluster with an isolated node is
preferred.
[20] for more details)

min
x

Ncut xð Þ ¼min
y

yT ðD�WÞy
yTDy

ð5Þ

where

y¼ 1þxð Þ�b 1�xð Þ

b¼∑xi 40di

∑xi o0di

If y is relaxed to take on real values, we can minimize
Eq. (3) by solving the generalized eigenvalue system in the
following equation:

ðD�WÞy¼ λDy ð6Þ
In the end, the partitioning procedure can be summar-

ized as follows:
1.
 Given a set of features, set up a weighted graph
G¼ ðV ; EÞ, compute the weight on each edge which
measures the similarity between two nodes.
2.
 Solve Eq. (6) for eigenvectors with the smallest
eigenvalues.
3.
 Use the eigenvector with the second smallest eigenva-
lue to bipartition the graph by finding the splitting
point such that Ncut is minimized.
4.
 Decide if the current partition should be subdivided
recursively by checking the stability of the cut (see
Section 3.2).

3.2. The threshold matter

The Normalized Cuts procedure is based on an iteration
step (step 4) which depends on a stability check. In [20],
such a check was made by comparing the Ncut value to a
pre-specified threshold. In our implementation we have
defined an aggregation coefficient (AC) (see Eq. (7)) which is
computed for each one of the obtained clusters; the group
corresponding to the lower AC value is split if such
coefficient is under a pre-defined threshold Th. The itera-
tion stops when the aggregation coefficients of all the
clusters are greater than the threshold Th. We used, as
aggregation coefficient, simply the mean value of the
weights among nodes (Nk) belonging to that cluster. This
kind of coefficient requires a low computational burden
and has demonstrated a good effectiveness with respect to
other more sophisticated measures:

AC kð Þ ¼ 1
Nk

∑
i;j
w i; jð Þ ð7Þ

The definition of the threshold Th is not a trivial task; we
have used an approach based on ROC curves by taking as
parameters of the correctness of a clustering the values of
TPR and FPR with respect to a ground truth. To do that we
have considered five diverse sets of images whose acquisi-
tion cameras were known. Four of these five sets were
those already used for analyzing the Multi-Class Spectral
Clustering algorithm (see Section 2.1 for their detailed
composition), while the fifth set (Set 5), constituted by
photos downloaded by Flickr-photo sharing, has been taken
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as additional. In particular, such a fifth set was composed
of images coming from five different devices of the same
camera model, a Nikon Coolpix S210, and the set composi-
tion was the following:
Set 5:
1

2

3

4

5

6

7

8

9

10

TP
R

110 images, 5 cameras, distribution 23, 20, 25, 24, 18
images per camera.
The variation range of the threshold Th was set between
0.02 and 0.07, with a step of 0.001. We thus obtained, for
each set, a ROC curve, as depicted in Fig. 5 (left).

By means of these ROC curves, for each set it is possible
to find the optimal threshold value, as the one producing
the (TPR,FPR) pair as close (in terms of minimum euclidean
distance) as possible to the ideal pair TPR¼ 100% and
FPR¼ 0%. Table 3 (on the left) summarizes the obtained
results. To determine the threshold Th to be used in our
experiments, we have averaged the values of TPR and FPR
over the five sets for each threshold within the variation
range, obtaining the ROC curve depicted in Fig. 5 (right).
At this point, we have again computed which point
achieves the minimum euclidean distance of the (TPR,
FPR) from the ideal point at the top-left of the graph: the
threshold value obtained is finally Th¼0.037, such a value
will be adopted in the following experiments of the paper.
According to this threshold, performances in terms of TPR
and FPR for the five sets have been recalculated and listed
in Table 3 (right) with respect to each best case.
Table 3
Values of (TPR,FPR) for each best case for each set (on the left) and for the
selected threshold Th¼0.037 (on the right).

Datasets Th (best of) TPR (%) FPR (%) Th TPR (%) FPR (%)

Set 1 0.047 89.33 0.33 0.037 86.67 2.33
Set 2 0.046 95.75 0.18 0.037 85.25 1.96
Set 3 0.022 83.33 1.85 0.037 70.48 1.85
Set 4 0.029 89.92 1.04 0.037 73.08 1.04
Set 5 0.037 97.09 0.44 0.037 97.09 0.44
4. Experimental results

In order to compare the proposed algorithm with other
state-of-the-art methods, some experiments have been
performed.

First of all, three new image sets, different from those
(Set 1–Set 5) adopted so far, have been prepared. They
have been named Set A, Set B and Set C, and are composed
of some images randomly chosen from the previous sets
used to tune-up the algorithms, and some other new ones.
Test sets are described in detail in Table 4.
0 5 10 15 20
0
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0

0

0
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0

FPR

Set 1
Set 2
Set 3
Set 4
Set 5 

Fig. 5. ROC curves for the five considered sets (left) and ROC curv
After that, the proposed method (Normalized Cuts with
threshold Th¼0.037) has been compared, over these three
test sets, with the basic MCSC technique [18] and with its
variation the Silhouette-MCSC, as presented in Section 2.2;
furthermore, another methodology, the Hierarchical
Agglomerative Clustering (HAC), has been tested. The HAC
is a clustering algorithm which has been proposed for
blind image clustering in [17]; it resorts at a Silhouette
coefficient as stop criterion achieving good performances.
Before starting with experimental results, we would like to
provide a hint on computational time of the various tested
algorithms. With reference to Test Set A, for example, we
can assess that the proposed method presents an execu-
tion time of around 0.18 s against 1.48 s of the Basic MCSC,
while, when the Silhouette coefficient is introduced, MCSC
takes about 82 s and the HAC around 41. The computations
have been derived on DELL PRECISION T1500 desktop PC,
equipped with an Intel Core i7 64 bit CPU @2.80 GHz, RAM
4 GB, in a Matlab R2010a environment.

This section, dedicated to the experimental results, is
organized as follows: firstly, in Section 4.1, PRNU extrac-
tion and enhancement is explained and, consequently, the
construction of the similarity matrix is debated, while a
quantitative analysis of the performances, in terms of TPR
and FPR, is given in Section 4.2 and in Section 4.3, some
considerations, concerning the actual distribution of the
images within each cluster, are provided.
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4.1. PRNU extraction/enhancement and the similarity matrix

Photo Response Non-Uniformity (PRNU) noise is a sort of
fingerprint which is typical of each kind of sensors; its
presence is induced by intrinsic disconformities in the man-
ufacturing process of silicon CCD/CMOSs and it can be
extracted by means of digital filtering operations [17,9–12].
In our implementation, we have considered a wavelet-based
denoising filter as in [17]. After that a suppression artifact
procedure was applied to the obtained PRNU in order to
remove some weak artifacts due to color interpolation in
accordance with [9] and an enhancer is then adopted as
defined in [17]. Such a procedure for the extraction of the
noise image is applied to the image of the dataset (JPEG
format at the maximum resolution of the camera). Once all
the noise images have been generated, the similarity matrix
has been created, computing the normalized cross-correlation
between each noise image and all the others. The normalized
cross-correlation is computed as

corr ni;nj
� �¼ ðni�niÞ � ðnj�njÞ

Jni�ni J � Jnj�nj J
ð8Þ

where n is the enhanced PRNU image, and the operator J � J
stands for the L2-norm operation, with i and j being the
indexes of noise images belonging to each evaluated set (ia j),
for all sets it is possible to build a similarity matrix, featuring all
Table 5
TPR and FPR values for each test set for the different methods.

(%) Proposed Th¼0.037 Basic MCSC

TPR FPR TPRav (min/max) FPRav (min/max

Set A 79.45 0.22 45.42 (32.38/74.61) 0.24 (0.00/2.15)
Set B 81.50 3.99 38.66 (30.13/57.93) 0.11 (0.00/0.45)
Set C 92.32 1.56 37.27 (17.50/60.58) 0.14 (0.00/2.91)

Table 4
The three different test sets: the images are spread in 6, 5, and 4 sets.

Test
set

No
images

Brand and model No images per
camera

A 266 Canon EOS 400D DIGITAL 30
Canon DIGITAL IXUS i
zoom

50

Panasonic DMC-FX12 30
Panasonic DMC-LZ5 50
Nikon COOLPIX S210 24
Olympus Mju 1050SW 82

B 184 Canon EOS 400D DIGITAL 30
Canon DIGITAL IXUS i
zoom

50

Panasonic DMC-FX12 30
Panasonic DMC-LZ5 50
Nikon COOLPIX S210 24

C 204 Canon DIGITAL IXUS 50 37
FujiFilm FinePix F10 44
NIKON D80 60
Sony DSC-P200 63
the distances (or similarities) between each pair of PRNU
images.
4.2. Performance comparison

The proposed method is hereafter compared with the
other three presented methods; experimental results are
presented in terms of TPR and FPR. The proposed method
(Normalized Cuts with threshold Th¼0.037) has been com-
pared with the Basic MCSC technique, with the Silhouette
MCSC and the Hierarchical Agglomerative Clustering (HAC). In
Table 5, the values of TPR and FPR for each test set (A, B and C)
and for each method have been reported. It is to be noted that
when dealing with the Multi-Class Spectral Clustering algo-
rithm (Basic and Silhouette), the problem of randomization
still persists (see Section 2.1); thus, several tries have been
performed (500 for the Basic MCSC algorithm, 100 for Silhou-
ette MCSC) and the averaged values over the tries (indicated
with the subscript av) are the ones reported in Table 5 where
the minimum and maximum values are reported as well. On
the other side the HAC method and the proposed one do not
present any variability at all, not depending on any random
initialization. Looking at Table 5 and by referring to the
averaged values, it is possible to observe that the proposed
method outperforms the MCSC techniques (Basic and Silhou-
ette), both in terms of TPR and FPR, though FPR of the
proposed method is slightly higher for Set B and Set C. By
considering the min/max values achieved by the MCSC (Basic
and Silhouette), it can be appreciated that, also in a lucky try,
the maximum TPR is always lower than the proposed one,
except for Silhouette MCSC onto Set B. In comparison with
Silhouette HAC, the proposed method presents a comparable
TPR, though over Set C there is a significant improvement of
about 22%, but a FPR that is basically smaller.

For a more complete analysis and a visual comparison,
in Fig. 6 the trends of the TPR (left column) and FPR (right
column) for each set are drawn; because of the random-
ness of two MCSC-based methods, results are reported
over 100 tries and their average values, as presented in
Table 5, have been drawn too. The blue line corresponds to
the proposed method and the magenta represents the HAC
(both lines are obviously constant onto the 100 tries),
while the red one corresponds to the Basic MCSC and the
green one to the Silhouette MCSC (both showing a high
variability at the turn of the mean values). The considera-
tions made when discussing Table 5 are visually confirmed
by looking at Fig. 6. Fundamentally, the proposed method
outperforms MCSC-based ones mainly in terms of TPR and
provides a lower FPR than HAC while maintaining a
comparable, slightly better, TPR.
Silhouette MCSC Silhouette HAC

) TPRav (min/max) FPRav (min/max) TPR FPR

63.58 (53.98/73.08) 1.00 (0.23/2.79) 79.85 2.68
70.57 (68.70/84.03) 0.27 (0.15/0.91) 79.20 4.72
55.04 (41.89/63.11) 0.97 (0.00/3.13) 70.07 9.52
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Fig. 6. TPR True Positive Rate (left column) and FPR False Positive Rate (right column): comparison among clustering methods for each test set.
The proposed method in blue, basic MCSC in red, Silhouette MCSC in green and HAC in magenta: (a) TPR, Set A; (b) FPR, Set A; (c) TPR, Set B; (d) FPR, Set B;
(e) TPR, Set C; and (f) FPR, Set C.
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4.3. Qualitative analysis of clusters composition

For a better comprehension of the real behavior of the
tested methods, and beyond the abrupt evaluation of TPR and
FPR, a qualitative analysis concerning how the images are
actually distributed in the obtained clusters is presented in
this subsection. In Figs. 7, 8 and 9, the classification of images
for Set A, Set B and Set C has been reported, respectively. For
each method, on the x-axis the found clusters are shown by
means of columns, whose height represents the cardinality of
each cluster. According to the ground truth, images originally
belonging to a certain camera (cluster) are of the same color,
so different colors appear in the columns where false positives
are occurred. For the sake of clarity, the ideal case
(TPR¼ 100% and FPR¼ 0%) would be represented by all
single-colored columns whose number equals the number
of cameras in the ground truth.

Looking at Fig. 7, it is immediate to appreciate that the
proposed method (Fig. 7 (a)) and the HAC (Fig. 7 (d)) grant a
Fig. 7. Set A, comparison among the tested methods. Note that for MCSC-based m
nearest, in the euclidean sense, to the mean values pair TPR–FPR (try n. 42 for B
Silhouette MCSC): (a) proposed method, (b) basic MCSC, (c) Silhouette MCSC, a
reduced dispersion with respect to the MCSC-based techni-
ques (Fig. 7 (b) and (c)). In this case (Set A, see composition in
Table 4), the proposed method obtains 9 clusters (numbers 8
and 9 are quite small), instead of 6 as expected, and with a
high degree of compactness; in fact, clusters colored in blue,
dark blue and orange (Canon IXUS, Canon 400D and Nikon
COOLPIX S210, respectively) are completely compact and do
not present any of their images wrongly located in other
clusters. Similarly, clusters in yellow and light blue (Panasonic
DMC-LZ5 and Panasonic DMC-FX12, respectively) show a high
level of compactness, in fact only few images have been
dispersed; some images, originally belonging to the yellow
cluster, have been grouped in a spurious group (number 9),
while for the light blue one, some images have been asso-
ciated with the yellow cluster (number 4). It is interesting to
point out that such a cluster (number 4) is representative of a
camera of the same brand but of a different model. On the
contrary, the brown cluster (Olympus Mju 1050sw) is split
into three sub-parts: the main one in the group number 1 and
ethods, it has been reported the configuration showing the pair TPR–FPR
asic MCSC, [TPR, FPR]¼[45.62, 0] and n. 49, [TPR, FPR]¼[63.90, 0.75] for
nd (d) Silhouette HAC.



Fig. 8. Set B, comparison among the presented methods. Note that for MCSC-based methods, it has been reported the configuration showing the pair TPR–
FPR nearest, in the euclidean sense, to the mean values pair TPR–FPR (try n. 16 for Basic MCSC, [TPR, FPR]¼[38.53, 0.13] and n. 3, [TPR, FPR]¼[69.90, 0.15]
for Silhouette MCSC): (a) proposed method, (b) basic MCSC, (c) Silhouette MCSC, and (d) Silhouette HAC.
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two others (numbers 6 and 8) which, though separated, are
not however inserted within other clusters. The brown
clusters present, also for the other methods, a large level of
dispersion which could be due to the intrinsic specific
characteristics of the images.

It is also interesting to highlight how the introduction
of the Silhouette coefficient in MCSC method reduces the
spreading of images (see Fig. 7(b) and (c)) both in terms of
creating new clusters (clusters are halved from 26 to 13)
and of assigning some images to different cameras (e.g. the
brown cluster is distributed over 16 in Fig. 7(b) and then
only over 6 in Fig. 7(c)). On the contrary, the Hierarchical
Agglomerative Clustering tends to produce a lower num-
ber of classes, thus aggregating sets of images coming from
different cameras. It is possible to say that HAC prefers the
aggregation of images, instead of the separation. This is
also confirmed by the values of FPR, which are higher, on
average, for HAC method than for the others.
Results presented in Figs. 8 and 9 globally confirm, for
each one of the methods, the behavior shown in Fig. 7 for
the other two test sets B and C. From a careful observation
of Figs. 7–9, it can be deduced that the proposed method
seems to offer an effective trade-off between the tendency
of the MCSC-based methods to over-split images into too
many clusters and the trend of HAC to join images actually
belonging to different classes.

5. Conclusion and future works

In this paper a novel methodology based on Normalized
Cuts criterion to perform blind image clustering has been
introduced and evaluated in comparison with other state-of-
the-art techniques, achieving results that are better in terms
of accuracy and computational complexity. Such a methodol-
ogy resorts at a stop threshold to freeze the clustering
procedure but does not need any additional information



Fig. 9. Set C, comparison among the presented methods. Note that for MCSC-based methods, it has been reported the configuration showing the pair TPR–
FPR nearest, in the euclidean sense, to the mean values pair TPR–FPR (try n. 344 for Basic MCSC, [TPR, FPR]¼[37.23, 0.16] and n. 64, [TPR, FPR]¼[55.44, 0]
for Silhouette MCSC): (a) proposed method, (b) basic MCSC, (c) Silhouette MCSC, and (d) Silhouette HAC.
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concerning the number of expected clusters, so it offers a
good instrument to work in this kind of application scenario.
Future works will be dedicated to individuate an adaptive stop
criterion which takes into account the actual characteristics of
the clustering stage. Another possible future development is
related to the analysis of the performances of the proposed
technique when fingerprint digests are adopted to deal with a
significant number of cameras and images. In this case, it
could be interesting to also take into account the adoption of
techniques for parallel spectral clustering [26].
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Appendix A. TPR and FPR definition

Clustering procedures have been evaluated and com-
pared by means of quantitative measures such as the True
Positive Ratio (TPR) and the False Positive Ratio (FPR). These
ratios can be computed with respect to a known ground-
truth classification (images acquired by each camera); both
the TPR and the FPR are calculated separately for each
obtained cluster and then averaged on the number of
ground-truth clusters, that is by considering only the
number of expected clusters. More in detail, TPR is a
measure stating how many images are allocated in the
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“correct” cluster, with respect to the expected cardinality
of the cluster; similarly, FPR states for how many images
are erroneously assigned to a cluster with respect to the
number of images actually not belonging to it. In formulae,
TPR and FPR can be computed as

TPR¼ TP
TPþFN

FPR¼ FP
FPþTN

ðA:1Þ

In previous equation (A.1), the used notations have the
following meaning:
TP:
 True Positives, images assigned to a cluster that
actually belong to that cluster.
FN :
 False Negatives, images belonging to a cluster,
that have not been assigned to that cluster.
FP:
 False Positives, images assigned to a cluster that
actually belong to a different one.
TN :
 True Negatives, images not assigned to a cluster
that actually belong to different ones.
TPþFN
:

The sum of True Positives and False Negatives
represents the measure of how many images
actually belong to a cluster, that is the cardinality
of the cluster itself, known by the ground-truth.
FPþTN
:

The sum of False Positives and True Negatives
represents the measure of how many images
actually belong to all the other clusters except
the evaluated one.
TPR and FPR are assessed in percentage; the higher the
TPR and the lower the FPR, the better the clustering. The
ideal case is the one showing TPR¼ 100% and FPR¼ 0%,
asserting that all and only the images actually belonging to
a cluster have been assigned to that cluster.
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