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Abstract

In this paper, we propose a new approach for construct-
ing a 3D morphable model (3DMM) and experiment its ap-
plication to face recognition. Differently from existing so-
lutions, the proposed 3DMM is constructed from a training
set that includes a large spectrum of variability in terms of
ethnicity and facial expressions. By exploiting annotated
landmarks available in the training data, we are able of es-
tablishing dense correspondence across training scans also
in the presence of strong facial expressions. The 3DMM is
then constructed by learning a dictionary of basis compo-
nents, instead of using the traditional approach based on
PCA decomposition. Finally, we cast the proposed dictio-
nary learning DL-3DMM to a rigid / non-rigid deforma-
tion framework, which includes pose estimation and regu-
larized ridge-regression fitting to 2D images. Comparative
results between the DL-3DMM and its PCA counterpart are
reported, together with face recognition results for images
with large pose and expression variations.

1. Introduction

The idea of characterizing the statistical variability of the
traits of the human face dates back to the early ’80s with the
work of Farkas [ 1]. In his studies, the face variability was
modeled using anthropometric measures between a set of
facial landmarks. More recently, Sirovich and Kirby [24]
shown that Principal Component Analysis (PCA) could be
used on a collection of training face images to form a set
of basis features, known as eigenpictures, that can be lin-
early combined to reconstruct images in the original train-
ing set. This idea was extended further in the work of Blanz
and Vetter [4], that proposed to construct a 3D morphable
model (3DMM) from a set of example 3D face scans. Sim-
ilarly to the 2D case, the idea here is to capture the 3D face
variability in the training data using an average model and a
set of deformation components learned using PCA decom-
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position. The statistical model is then capable of gener-
ating new face instances with plausible shape and appear-
ance. Since that work, 3DMM variants have been used in
computer graphics for face inverse lighting [23, 27] and re-
animation [3], 3D shape estimation from 2D image face
data [28], pose robust face recognition [5, 16], 3D face
recognition [ ], and several others tasks. In particular, there
is the feeling that the statistical information brought by the
3DMM can be exploited to improve face recognition perfor-
mance in the case of 2D images acquired in the real, with
large pose variations, occlusions, illumination changes, and
facial expressions (face recognition in the “wild”). The idea
here is that given a single face image under unknown pose
and illumination, the 3DMM can solve its 3D shape, tex-
ture, pose and illumination parameters simultaneously, us-
ing Gauss-Newton optimization [21] or regression [28] to
minimize the difference between the synthetic image ren-
dered by the 3DMM and the input image. The performance
of such an approach are bounded by the specific characteris-
tics of the 3DMM which, in turn, depend on its construction
and fitting. More specifically, constructing a 3DMM for
face recognition applications requires the following aspects
be considered: i) A training data set should be acquired at
good resolution, and it should include a significant sample
of the human face variability in terms of gender, ethnicity,
age, and facial expressions; moreover, a dense correspon-
dence is required between the 3D facial scans in the train-
ing set; ii) The statistical variability of the training scans
is captured in a compact form using a statistical model-
ing (3DMM), capable of generating new face instances; iii)
Defining an appropriate fitting approach, which can deform
the 3DMM adapting it to 2D target images.

In this paper, we will address the above aspects, by
proposing original solutions for constructing and using a
3DMM for face recognition from 2D images.

1.1. Related work

In their seminal work, Blanz and Vetter [4] at the Max
Plank Institute (MPI) were the first to present a complete

%



solution to derive a 3DMM by transforming the shape and
texture from an example set of 3D face scans into a vector
space representation based on PCA. However, the variabil-
ity in the training dataset they used is not very large (200
scans of Caucasian young individuals were included), re-
ducing the capability of the model of generalizing to differ-
ent ethnicity. The optical flow algorithm used to establish
dense correspondence in the training data also limits the ap-
plicability to faces with facial expressions. Furthermore,
being based on the linear combination of Principal Compo-
nents (PC), holistic deformations are obtained, where each
PC acts on every vertex of the model. To account for this
effect, the face is divided into four disjoint subregions (i.e.,
eyes, nose, mouth and a surrounding region) that are mor-
phed independently. A complete 3D face is finally gener-
ated by computing linear combinations for each segment
separately and blending them at the borders. Despite of
these limitations, the MPI 3DMM has proved its effective-
ness in several applications, inspiring most of the subse-
quent work. In [5], Blanz and Vetter used the 3DMM to
simulate the process of image formation in 3D space, us-
ing computer graphics, and estimated 3D shape and tex-
ture of faces from single images. The estimate is achieved
by fitting the MPI 3DMM to 2D images. This allows for
face recognition across variations in pose, and across a wide
range of illuminations. Romdhani and Vetter [21], used the
MPI 3DMM for face recognition by enhancing the defor-
mation algorithm through the inclusion of various image
features, such as the edges or the location of the specular
highlights. The 3D shape, texture and imaging parameters
are then estimated by maximizing the posterior of the pa-
rameters given these image features.

The MPI 3DMM was further refined into the Basel Face
Model (BFM) by Paysan et al. [19]. This improves on pre-
vious models by offering higher shape and texture accuracy
thanks to a better scanning device (though the training sub-
jects are yet 200 Caucasians only), and less correspondence
artifacts thanks to an improved registration based on the op-
timal non-rigid iterative closest point (ICP) algorithm [2].
However, since the optimal non-rigid ICP cannot handle
large missing regions and topological variations, expression
variations are not accounted for in the training data also
in this case. In the work of Amberg et al. [1], a 3DMM
was constructed by a set of 270 neutral plus 135 expres-
sive scans for the purpose of 3D face recognition. Since a
modification of the non-rigid ICP algorithm [2] was used to
perform dense alignment in the training data, and also to fit
the 3DMM to target scans, the method may fail in the case
of large missing regions and topological variations. Bustard
and Nixon [9] modified the 3DMM by including the ear re-
gion, and proposed it for ear and face recognition.

Patel and Smith [18], instead, have shown that the sta-
tistical tools of thin-plate splines and Procrustes analysis

can be used to construct a 3DMM. In particular, Procrustes
analysis is used to establish correspondence between a set
of manually labelled landmarks of the face. The averages
of these landmarks are then used as anchor points to con-
struct a complete deformable model by interpolating the re-
gions between landmarks using thin-plate splines. A statis-
tical model for 3D human faces in varying expression has
been proposed by Brunton et al. [7], which decomposes the
face using a wavelet transform, and learns many localized,
decorrelated multilinear models on the resulting coefcients.
In the work of Kakadiaris et al. [12], a model based tech-
nique is used for 3D face recognition. This is based on the
deformation of an Active Face Model (AFM), which is ob-
tained as the average facial 3D mesh from statistical data.
However the model has low resolution and synthetic appear-
ance. An alternative solution to fit the 3DMM is presented
by Zhu et al. [28], which is based on a novel discriminative
method for estimating 3D shape from a single image with
a 3DMM. They proposed to estimate the shape parameters
by learning a regressor, instead of minimizing the appear-
ance difference. Compared with the traditional analysis-by-
synthesis framework, the discriminative approach makes it
possible to utilize large databases to train a fitting model.
For a comprehensive review on statistical 3D face mod-
eling, we refer the reader to the work of Brunton et al. [8].

1.2. Our contribution and paper organization

Motivated by the above considerations, in this paper, we
propose a new method for constructing a 3DMM, and apply
it in the context of face recognition. Initially, we point out
the importance of selecting a representative training set of
3D faces for the model construction, where a large spectrum
of face variations is included. Then, as first contribution of
this work, we propose an original method to obtain a dense
vertex-by-vertex correspondence across the training data.
With respect to existing solutions, the proposed method has
the advantage of not depending on the choice of a reference
model to transfer the correspondence, and thus can act inde-
pendently on each scan. The second main contribution con-
sists in the definition of a different approach for the 3DMM
construction. In contrast to the PCA decomposition used in
most of the state of the art solutions, we learn a dictionary
(basis) from the vector field of the deviations between each
3D scan and an average model. Such an average model can
be easily derived from a training set, after the dense align-
ment process, by averaging the vertex positions overall the
scans. The proposed framework has been evaluated in two
sets of experiments: first, we compared the 2D reprojec-
tion error and the 3D reconstruction error obtained with the
proposed 3DMM with respect to standard PCA decomposi-
tion; then, we experimented the effectiveness of the 3DMM
in supporting face recognition from images with large pose
variations and expression changes.
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The rest of the paper is organized as follows: In Sect. 2,
we propose a novel solution for establishing dense corre-
spondence between the faces of a training set with a large
spectrum of face variations; In Sect. 3, the 3DMM construc-
tion from the training set is then expounded as a dictionary
learning process; In Sect. 4, the deformation process used to
fit the 3DMM to 2D target images is modeled through pose
estimation plus the solution of a ridge-regression problem.
A comparative evaluation of the proposed 3DMM with re-
spect to standard PCA decomposition is reported in Sect. 5,
together with the application of the 3DMM to face recog-
nition. Finally, discussion and future work are reported in
Sect. 6.

2. Database selection and processing

Constructing a 3DMM requires two preliminary steps:
selection of 3D scans with the appropriate characteristics
to be used as training set; establishing a dense vertex-by-
vertex correspondence across the training data.

2.1. Training data

In order to guarantee the 3DMM capability of generaliz-
ing to new unseen identities, the training set should include
the necessary variability in terms of gender, age and ethnic-
ity. Furthermore, including in the training set scans with
facial expressions is also required to enable the 3DMM to
generalize to expressive data.

The MPI 3DMM [4], and the most recent BFM [19] have
proved their usefulness in computer graphics and recogni-
tion contexts. However, both of them are constructed from
a training set with limited variability, which includes face
scans of 100 female and 100 male subjects, most of them
Caucasians, with age between 8 and 62 years (average of
25 years). In both the cases, authors explicitly reported that
expressive scans were not included in the training set.

Since the 3DMM aims to capture the human face vari-
ability in a consistent way, we propose to use the Bing-
hamton University 3D Facial Expression dataset (BU-
3DFE) [26] as training set in the construction of the 3DMM.
This dataset is largely used as 3D benchmark for 3D fa-
cial expression recognition research, being it publicly avail-
able and including a well balanced representation of the hu-
man face in terms of gender, age, and ethnicity, as well
as of facial expressions. The BU-3DFE contains scans of
44 females and 56 males, with ranging age from 18 to 70
years old, acquired in a neutral plus six different expres-
sions, namely, anger, disgust, fear, happiness, sadness, and
surprise. Apart of the neutral expression, all the other fa-
cial expressions have been acquired at four levels of inten-
sity, from low to exaggerated (2500 scans in total). The
subjects are well distributed across different ethnic groups
or racial ancestries, including White, Black, Indian, East-
Asian, Middle-East Asian, and Hispanic-Latino. Each 3D

(b)

Figure 1. BU-3DFE: (a) The 83 facial landmarks evidenced on
a textured 3D face scan; (b) 2D image captured by the scanner
contextually to the 3D scan.

facial scan is also cropped and associated with a set of 83
manually annotated landmarks located in correspondence to
the most distinguishing traits of the face (see Fig. 1(a)).

2.2, Establishing 3D dense correspondence

In order to derive a statistics of the face variability in
the training data, a dense point-to-point correspondence
between the vertices of the training scans should be es-
tablished. This process can be seen as a sort of mesh
reparametrization, where corresponding points in all the
scans must have the same semantic meaning (for exam-
ple, the vertex with index ith must represent the left mouth
corner in all the scans). In general, this problem has a
not easy solution due to the presence of a limited num-
ber of points of the face that are detectable with sufficient
accuracy, while large regions are instead characterized by
neglectable shape and photometric variations. The pres-
ence of facial expressions further increases the difficulty
of the problem, especially due to self-occlusions and pos-
sible changes in the topology of the surface (as in the case
of mouth-close | mouth-open). In the MPI model [4], a
gradient-based optic flow algorithm is modified to establish
correspondence between a pair of 3D scans taking into ac-
count for color and shape values simultaneously. On facial
regions with little structure in texture and shape, such as
forehead and cheeks, a smooth interpolation is required to
resolve spurious results given by the optic flow algorithm.
In [1], a 3DMM was constructed by a set of 270 neutral
plus 135 expressive scans. The data were registered with a
modification of the non-rigid ICP algorithm proposed in [2].
Though this algorithm has shown its good performance also
in the construction of the BFM [19], it has difficulty in han-
dling large missing regions and topological variations. In
addition, both the optical flow and the non-rigid ICP meth-
ods are applied by transferring the vertex index from a ref-
erence model to all the scans. As a consequence, the choice
of the reference face can affect the quality of detected cor-
respondences and ultimately of the final model. Moreover,
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Figure 2. (a) A face scan of the BU-3DFE with evidenced the 83
landmarks, and the geodesic paths connecting some of them which
are used to partition the face; (b) Geodesic contour of the right
cheek / zygoma region obtained by connecting a set of landmarks.
The geodesic path of the boundary is resampled, so that points on
it are at the same geodesic distance each other. The interior of the
region is also resampled by connecting, through sampled linear
paths, corresponding points on opposite sides of the boundary.

the resulting 3DMM is not uniquely defined. In order to
solve these problems, Patel and Smith [18] proposed an al-
ternative approach based on the manual annotations of 104
facial landmarks located on the eyebrows and nose con-
tour, eyes and mouth boundary, and face boundary includ-
ing ears. These points are used to establish a correspon-
dence, so that the mean coordinates of each landmark can
be found. The landmarks of each sample are then warped to
the mean landmarks, and thin-plate spline interpolation is
applied to this warp. Finally, consistent resampling is per-
formed across all faces, but using the estimated surface be-
tween landmarks rather than the real one. Working on 3D
sequences, Bolkart and Wuhrer [6] presented an approach
to fully automatically register 3D faces in motion. This
method predicts landmarks for 3D facial motion sequences
by a trained multilinear model, and uses these landmarks
to initialize sequence registration. A registered version of
the BU-3DFE is used to learn the model, as provided in the
work of Salazar et al. [22].

In this work, we use the BU-3DFE as training set and
propose a new approach to establish a dense point-to-point
correspondence between the vertices of the scans, which of-
fers potentially more stable performance. First, geodesic
paths between facial landmarks are used to partition the face
into a set of non-overlapping regions (this shares some com-
mon ideas with the method of Lu and Jain [14]). Then,
the interior surface of each region is resampled using points
on the geodesic boundary as starting and ending points of
geodesic line between them. Details are given below.

Face partitioning — The 83 landmarks manually anno-
tated and released with the BU-3DFE are assumed to be

(b)

Figure 3. (a) The average 3DMM obtained from the scans of the
BU-3DFE using the proposed dense correspondence approach; (b)
Model deformations obtained applying some basis components.
The superimposed heatmap represents the magnitude of the defor-
mation (red = high, blue = no deformation). The localized effect
on the face produced by the basis components can be appreciated.

(a)

correctly identified and thus are used to provide correspon-
dence between salient points of the training data. Here, we
develop on the idea that connecting selected pairs of land-
marks through geodesic paths on the surface, it is possible
to partition the face into a set of regions, as evidenced in
Fig. 2(a). With this approach, 10 regions are identified in
each side of the face (spanning the eyebrow, eye, check,
jaw and chin), plus 8 regions covering the middle part of
the face (including the lips, the region between the upper
lip and the nose, the nose, and the region between the eyes).
In this way, each face is partitioned into a total of 28 non-
overlapping regions, each delimited by a closed geodesic
contour passing through a set of landmarks. Interestingly,
these regions have a great correspondence with optimal re-
gions obtained by automatically segmenting the face, as re-
ported by De Smet and Van Gool [10]. For computing the
geodesic path between two landmarks on the surface, we
used the variant of the Fast Marching algorithm applied
to triangular mesh manifolds [13]. Each geodesic path is
then resampled with a predefined number of points at equal
geodesic distance. As an example, Fig. 2(b) shows with cir-
cles the 3D plot of the resampled geodesic contour which
delimits the right cheek / zygoma region comprised between
the face boundary and the nose.

Region sampling — Using the above partitioning of the
face, we can sample the interior surface of the regions in
a consistent way, so that points of homologous regions are
in dense correspondence across all the training scans. This
is obtained by using the geodesic contour of the region to
guide the dense resampling of its interior surface. The idea
here is to connect pairs of sampling points on opposite side
of a geodesic contour with a straight geodesic line. This
line is then sampled at the desired resolution, as illustrated
in Fig. 2(b), where the interior of a region after the sampling
is reported. It is interesting to note that being based on the
annotated landmarks and their connections, the above ap-
proach is also robust to facial expressions. In particular, the
presence of landmarks on the mouth, which delimit the in-
ternal and external border of the lips, makes it possible to
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Figure 4. The average model computed on the BU-3DFE. The blue
arrows show the field of deviation vectors between the average
model and a sample scan of the training set. The dictionary is
learnt over such vectors.

maintain regions correspondence also across faces charac-
terized by expressions with mouth-close / mouth-open. By
applying this approach to the scans of the BU-3DFE we ob-
tained the average model of Fig. 3(a).

3. Dictionary learning for 3DMM

Once a dense correspondence is established across the
training data, the statistical variability of every vertex of the
scans can be modeled. The usual approach to do this is
based on PCA decomposition [4]. PCA reduces the space
spanned by the training data to an average model and a set
of PC corresponding to the eigenvectors of the covariance
matrix. Differently, here we propose to learn a dictionary
of deformation components; to do this, we first learn a ba-
sis (dictionary) from the training set, then we use linear
combinations of such basis to deform the average model.
This solution shares some idea with the work of Neumann
et al. [17], where sparse PCA along with a group sparsity
constraint are used to learn a sparse and localized set of de-
formation components, specifically aimed at mesh anima-
tion and 3D modeling tasks.

In general, dictionary learning techniques aim at find-
ing a dictionary D of k basis vectors (atoms), whose lin-
ear combination best describes (in this case in terms of
reconstruction error) each of the n vectors in the train-
ing set. Our goal here is instead estimating the dictio-
nary of basis vectors from the vector field of the devi-
ations between each scan and the average model, so as
to reconstruct arbitrary new faces as the sum of the aver-
age model and a linear combination of the basis. Dictio-
nary learning is performed by exploiting the training set
of 3D face scans in dense correspondence, as obtained in
Sect. 2.2. Each training face has m vertices and is rep-
resented as a column vector f; € R3™, whose elements
are the x, y, z components of all the vertices, that is:
f, = [azgi), ygi), z](i), mg), yg), zy), ey 1:5,?, yf,?, z,(,?]. The
deviation field is computed for each model f; by subtracting

the average one m € R®™ computed on the training set:
1 n
j=1

A matrix F € R3™*" is then constructed, having such vec-
tors f; as columns: F = [f}, f5, ..., f,].

The dictionary learning can be seen as a problem of op-
timizing the empirical cost function:

. 1 n
en(D) = > U(f, D), 2
i=1

where D € R3™*F s the dictionary, each column repre-
senting a basis vector, and / is a loss function such that
£(f;, D) should be small if D is “good” at representing the
signal f;. A common expedient to prevent D from having
arbitrarily large values consists in constraining its columns
di,...,d to have an f5-norm less than or equal to one.
We will call C the convex set of matrices verifying this con-
straint:

CEDeR™* st.Vj=1,....k dld; <1}. 3)

In so doing, we circumscribe the search space of the pos-
sible dictionaries, and we estimate the optimal one using a
Elastic-Net formulation. The Elastic-Net is a type of regres-
sion method that linearly combines the sparsity-inducing ¢4
penalty and the /5 regularization. The ¢; norm is known
to act as a shrinkage operator, reducing the number of non-
zero elements of the dictionary, while the {5 norm avoids
uncontrolled growth of the elements magnitude. By defin-
ing 41 2(wi) = A1 [|will; + A2 [|wsll, , where Ay and A; are
respectively the sparsity and regularization parameters, we
can formulate the problem as:

. 1
min —
w;ERk, DEC N

> (If - Dwils+ ialw) - @)
i=1

Both penalties are important in this context, since it would
be desirable for the dictionary to be (kind of) sparse, so that
each component affects only part of the whole model and
the elements of the dictionary should be bounded in order to
avoid extreme deformations. The above minimization prob-
lem is not convex with respect to D. It can be rewritten as
a joint optimization problem with respect to the dictionary
D and the coefficients W = [wy,...,w,] € RFX" of the
decomposition, which is convex with respect to each of the
two variables D and W, when the other one is fixed. A
natural approach for solving this problem is to alternate be-
tween the two variables, minimizing over one while keeping
the other one fixed. To this end, we exploited the implemen-
tation of the Online Dictionary Learning for Sparse Coding
presented by Mairal ef al. [15].

The average model m and the dictionary D constitute
our 3DMM (DL-3DMM for short).
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4. Fitting the 3DMM

In order to fit the 3DMM to a target face in a test image,
we need firstly to get an estimate of the 3D pose of the face
(rigid transformation), and then to deform the 3DMM to the
image (non-rigid transformation).

Pose estimation — Given a face framed in an image, its
3D pose can be estimated by establishing a correspondence
between a set of facial landmarks detected both in 2D and
3D. To this end, we employ the 2D face landmark detec-
tor defined in [25] that provides sufficient precision in the
image localization of 49 facial landmarks. The same set of
landmarks is manually annotated once on the vertices of the
average model m in our 3DMM (the indices of these ver-
tices will be indicated with I, in the following). In this way,
we can indicate with L = m(L,) € R3¥I%| the matrix of
the coordinates of the 3D landmarks (note that we indicate
with 1 the average model represented in R3*™ rather than
in R®™), while 1 € R2*| gre the landmarks detected in
the 2D image. Under an affine camera model [16], the rela-
tion between L and 1 is:

1=A - L+T, (5)

where A € R2*3 contains the affine camera parameters,
and T € R?*Tv| is the translation on the image. To recover
these parameters, firstly we subtract the mean from each set
of points, then we recover the affine matrix in a least square
sense as A = 1. L+, where L™ is the pseudo-inverse matrix
of L. Then, we estimate the translationas T =1— A - L.
Furthermore, using (Q R decomposition the matrix A can be
decomposed as A = S - R, where S € R?2*3 expresses the
scale parameters along with the shear, and R € R3*3 con-
tains the 3D rotation parameters of the model with respect
to the image. Thus, the affine camera model is given by:

1=S'R-L+T. (6)

Considering Eq. (6), it is possible to get an estimate of the
pose P as [S - R, T, that permits us to map each vertex of
the 3DMM onto the image.

3DMM fitting — Given a target image and the dictio-
nary D, we want to find the pose P, and the combination
of the deformation components according to coefficients
a = [ai,...,a4] € R¥, which minimize a penalty func-
tion computed on the corresponding landmarks in 2D and
3D. Stated differently, we aim at finding the coding on the
learned dictionary D that (non-rigidly) transforms the aver-
age model m, so that its projection with P (rigid transfor-
mation) minimizes the error in correspondence to the land-
marks. The coding is formulated as the solution of a regu-

larized Ridge-Regression problem:

i 2

1-P- (m(L,) +Z]57;(I7,)a,¢> A [wtall, |
=1 2

min
P, a

@)
where )\ is a regularization parameter, and D; indicates a
basis component represented in R3*™ rather than in R3™,
We solve this problem by alternating between pose and co-
efficients estimation. First, we estimate the pose P and
solve for the coefficients o

2
+A[w ],

2

) ®)

Since the pose P, the dictionary D, the landmarks 1, and

m(I,) are known, we can define X = 1— P - m(I,) and
Y =P - D,(I,), and rewrite Eq. (8) as:

k
X-> oY

i=1

min
(s

k
1-P-m(I,) - Y P-DiI,)a
=1

2

min
(a2

el ©
2

which is analytically solved as a Ridge-Regression, where
each coefficient is weighted by the inverse of w. These
weights provide a estimate of the significance of the related
dictionary component, so weighing the deformation coeffi-
cients a by w~! induce a reduced penalty for the most rel-
evant components. The non-rigid coefficients are estimated
in a closed form solution as:

o= (YTY + \-diag(w™) " YTX .  (10)

5. Experimental results

The proposed 3DMM has been evaluated in two sets of
experiments. First, we compared the 3DMM constructed
from a dictionary of learned components (DL-3DMM), and
its counterpart obtained using PCA decomposition (PCA-
3DMM) (Sect. 5.1). Then, we compared the two solutions
in the task of face recognition from images that show jointly
large pose and expression variations (Sect. 5.2). Both the
experiments have been performed on the BU-3DFE dataset.

5.1. Reprojection and reconstruction error

This experiment aims at comparing the proposed DL-
3DMM and its PCA-3DMM counterpart. In so doing, we
also aim at evaluating how the 3DMM changes when the
different parameters involved in its construction are modi-
fied. To separate the fitting error from possible inaccuracies
induced by landmarks detection and pose estimation, we
used a projection of the 3D scans as ground truth. In par-
ticular, all the 3D scans (the whole meshes) are projected
onto the 2D plane using a same reference projection ma-
trix (P,.c¢). For the sake of generality, the projection P,
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Figure 5. Error vs. regularization parameter A for: (a) Reprojection; (b) Reconstruction. In both the cases, plots are reported for the 3DMM
learned on training sets that include 30, 50 and 70 identities, respectively, from left to right. Each plot compares, for different number of
components, the results obtained for the DL-3DMM (DL), and for its PCA-3DMM counterpart (PCA).

has been chosen in a intermediate pose between a frontal
view and a side view. The 3DMM is then fit following
the approach described in Sect. 4, using as 2D landmarks
the points of the projected models selected by I, (set I in
Eqg. (8)). The distance between the ground-truth model and
the deformed one, projected on the 2D plane, is used to
measure the 2D reprojection error. The same distance in
3D is instead used to measure the 3D reconstruction error.
These two distances are computed overall the vertices of
the mesh. The deformation of the 3DMM guided by the
landmark correspondences should make the model as simi-
lar as possible to the 3D ground-truth scan. The Euclidean
distance is used as error measure in both the cases, averaged
over the number of vertices. All the above experiments have
been performed by splitting the data into a train and a test
fold, and then using cross-validation. In particular, we used
all the 100 identities of the BU-3DFE and considered 30-
70, 50-50 and 70-30 random partitions between the train
and test folds. In this way, the identities used in the test are
completely separated from the identities used in the train for
the 3DMM construction. This process is repeated ten times
and results are averaged across the ten trials.

Results for the reprojection and reconstruction errors are
reported in Fig. 5(a) and (b), respectively. In both the cases,
plots refer to the 3DMM learned on training sets with 30,
50 and 70 identities, respectively, from left to right. Each
plot compares, for different number of components, the re-
sults obtained for the DL-3DMM constructed using coding
on a learned dictionary (DL), and its PCA-based counter-
part (PCA). The error (in pizels for reprojection, in mm
for reconstruction) is plotted versus the regularization pa-
rameter A appearing in Eq. (9). Results show that an opti-
mal value of A\ can be found at about 0.5, and this value is
almost stable across different sizes of the training set. For
the DL-3DMM the error decreases up to 200 components.
The error for the DL 3DMM is also smaller than the error
observed for the PCA-3DMM.

5.2. Face recognition

The effectiveness of the proposed 3DMM construction
and fitting approach has been also evaluated in face recog-
nition from images with challenging poses and expressions.
To this end, we included in the gallery the frontal neutral
images as rendered from the 3D scans of the BU-3DFE,
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Figure 6. 3DMM fitting example: (a) Face image with the detected
landmarks (in blue), their reprojected position (in green), and the
projected mesh (red dots); (b) Fitted 3DMM.

#train 30 #train 50 #train 70

DL | PCA | DL | PCA | DL | PCA
Neutral 55.0 | 559 | 56.1 | 55.7 | 57.9 | 57.9
Angry 463 | 455 | 47.6 | 46.9 | 49.5 | 49.2
Disgust 47.6 | 449 | 48.9 | 46.7 | 49.7 | 49.7
Fear 514 | 49.7 | 51.7 | 499 | 53.,5 | 53.2
Happiness | 51.0 | 49.3 | 50.5 | 499 | 53.8 | 53.0
Sadness 45.1 | 448 | 453 | 44.6 | 48.5 | 50.5
Surprise 393 | 37.1 | 40.4 | 38.5 | 41.7 | 40.9

‘ All ‘ 47.2 ‘ 45.5 ‘ 47.9 ‘ 46.4 ‘ 49.8 ‘ 49.5 ‘

Table 1. Face recognition accuracy for probes with left / right pose
and for the different expressions. Results for the proposed DL-
3DMM and its PCA based counterpart are reported.

while the probes are all the images where the subjects ex-
hibit pose and expression variations (namely, angry, dis-
gust, fear, happy, sad, surprise). We remark here these
images also show a left / right side pose of the subjects,
as illustrated in Fig. 1(b), so that the combination of pose
and expression makes the recognition scenario very diffi-
cult. The landmark detector in [25] is run on gallery and
probe images, and the 3DMM is fit on them. We then ex-
ploit the projection on the image of the 3DMM to sample
RGB values in correspondence of the projected vertices, so
as to render a frontal view. These latter images are then used
to compute Local Binary Patterns (LBP) descriptors over
patches centered on the projected vertices of the 3DMM
instead of considering a regular grid over the image. Fi-
nally, a nearest-neighbor classifier is used to match the LBP
descriptors in the probe and gallery images. Also for this
experiment, the same cross-validation approach reported in
Sect. 5.1 has been used.

A fitting example is reported in Fig. 6: In (a), the de-
tected and reprojected landmarks are evidenced in blue and
green, respectively, while the projected mesh is given with
red dots; In (b), the deformed DL-3DMM is shown.

Table 1 reports the face recognition results obtained for
probes with left / right pose and for the different expres-
sions. Results for the proposed DL-3DMM and its PCA

based counterpart are compared. In general, the accuracy
increases with the size of the training set, with the DL-
3DMM performing better than the PCA-3DMM in most of
the cases. In particular, the gap between the two solutions
is more marked in the case of small training sets.

Finally, face recognition has been also studied as a func-
tion of the expression intensity from neutral (level-0), to
expressive (levels from 1 to 4), using different numbers
of training subjects. Results for the DL-3DMM show a
decrease of recognition passing from level-0 to level-2 of
about 8% to 10%, while an almost stable behaviour is ob-
served going from level-2 to level-3 and -4. Compared to
the PCA, the DL-3DMM obtains better performance in the
case of 30 and 50 training subjects, with a gap of about
2% to 3%, which increases with expression intensity. For
the case of 70 training subjects, the difference between the
two solutions is mostly irrelevant, apart for level-4 intensity
where the DL-3DMM clearly outperforms PCA-3DMM.

6. Discussion and future work

In this work, we have proposed a dictionary learning
method for constructing a 3DMM, and we have proved its
usefulness for face recognition in the case of images that
combine challenging pose and expression variations. Com-
pared to traditional methods based on PCA, our solution has
the advantage of permitting more localized variations of the
3DMM that can better adapt to expressive faces. Differ-
ently from existing 3DMM, we also propose to use a train-
ing set that includes a large spectrum of facial variations,
in terms of ethnicity, age, and facial expressions. A new
method for establishing dense correspondence between an-
notated facial scans in the training is also proposed, which
permits us to process difficult expressions. The proposed
DL-3DMM has then been cast to a rigid / non-rigid de-
formation framework, which includes pose estimation and
regularized ridge-regression fitting, thus allowing its exper-
imentation in reconstruction and recognition experiments.
Results show the DL-3DMM improves the standard solu-
tion based on PCA decomposition in both the experiments.

As future work, we will explore the possibility to exploit
the dictionary learning in a sparsity coding fashion. In addi-
tion, we aim to experiment the proposed 3DMM with more
effective facial features, and on new face datasets in the
wild. Finally, while in this work we rely on the landmarks
provided with the BU-3DFE for establishing the dense cor-
respondence in the training set, the existence of robust land-
mark detectors both in 2D [25] and 3D [20] will be ex-
ploited to derive a completely automatic solution.
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