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Abstract— Performing face recognition across 3D scans of dif-
ferent resolution is now attracting an increasing interest thanks
to the introduction of a new generation of depth cameras,
capable of acquiring color/depth images over time. However,
these devices have still a much lower resolution than the 3D
high-resolution scanners typically used for face recognition
applications. If data are acquired without user cooperation,
the problem is even more challenging and the gap of resolution
between probe and gallery scans can yield to a severe loss in
terms of recognition accuracy. Based on these premises, we
propose a method to build a higher-resolution 3D face model
from 3D data acquired by a low-resolution scanner. This face
model is built using data acquired when a person passes in front
of the scanner, following an uncooperative protocol. To perform
non-rigid registration of point sets and account for deformation
of the face during the acquisition process, the Coherent Point
Drift (CPD) method is used. Registered 3D data are filtered
through a variant of the lowess method to remove outliers and
build the final face model. The proposed approach is evaluated
in terms of accuracy of face reconstruction and face recognition.

I. INTRODUCTION

Person identity recognition by the analysis of 3D face
scans is attracting an increasing interest, with several chal-
lenging issues successfully investigated, such as 3D face
recognition in the presence of non-neutral facial expressions,
occlusions, and missing data [6]. Existing solutions have
been evaluated following well defined protocols on consoli-
dated benchmark datasets, which provide a reasonable cover-
age of the many different traits of the human face, including
variations in terms of gender, age, ethnicity, occlusions due
to hair or external accessories. The resolution at which 3D
face scans are acquired changes across different datasets, but
given a dataset it is typically the same for all the scans. Due
to this, the difficulties posed by considering 3D face scans
with different resolutions and their impact on the recognition
accuracy have not been explicitly addressed in the past.
Nevertheless, there is an increasing interest for methods
capable of performing recognition across scans acquired
with different resolutions. This is mainly motivated by the
availability of a new generation of low-cost, low-resolution
3D dynamic scanning devices (i.e., 3D plus time, also called
4D), such as Microsoft Kinect or Asus Xtion PRO LIVE.
In fact, these devices are capable of a combined color-depth
(RGB-D) acquisition at about 30fps, with an optimal working
distance from the sensor ranging from 40cm up to 1.5m.
The spatial resolution of such devices is lower than that of
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high-resolution 3D scanners, but these latter are also costly,
bulky and highly demanding for computational resources.
Despite the lower resolution, the advantages in terms of cost
and applicability of consumer cameras motivated some pre-
liminary works performing face detection [20], continuous
authentication [19] and recognition [9], [13], [15] directly
from the depth frames of the Kinect camera. However,
based on the opposite characteristics evidenced by 4D low-
resolution and 3D high-resolution scanners, new applicative
scenarios can be devised, where high-resolution scans are
likely to be part of gallery acquisitions, whereas probes are
expected to be of lower resolution and potentially acquired
with 4D cameras. In this context, reconstructing a higher-
resolution model out of a sequence of low-resolution depth
frames is a plausible way to bridge the gap between low- and
high-resolution acquisitions. In fact, this could open the way
to more versatile 3D face recognition methods deployable in
contexts where the acquisition of high resolution 3D scans
is not convenient or even possible.

Based on these premises, in this work we define an ap-
proach specifically tailored to reconstruct a higher-resolution
face model from a sequence of low-resolution depth frames,
and thus capable of reducing the gap between low- and
high-resolution acquisitions. Some recent works explicitly
addressed this problem [3], but following a cooperative
acquisition protocol for the 3D dynamic sequence. Differ-
ently, in this work we focus on the problem of deriving
a higher-resolution model from a dynamic sequence of 3D
scans in an uncooperative scenario, where acquired persons
walk passing trough an access point monitored by a Kinect
camera, without any specific additional requirement.

A. Related Work

The idea of constructing a higher-resolution representation
of an object or scene from multiple low-resolution obser-
vations, possibly altered by noise, blurring or geometric
warping, has been first introduced for 2D still images.
Later, this concept has been extended to 3D generic data
for recovering one high-resolution model from a set of
low-resolution 3D acquisitions. For example, in [26] data
acquired with a time-of-flight camera are upsampled and
denoised by using information from a high-resolution image
of the same scene taken from a viewpoint close to the depth
sensor. Time-of-flight data are processed also in [24] by
using an energy minimization framework that explicitly takes
into account the characteristic of the sensor, the agreement
of the reconstruction with the aligned low resolution maps

Danijel
Text Box
978-1-4799-6026-2/15/$31.00 ©2015 IEEE



and a regularization term to cope with reconstruction of
sparse data points. Some works on this topic also focus on
3D faces [14], [21], [22]. In [22], high-resolution 3D face
models are used to learn the mapping between low- and
high-resolution data. Given a new low-resolution face model
the learned mapping is used to compute the high-resolution
face model. Differently, in [21] the reconstruction process
is modeled as a progressive resolution chain, whose features
are computed as the solution to a MAP problem. However, in
both the cases, the framework is validated just on synthetic
data. In [14], an algorithm is proposed that takes a single
face frame from a Kinect depth camera, and produces a
high-resolution 3D mesh of the input face. In this approach,
the input depth frame is divided into semantically significant
regions (eyes, nose, mouth, cheeks) and a database of high-
resolution scans is searched for the best matching shape
per region. The input depth frame is further combined with
the matched database shapes into a single mesh that results
in a high-resolution shape of the input person. However,
this process does not exploit any information coming from
the temporal sequence of scans, rather using the similarity
between parts of an individual low-resolution scan with parts
of higher-resolution scans used as reference.

In the approaches above, the higher-resolution recon-
struction depends on a single 3D low-resolution scan, with
the additional information used for reconstruction coming
from multiple high-resolution scans used as reference. This
completely disregards the temporal dimension available in
depth sequences acquired with a Kinect sensor. In order to
exploit such temporal information, some methods approach
the problem of noise reduction in depth data by fusing the ob-
servations of multiple scans [4], [10], [18]. In [18], the Kinect
Fusion system is presented, which takes live depth data from
a moving Kinect camera and creates a high-quality 3D model
for a static scene. Later, in [11] dynamic interaction has been
added to the system, where camera tracking is performed
on a static background scene and a foreground object is
tracked independently of camera tracking. Aligning all depth
points to the complete scene from a large environment (e.g., a
room) provides very accurate tracking of the camera pose and
mapping [18]. However, this approach is targeted to generic
objects in internal environments, rather than to faces. In [10],
a 3D face model with an improved quality is obtained by
a user moving in front of a low resolution depth camera.
The model is initialized with the first depth image, and
then each subsequent cloud of 3D points is registered to
the reference one using a GPU implementation of the ICP
algorithm. This approach is used in [4] to investigate whether
a system that uses reconstructed 3D face models performs
better than a system that uses the individual raw depth frames
considered for the reconstruction. To this end, authors present
different 3D face recognition strategies in terms of the used
probes and gallery. The reported analysis shows that the
scenarios where a reconstructed 3D face model is compared
against a gallery of reconstructed 3D face models, and where
one frame (1F) is compared against multiple frames in the
gallery, provide better results compared to the baseline 1F-1F

approach. Although the method is not conceived to increase
the resolution of the reconstructed model, it supports the idea
that aggregating multiple observations enhances the signal
to noise ratio, thus increasing the recognition results with
respect to the solution where a single frame is used.

B. Our Method and Contribution

In this paper, we present an original solution to derive one
3D face model from low-resolution depth frames acquired
with a Kinect camera. In the proposed approach, first the
face is automatically detected and cropped in each depth
frame; Then, the 3D face data extracted from the frames
are aligned with each other, so as to build a cumulated face
model; Finally, the lowess non-parametric regression method
is used to approximate the face surface from the cumulated
face model and remove outliers from the data. The proposed
approach has been evaluated on a subset of the The Florence
Superface dataset [3] which includes, for each individual,
one Kinect depth sequence captured in a non-cooperative
context, and one high-resolution face scan acquired with a
3dMD scanner. In summary, the main contributions of this
paper are:
• A complete approach to reconstruct a 3D face model

from a sequence of low-resolution depth frames of the
face, acquired with a non-cooperative protocol. In so
doing, the resolution of the final face model is higher
that the resolution of the individual depth frames;

• An evaluation demonstrating the accuracy of the recon-
structed face models with respect to the high-resolution
scans, and the face recognition results obtained by
using the reconstructed models as probes and the high-
resolution scans in the gallery.

The proposed approach shares the idea of reconstructing a
high-resolution face model from a sequence of low-resolution
depth frames with our previous work in [3]. However, the
method we define here differs from our previous proposal
in two main aspects: i) in [3], subjects were asked to sit in
front of the camera at a predefined distance, also requiring
them to move the head to the left- and right-side in order
to expose a large extent of the face to the sensor. In this
paper instead, an uncooperative protocol is assumed, where
subjects walk across an access gate monitored by the Kinect
sensor, thus posing additional difficulties in terms of varying
distance from the sensor, and different velocity; ii) in [3],
the increased resolution of the reconstructed model was
based on the up-sampling and 2D-Box splines approximation
of the cumulated 3D points cloud obtained by rigid (ICP)
registration of multiple 3D frames of a sequence. In this
work instead, we propose non-rigid registration of point sets
using the Coherent Point Drift (CPD) method, and outliers
removal with the lowess algorithm.

The rest of the paper is organized as follows: The scenario
and the problem statement are defined in Sect. II; The
reconstruction of the high-resolution face model based on
non-rigid registration and outliers removal is described in
Sect. III. Experimental results are reported and discussed in
Sect. IV. Finally, conclusions are given in Sect. V.



II. PROBLEM STATEMENT

In this work, we aim at reconstructing a 3D model of
the face, by processing a sequence of low-resolution depth
frames (frames in the following). The scanner is mounted on
the doorjamb at eye level, well positioned for viewing the
faces of people walking through the door. In Fig. 1, some
RGB and depth frames of a sample sequence are shown.
The face region is cropped in each frame by feeding a face
detector with the RGB data captured by the scanner.

Let k ∈ {1, . . . ,K} be the indexes of the frames where
a face is detected and x(k)i the 3D coordinates (x, y and
the depth value z) of the i-th facial point in the k-th frame
X(k). Registration of 3D facial data is operated in reversed
acquisition order starting from the last frame. The first
order cumulated point cloud C(1) is obtained by registering
{x(K−1)

i }i to {x(K)
i }i:

C(1) = R(1)
(
{x(K−1)

i }i, {x(K)
i }i

)⋃
{x(K)

i }i . (1)

being R(S1, S2) the registration operator that moves points
in the first set S1, so as to match the points in S2. In
the proposed solution, the registration operator is computed
using the Coherent Point Drift (CPD) algorithm [17], a
probabilistic method for non rigid registration of point sets.
Data in the next frame {x(K−2)i }i are aligned to the first order
cumulated point cloud to yield the second order cumulated
point cloud:

C(2) = R(2)
(
{x(K−2)i }i, C(1)

)⋃
C(1) . (2)

This process is iterated until data from all available frames
are registered to yield the K-th order cumulated point cloud
C(K). Compared to standard rigid registration methods, like
ICP, CPD has some major advantages, also related to the
specific characteristics of the considered acquisition process.
In fact, CDP is demonstrated to be more robust to noise
and outliers than ICP [17]. Furthermore, ICP performs rigid
registration of point sets yielding poor results in case of non-
rigid deformations, such as those that can be observed if
the user changes his/her facial expression and/or is speaking
during the acquisition process.

III. MANIFOLD RECONSTRUCTION

The result of the registration process described in the
previous Section is a point cloud that collects a set of points
in the 3D space. The generic i-th point p

(3)
i = (xi, yi, zi)

can be regarded as the observation, affected by some noise,
of the underlying face surface that can be modeled as a 2D
manifold embedded in the 3D space. In the proposed ap-
proach, reconstruction of the true face surface is formalized
as a problem of manifold reconstruction from noisy data. For
this purpose, we adopt and extend the approach described
in [8], which is based on a combination of dimensionality
reduction and local weighted regression.

Principal Component Analysis is used to reduce the di-
mensionality of the manifold and compute a 2D-embedding
of the point cloud. In this way, the intrinsic geometry of
the manifold is preserved by mapping close points on the

manifold (that does not necessarily mean close points in
the 3D space) into close points on the 2D embedding. Let
p
(2)
i = (ui, vi) be the coordinates of the point p

(3)
i after

projection onto the 2D embedding through PCA. Recon-
struction of the manifold at point p

(3)
i is accomplished by

fitting a low-dimensional polynomial to a subset of the point
cloud: only those points of the cloud that are mapped close
to p

(2)
i on the 2D-embedding are used to build the local

subset. Operatively, the subset of data is determined by a
nearest neighbors algorithm on the 2D-embedding. In the
literature, the cardinality of this subset is controlled through
a smoothing parameter α ∈ (0, 1). The points used to fit the
polynomial are the nα closest to p

(2)
i on the 2D-embedding.

This set is denoted as N
(
p
(2)
i

)
and it does not include p

(2)
i .

Large values of α produce smooth regression functions
that wiggle the least in response to fluctuations in the data.
The smaller α is, the closer the regression function will
conform to the data, thus yielding poor robustness to noise.

The Weighted Least Squares method is used to fit a second
order polynomial to the local subset of data:

x = a1u
2 + a2v

2 + a3uv + a4u+ a5v + a6

y = a7u
2 + a8v

2 + a9uv + a10u+ a11v + a12 (3)
z = a13u

2 + a14v
2 + a15uv + a16u+ a17v + a18 .

Following the original approach [5], the tricube weight
function is used to compute the weight associated with the
point p(3)

j of the local subset centered at p(2)
i :

wi

(
p
(3)
j

)
=

1−
 d

(
p

(2)
i −p

(2)
j

)
max

p
(2)
j

∈N(p(2)
i )

d
(
p

(2)
i −p

(2)
j

)
3

3

(4)
the above equation holding if p(3)

j ∈ N(p
(3)
i ), and being the

weight equal to zero otherwise.
In this way, the regression function that solves the

weighted least squares problem gives higher weight to points
close to p

(2)
i . It should be noticed that wi

(
p
(3)
i

)
= 0, that

is, the point at the center of the local subset is not used to
compute the regression function.

A. Robust Locally Weighted Regression

The presence of outliers in the data badly affects the
solution of the weighted least squares problem [12]. To
reduce the effect of outliers and to improve robustness of
the fitted model a robust weight is used for each data point
of the local subset. Robust weights are computed based on
the residuals measuring the error between the reconstructed
(using LWR) and the original points in the 3D space. Let
g(u, v) : R2 7→ R3 be the solution of the weighted least
squares problem. For each point p(3)

j , the following residual
error rj is considered:

rj =
∥∥∥p(3)

j − g
(
p
(2)
j

)∥∥∥ . (5)

The value of the residual rj measures the distance be-
tween the original position of a point and its reconstructed
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Fig. 1. Sample RGB and colored depth frames acquired by the Kinect. The face region identified by the face detector is evidenced in each frame

counterpart. Thus, it can be used to introduce a correction to
the weight wj . This correction results in a severe decrease
of the weight if the value of the residual is high, meaning
that the point is likely to be an outlier. For this purpose, the
bisquare weight function is used:

B(rj) =

{ [
1−

( rj
6r̂

)2]2
if |(rj/r̂)| < 1

0 otherwise
(6)

being r̂ the median value of the residuals of points of the
local subset.

IV. EXPERIMENTAL RESULTS

The proposed approach has been evaluated considering
two aspects: The effectiveness of the reconstruction process,
by computing the error between the reconstructed models
and the corresponding high-resolution scans (Sect. IV-B);
The possibility of using the reconstructed models in a face
identification experiment, where the reconstructed models are
compared against a gallery of high-resolution scans (Sect. IV-
C). These experiments have been performed on a subset of
the The Florence Superface dataset, which is extended to
include new acquisitions captured according to the protocol
described in this work (see Sect. IV-A).

A. Dataset

Some public datasets exist for face analysis from consumer
cameras like Kinect (see for example the EURECOM Kinect
Face dataset [16], or the The 3D Mask Attack database
specifically targeted to detect face spoofing attacks [7]). In
the experiments reported hereafter, we use and extend a
subset of the The Florence Superface dataset (UF-S) [3].
This dataset has been originally designed to include 3D high
resolution face scans, and 2D videos of the face acquired in
different conditions [1]. Successive extensions of the dataset
have been done to include depth video sequences of the face,
acquired with the Kinect camera according to a cooperative
protocol. In this work, we further extend this dataset by
capturing depth video sequences for a subset of the subjects
according to an uncooperative protocol. In particular, the
subset of UF-S used in the experiments includes 16 subjects,
each with the following data:
• A 3D high-resolution face scan, with about 40,000

vertices acquired with a 3dMD scanner (see Fig. 2(c)

for some examples). The geometry of the mesh is highly
accurate with an average RMS error of about 0.2mm;

• A Kinect video sequence (RGB-D), where a person
goes through an access gate monitored by the camera.
The imaged 3D frames capture the subject while s/he
is walking towards the camera at a distance varying
from about 1.2m to 40cm (some frames acquired for
a sample subject are shown in Fig. 1). This results in
video sequences lasting approximately 2 to 4 seconds
on average, at 30fps.

Since just a part of these 16 subjects were originally
included in the UF-S, we extended the 3D part obtaining
a total of 65 high-resolution scans of different subjects.

B. Reconstruction Accuracy

This experiment aims to evaluate the error of the recon-
structed 3D model with respect to the 3D high-resolution
scan of the same subject, compared to the same measure of
error computed between the depth frame used as reference
for a sequence (reference frame) and the 3D high-resolution
scan. In the following, we use the last frame where the face
is detected in the RGB data as reference.

For each of the 16 subjects used in the experiments
we considered: The high-resolution scan; The reconstructed
model using the proposed approach; and the low-resolution
scan obtained from the reference frame. In all these cases, the
3D facial data are represented as a mesh and cropped using a
sphere of radius 95mm centered at the nose tip (the approach
in [25] is used to detect the nose tip). To measure the
error between the high-resolution scan and the reconstructed
model of the same subject, they are first aligned through ICP
registration [23]. Then, for each point of the reconstructed
model its distance to the closest point in the high-resolution
scan is computed to build an error-map. As an example,
Fig. 2 shows for some subjects (one column per subject), the
cropped 3D mesh of the reference frame, the reconstructed
model, the high-resolution scan and the error-map between
the reconstructed model and the high-resolution scan.

To represent the average error of the reconstructed models
and reference frames with respect to high-resolution scans,
the Root Mean Square Error (RMSE) between their surfaces
S and S′ is computed considering the vertex correspondences
defined by the ICP registration, which associates each vertex



(a) reference frame

(b) reconstructed model

(c) high-resolution scan

(d) error-map: reconstructed vs. high-
resolution

#009 #022 #044 #056 #059 #063

Fig. 2. Each column corresponds to a different subject and reports: (a) The low resolution 3D scan of the reference frame; (b) The reconstructed 3D
model; (c) The high-resolution 3D scan. The error-map in (d) shows, for each point of the reconstructed model, the value of the distance to its closest
point on the high-resolution scan after alignment (distance increases from red/yellow to green/blue)

p ∈ S to the closest vertex p′ ∈ S′:

RMSE(S, S′) =

(
1

N

N∑
i=1

(pi − p′i)2
)1/2

, (7)

being N the number of correspondent points in S and S′.

TABLE I
RMSE COMPUTED BETWEEN REFERENCE SCANS AND RECONSTRUCTED

MODEL WITH RESPECT TO 3D HIGH-RESOLUTION SCANS

RMSE
models min max mean std dev

reference vs. high-resolution 0.96 2.02 1.56 0.31
reconstructed vs. high-resolution 0.79 1.30 1.07 0.14

Results obtained using this distance measure are summa-
rized in Table I. In particular, we reported the average values
for the RMSE computed between the high-resolution scan
and, respectively, the reconstructed model and the reference
scan. On the one hand, values in Table I measure the
magnitude of the error between the reconstructed model and
the high-resolution scan of the same subject; On the other,
they give a quantitative evidence of the increased quality of

the reconstructed model with respect to the reference scan.
This latter result is indeed an expected achievement of the
proposed approach, since the reconstructed models combine
information of several frames of a sequence. However, it is
interesting to note the substantial decrease of the error with
respect to the reference frame (more than 30% decrease of
the mean RMSE).

C. Face Identification Results

In this experiment, we consider a subject identification
task in which the gallery is composed of high-resolution
scans, whereas reconstructed models are used as probes.
Description and matching of gallery and probe models is
obtained according to the face recognition approach proposed
in [2], which is based on the extraction and comparison of
local features of the face.

We included 65 high-resolution scans in the gallery, and
considered the reconstructed models as probes. Recognition
accuracy is evaluated through the Cumulative Matching
Characteristic (CMC) curves. Fig. 3 reports the CMC curve
in the case the reconstructed models are used as probes.
The curve clearly shows that reconstructed models achieve
a reasonable high recognition rate of 75% at rank-1, with
100% recognition achieved at rank-4. The green dashed line



in the plot also reports the cumulative recognition curve for
the case in which the comparison between different instances
of high-resolution scans is performed.
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Fig. 3. CMC curves obtained by using the reconstructed models as probes,
and the high-resolution scans in the gallery. The plot also reports the case
in which different instances of high-resolution scans are used as probes
(dashed line)

V. CONCLUSIONS

In this paper, we have defined an approach that permits
the construction of a higher-resolution face model starting
from a sequence of low-resolution 3D scans acquired with
a consumer depth camera. In particular, values of the points
of the higher-resolution model are constructed by iteratively
aligning the low-resolution 3D frames to a reference frame
using the Coherent Point Drift (CPD) algorithm, and filtering
the registered 3D data through a variant of the lowess method
to remove outliers and build the final face model. Qualita-
tive and quantitative experiments have been performed by
extending a subset of the The Florence Superface dataset
with sequences of low-resolution 3D frames acquired with
a Kinect camera according to an uncooperative protocol.
Results of the reconstruction process of high-resolution mod-
els are evaluated by measuring the distance error between
the reconstructed models and the high-resolution 3D scan
used as the ground truth data of a subject’s face. Results
support the idea that constructing higher-resolution models
from consumer depth cameras can be a viable approach to
make such devices deployable in real application contexts
that also include identity recognition using 3D faces.
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