

GPU
programming

basics
Prof. Marco Bertini

CUDA:
performance

considerations

Memory bandwidth
• One of the most important factors of CUDA kernel performance is

accessing data in the global memory (a DRAM memory).

• The process of reading a the status of a bit takes 10s of
nanoseconds in modern DRAM chips. This is in sharp contrast with
the sub-nanosecond clock cycle time of modern computing devices.

• Modern DRAMs use parallelism to increase their rate of data
access: Each time a DRAM location is accessed, a range of
consecutive locations that include the requested location are
actually accessed (DRAM bursts).

• When all threads in a warp execute a load instruction, the hardware
detects whether they access consecutive global memory locations.  
In this case, the hardware combines, or coalesces, all these
accesses into a consolidated access to consecutive DRAM
locations.

Memory bandwidth
• One of the most important factors of CUDA kernel performance is

accessing data in the global memory (a DRAM memory).

• The process of reading a the status of a bit takes 10s of
nanoseconds in modern DRAM chips. This is in sharp contrast with
the sub-nanosecond clock cycle time of modern computing devices.

• Modern DRAMs use parallelism to increase their rate of data
access: Each time a DRAM location is accessed, a range of
consecutive locations that include the requested location are
actually accessed (DRAM bursts).

• When all threads in a warp execute a load instruction, the hardware
detects whether they access consecutive global memory locations.  
In this case, the hardware combines, or coalesces, all these
accesses into a consolidated access to consecutive DRAM
locations.

For example, for a given load instruction of a warp, if thread 0 accesses global memory
location N, thread 1 location N+1, thread 2 location N+2, and so on, all these accesses will be

coalesced. Such coalesced access allows the DRAMs to deliver data as a burst

DRAM bursting

• Modern DRAM systems are designed to always be accessed in burst mode. Burst bytes are
transferred to the processor but discarded when accesses are not to sequential locations.

time

Address bits to
decoder

Core Array access delay
bits

on interface

Non-burst timing

Burst timing

DRAM Burst – A System View

• Each address space is partitioned into burst sections

• Whenever a location is accessed, all other locations in the same section are
also delivered to the processor

• Basic example: a 16-byte address space, 4-byte burst sections

• In practice, we have at least 4GB address space, burst section sizes of 128-
bytes or more

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

Coalesced access

• When all threads of a warp execute a load instruction, if all accessed locations fall into
the same burst section, only one DRAM request will be made and the access is fully
coalesced.

• When the accessed locations spread across burst section boundaries:

• Coalescing fails

• Multiple DRAM requests are made

• The access is not fully coalesced.

• Some of the bytes accessed and transferred are not used by the threads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads
T0 T1 T2 T3

Un-coalesced Loads

Coalesced access

• When all threads of a warp execute a load instruction, if all accessed locations fall into
the same burst section, only one DRAM request will be made and the access is fully
coalesced.

• When the accessed locations spread across burst section boundaries:

• Coalescing fails

• Multiple DRAM requests are made

• The access is not fully coalesced.

• Some of the bytes accessed and transferred are not used by the threads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads
T0 T1 T2 T3

Un-coalesced Loads

How to judge if an access is coalesced?  
 

Accesses in a warp are to consecutive locations if the index in an array access
is in the form of

A[(expression with terms independent of threadIdx.x) + threadIdx.x];

Two Access Patterns of Basic Matrix

Multiplication

• i is the loop counter in the inner product loop of the kernel code

• A is m × n, B is n × k

• Col = blockIdx.x*blockDim.x + threadIdx.x

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E
IG
H
T

Two Access Patterns of Basic Matrix

Multiplication

• i is the loop counter in the inner product loop of the kernel code

• A is m × n, B is n × k

• Col = blockIdx.x*blockDim.x + threadIdx.x

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E
IG
H
T

B accesses are coalesced

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access
direction in
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

Two Access Patterns of Basic Matrix

Multiplication

• i is the loop counter in the inner product loop of the kernel code

• A is m × n, B is n × k

• Col = blockIdx.x*blockDim.x + threadIdx.x

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
E
IG
H
T

B accesses are coalesced

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access
direction in
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

A Accesses are Not Coalesced

T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction in
kernel code

…

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

Non coalesced read
• If an algorithm intrinsically requires a kernel code to

iterate through data along the row direction, one
can use the shared memory to enable memory
coalescing.

• The technique is called corner turning

• A tiled algorithm can be used to enable
coalescing

• Once the data is in shared memory, they can be
accessed either on a row basis or a column basis

Loading an input tile
• Have each thread load an A element and a B

element at the same relative position as its C
element.

• Accessing tile 0 with 2D indexing: 
 
int tx = threadIdx.x  
int ty = threadIdx.y  
A[Row][tx]  
B[ty][Col] A

B

C

W
ID
T
H

Row

Col

n

m

n

k

k

m

Corner turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

Corner turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 // Identify the row and column of the P element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
 // Collaborative loading of M and N tiles into shared memory
 Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
 Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
 __syncthreads();
 for (int k = 0; k < TILE_WIDTH; ++k) {  
 Pvalue += Mds[ty][k] * Nds[k][tx];
 }  
 __syncthreads();  
 }  
 P[Row*Width + Col] = Pvalue;  
}

Corner turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 // Identify the row and column of the P element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
 // Collaborative loading of M and N tiles into shared memory
 Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
 Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
 __syncthreads();
 for (int k = 0; k < TILE_WIDTH; ++k) {  
 Pvalue += Mds[ty][k] * Nds[k][tx];
 }  
 __syncthreads();  
 }  
 P[Row*Width + Col] = Pvalue;  
}

The linearized index calculation is equivalent to M[Row][ph*TILE_SIZE+tx].
Note that the column index used by the threads only differ in terms of threadIdx.
The Row Index is determined by blockIdx.y and threadIdx.y, which means that threads in the
same thread block with identical blockIdx.y/threadIdx.y and adjacent threadIdx.x values will
access adjacent M elements.
That is, each row of the tile is loaded by TILE_WIDTH threads whose threadIdx are identical in
the y dimension and consecutive in the x dimension.
The hardware will coalesce these loads.

Corner turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 // Identify the row and column of the P element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
 // Collaborative loading of M and N tiles into shared memory
 Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
 Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
 __syncthreads();
 for (int k = 0; k < TILE_WIDTH; ++k) {  
 Pvalue += Mds[ty][k] * Nds[k][tx];
 }  
 __syncthreads();  
 }  
 P[Row*Width + Col] = Pvalue;  
}

Corner turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 // Identify the row and column of the P element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
 // Collaborative loading of M and N tiles into shared memory
 Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
 Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
 __syncthreads();
 for (int k = 0; k < TILE_WIDTH; ++k) {  
 Pvalue += Mds[ty][k] * Nds[k][tx];
 }  
 __syncthreads();  
 }  
 P[Row*Width + Col] = Pvalue;  
}

In the case of N, the row index ph*TILE_SIZE+ty has the same value for all threads with the
same threadIdx.y value. Note that the column index calculation for each thread, Col =
bx*TILE_SIZE+tx . The first term, bx*TILE_SIZE, is the same for all threads in the same
block. The second term, tx, is simply the threadIdx.x value. Therefore, threads with
adjacent threadIdx.x values access adjacent N elements in a row.
The hardware will coalesce these loads.

Corner turning and tiling
• Note that in the simple algorithm, threads with adjacent
threadIdx.x values access vertically adjacent elements
that are not physically adjacent in the row major layout.

• The tiled algorithm “transformed” this into a different
access pattern where threads with adjacent
threadIdx.x values access horizontally adjacent
elements.  
That is we turned a vertical access pattern into a
horizontal access pattern, which is sometimes referred to
as corner turning.

• In the tiled algorithm, loads to both the M and N elements
are coalesced.

Corner turning and tiling
• Note that in the simple algorithm, threads with adjacent
threadIdx.x values access vertically adjacent elements
that are not physically adjacent in the row major layout.

• The tiled algorithm “transformed” this into a different
access pattern where threads with adjacent
threadIdx.x values access horizontally adjacent
elements.  
That is we turned a vertical access pattern into a
horizontal access pattern, which is sometimes referred to
as corner turning.

• In the tiled algorithm, loads to both the M and N elements
are coalesced.

The tiled matrix multiplication algorithm has two advantages over the simple matrix
multiplication:

1. number of memory loads are reduced due to the reuse of data in the shared memory.
2. the remaining memory loads are coalesced so the DRAM bandwidth utilization is further

improved.

Memory parallelism
• DRAM bursting is a form of parallel organization: multiple locations

around are accessed in the DRAM core array in parallel. However,
bursting alone is not sufficient to realize the level of DRAM access
bandwidth required by modern processors.

• DRAM systems typically employ two more forms of parallel
organization – banks and channels.

• At the highest level, a processor contains one or more channels.
Each channel is a memory controller with a bus that connects a set of
DRAM banks to the processor.

Banks
• For each channel, the number of banks connected

to it is determined by the number of banks required
to fully utilize the data transfer bandwidth of the bus.

• The data transfer bandwidth of a bus is defined
by its width and clock frequency. Modern double
data rate (DDR) busses perform two data
transfers per clock cycle, one at the rising edge
and one at the falling edge of each clock cycle.
For example, a 64-bit DDR bus with a clock
frequency of 1 GHz has a bandwidth of 8B * 2 *
1GHz = 16GB/sec.

Banks and DRAM bursting

• In order to achieve the memory access bandwidth specified for
device, there must be a sufficient number of threads making
simultaneous memory accesses.

• A distribution scheme referred to as interleaved data
distribution, spreads the elements across the banks and
channels in the system.

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time

Credits

• These slides report material from:

• NVIDIA GPU Teaching Kit

Books

• Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufman - Chapt. 4-6

