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Memory bandwidth
• One of the most important factors of CUDA kernel performance is 

accessing data in the global memory (a DRAM memory).  

• The process of reading a the status of a bit takes 10s of 
nanoseconds in modern DRAM chips. This is in sharp contrast with 
the sub-nanosecond clock cycle time of modern computing devices.  

• Modern DRAMs use parallelism to increase their rate of data 
access: Each time a DRAM location is accessed, a range of 
consecutive locations that include the requested location are 
actually accessed (DRAM bursts).  

• When all threads in a warp execute a load instruction, the hardware 
detects whether they access consecutive global memory locations.  
In this case, the hardware combines, or coalesces, all these 
accesses into a consolidated access to consecutive DRAM 
locations. 
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• Modern DRAMs use parallelism to increase their rate of data 
access: Each time a DRAM location is accessed, a range of 
consecutive locations that include the requested location are 
actually accessed (DRAM bursts).  

• When all threads in a warp execute a load instruction, the hardware 
detects whether they access consecutive global memory locations.  
In this case, the hardware combines, or coalesces, all these 
accesses into a consolidated access to consecutive DRAM 
locations. 

For example, for a given load instruction of a warp, if thread 0 accesses global memory 
location N, thread 1 location N+1, thread 2 location N+2, and so on, all these accesses will be 

coalesced. Such coalesced access allows the DRAMs to deliver data as a burst 



         

      
         

      

DRAM bursting

• Modern DRAM systems are designed to always be accessed in burst mode. Burst bytes are 
transferred to the processor but discarded when accesses are not to sequential locations.

time

Address bits to 
decoder

Core Array access delay
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on interface

Non-burst timing

Burst timing



         

      
         

      

DRAM Burst – A System View

• Each address space is partitioned into burst sections  

• Whenever a location is accessed, all other locations in the same section are 
also delivered to the processor  

• Basic example: a 16-byte address space, 4-byte burst sections 

• In practice, we have at least 4GB address space,  burst section sizes of 128-
bytes or more
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Coalesced access

• When all threads of a warp execute a load instruction, if all accessed locations fall into 
the same burst section, only one DRAM request will be made and the access is fully 
coalesced. 

• When the accessed locations spread across burst section boundaries: 

• Coalescing fails 

• Multiple DRAM requests are made 

• The access is not fully coalesced. 

• Some of the bytes accessed and transferred are not used by the threads
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How to judge if an access is coalesced?  
 

Accesses in a warp are to consecutive locations if the index in an array access 
is in the form of 

A[(expression with terms independent of threadIdx.x) + threadIdx.x];



         

      
         

      
Two Access Patterns of Basic Matrix 

Multiplication 

• i is the loop counter in the inner product loop of the kernel code 

• A is m × n, B is n × k  

• Col = blockIdx.x*blockDim.x + threadIdx.x

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]
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B accesses are coalesced 

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access 
direction in 
kernel code
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Non coalesced read
• If an algorithm intrinsically requires a kernel code to 

iterate through data along the row direction, one 
can use the shared memory to enable memory 
coalescing.  

• The technique is called corner turning  

• A tiled algorithm can be used to enable 
coalescing  

• Once the data is in shared memory, they can be 
accessed either on a row basis or a column basis 



         

      
         

      

Loading an input tile
• Have each thread load an A element and a B 

element at the same relative position as its C 
element. 

• Accessing tile 0 with 2D indexing: 
 
int tx = threadIdx.x  
int ty = threadIdx.y  
A[Row][tx]  
B[ty][Col] A

B

C
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__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
   __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
   int bx = blockIdx.x;  int by = blockIdx.y;
   int tx = threadIdx.x; int ty = threadIdx.y;
   // Identify the row and column of the P element to work on
   int Row = by * TILE_WIDTH + ty;
   int Col = bx * TILE_WIDTH + tx;
   float Pvalue = 0;

   // Loop over the M and N tiles required to compute the P element
   for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
       // Collaborative loading of M and N tiles into shared memory
       Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
       Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
       __syncthreads();
       for (int k = 0; k < TILE_WIDTH; ++k) {  
           Pvalue += Mds[ty][k] * Nds[k][tx]; 
       }  
       __syncthreads();  
   }  
   P[Row*Width + Col] = Pvalue;  
}
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       }  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The linearized index calculation is equivalent to M[Row][ph*TILE_SIZE+tx].  
Note that the column index used by the threads only differ in terms of threadIdx.  
The Row Index is determined by blockIdx.y and threadIdx.y, which means that threads in the 
same thread block with identical blockIdx.y/threadIdx.y and adjacent threadIdx.x values will 
access adjacent M elements.  
That is, each row of the tile is loaded by TILE_WIDTH threads whose threadIdx are identical in 
the y dimension and consecutive in the x dimension.  
The hardware will coalesce these loads. 
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In the case of N, the row index ph*TILE_SIZE+ty has the same value for all threads with the 
same threadIdx.y value.  Note that the column index calculation for each thread, Col = 
bx*TILE_SIZE+tx . The first term, bx*TILE_SIZE, is the same for all threads in the same 
block. The second term, tx, is simply the threadIdx.x value. Therefore, threads with 
adjacent threadIdx.x values access adjacent N elements in a row.  
The hardware will coalesce these loads. 



         

      
         

      

Corner turning and tiling
• Note that in the simple algorithm, threads with adjacent 
threadIdx.x values access vertically adjacent elements 
that are not physically adjacent in the row major layout.  

• The tiled algorithm “transformed” this into a different 
access pattern where threads with adjacent 
threadIdx.x values access horizontally adjacent 
elements.  
That is we turned a vertical access pattern into a 
horizontal access pattern, which is sometimes referred to 
as corner turning.  

• In the tiled algorithm, loads to both the M and N elements 
are coalesced. 
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access pattern where threads with adjacent 
threadIdx.x values access horizontally adjacent 
elements.  
That is we turned a vertical access pattern into a 
horizontal access pattern, which is sometimes referred to 
as corner turning.  

• In the tiled algorithm, loads to both the M and N elements 
are coalesced. 

The tiled matrix multiplication algorithm has two advantages over the simple matrix 
multiplication: 

1. number of memory loads are reduced due to the reuse of data in the shared memory.  
2. the remaining memory loads are coalesced so the DRAM bandwidth utilization is further 

improved. 



         

      
         

      

Memory parallelism
• DRAM bursting is a form of parallel organization: multiple locations 

around are accessed in the DRAM core array in parallel. However, 
bursting alone is not sufficient to realize the level of DRAM access 
bandwidth required by modern processors.  

• DRAM systems typically employ two more forms of parallel 
organization – banks and channels.  

• At the highest level, a processor contains one or more channels. 
Each channel is a memory controller with a bus that connects a set of 
DRAM banks to the processor. 



         

      
         

      

Banks
• For each channel, the number of banks connected 

to it is determined by the number of banks required 
to fully utilize the data transfer bandwidth of the bus.  

• The data transfer bandwidth of a bus is defined 
by its width and clock frequency. Modern double 
data rate (DDR) busses perform two data 
transfers per clock cycle, one at the rising edge 
and one at the falling edge of each clock cycle. 
For example, a 64-bit DDR bus with a clock 
frequency of 1 GHz has a bandwidth of 8B * 2 * 
1GHz = 16GB/sec. 



         

      
         

      

Banks and DRAM bursting

• In order to achieve the memory access bandwidth specified for 
device, there must be a sufficient number of threads making 
simultaneous memory accesses.  

• A distribution scheme referred to as interleaved data 
distribution, spreads the elements across the banks and 
channels in the system. 

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time 



         

      
         

      

Credits

• These slides report material from: 

• NVIDIA GPU Teaching Kit



         

      
         

      

Books

• Programming Massively Parallel Processors: A 
Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufman - Chapt. 4-6


