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CPUs vs. GPUs

- The design of a CPU is optimized for sequential code performance.
- out-of-order execution, branch-prediction

- large cache memories to reduce latency in memory access

* multi-core

- GPUs:

* many-core
- massive floating point computations for video games
- much larger bandwidth in memory access

- no branch prediction or too much control logic: just compute
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CPUs have latency oriented design:
e |arge caches convert long latency RAM access to short latency
* Branch pred., OoOE, operand forwarding reduce instructions latency
e Powerful ALU for reduced operation latency

GPUs have a throughput oriented design:
 Small caches to boost RAM throughput
e Simple control (no operand forwarding, branch prediction, etc.)
e Energy efficient ALU (long latency but heavily pipelined for high throughput)
* Require massive # threads to tolerate latencies

multi-core e e
—
HL - - — 1 — -
GPUs: = ?PU SRERE
~nn [T T T T T TTT]
~u [ T 11 [ ]
many-core

massive floating point computations for video games
much larger bandwidth in memory access

no branch prediction or too much control logic: just compute



CPUs and GPUs

- GPUs are designed as numeric computing engines,
and they will not perform well on some tasks on
which CPUs are designed to perform well;

- One should expect that most applications will use
both CPUs and GPUs, executing the sequential
parts on the CPU and numerically intensive parts
on the GPUs.

- We are going to deal with heterogenous
architectures: CPUs + GPUs.



eterogeneous Computing

- CPU computing is good for control-intensive tasks,
and GPU computing is good for data-parallel
computation-intensive tasks.

- The CPU is optimized for dynamic workloads
marked by short sequences of computational
operations and unpredictable control flow;

- GPUs aim at workloads that are dominated by
computational tasks with simple control flow.



P\ 7‘(/ N
UNIVERSITA
W‘k

S
g /L DEGLI STUDI

<\V/{lln FIRENZE

Heterogeneous Computing

Application Code

GPU

' g

\
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Compute intensive portion

CPU

Sequential portion
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BandW|dth in a CPU-GPU System

Latency:

CPU . Cache GPU cores
Core 80GB/s

100-240
GB/s

Latency:
Rel .Low

GPU
Memory

System Memory
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BandW|dth in a CPU-GPU System

Core S0GE/3 NVIDIA GTX980 (Maxwell): 224 GB/s
NVIDIA Titan X (Maxwell): 336 GB/s
NVIDIA Titan X (Pascal): 480 GB/s
NVIDIA GTX1080Ti: 484 GB/s

100-240
GB/s

Latency:

Latency:
Rel.Low

GPU
Memory

System Memory



Heterogeneous Computing

- A heterogeneous application consists of two parts:
- Host code
- Device code

- Host code runs on CPUs and device code runs on
GPUs.
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Threads

- Threads on a CPU are generally heavyweight entities.
The operating system must swap threads on and off
CPU execution channels to provide multithreading
capability. Context switches are slow and expensive.

We deal with a few tens of threads per CPU, depending
on HyperThreading.

- Threads on GPUs are extremely lightweight. In a
typical system, thousands of threads are queued up for
work. If the GPU must wait on one group of threads, it
simply begins executing work on another.

We deal with tens of thousands of threads per GPU.
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- GPU is a SIMD (Single Instruction, Multiple Data) device — it
works on “streams” of data

- Each “GPU thread” executes one general instruction on the
stream of data that the GPU is assigned to process

- NVIDIA calls this model SIMT (single instruction multiple thread)

- The SIMT architecture is similar to SIMD. Both implement
parallelism by broadcasting the same instruction to multiple
execution units.

A key difference is that SIMD requires that all vector elements in a
vector execute together in a unified synchronous group, whereas
SIMT allows multiple threads in the same group to execute
iIndependently.
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- The SIMT model includes three key features that
SIMD does not:

- Each thread has its own instruction address
counter.

- Each thread has its own reqister state, i.e. it has a
register set.

- Each thread can have an independent execution
path.
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SIMD (SSE) view vs. SIMT (CUDA) view

_mi28 a=_mm_set_ps (4, 3, 2, 1); float a[4] = {1, 2, 3, 4},
~ m128 b =_mm_set ps (8, 7, 6, 5); bl4] = {5, 6, 7, 8}, c[4];
_m128 c = _mm_add_ps (a, b);
{
intid=...; // mythread ID

clid] = alid] + blid];
}
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- The GPU architecture is built around a

scalable array of Streaming Multiprocessors
(SM).

- Each SM in a GPU is designed to support
concurrent execution of hundreds of threads,
and there are multiple SMs per GPU

- NVIDIA GPUs execute threads in groups of
32 called warps. All threads in a warp execute
the same instruction at the same time.

- GPU H/Ws are differentiated based on their

“compute capabilities”. The higher the better.
Maxwell architecture (e.g. GTX980) have 5.2.
Pascal architecture (e.g. GTX1080) GPUs

has 6.0-6.2.
The latest Volta architecture has 7.0.

Warp Scheduler

Warp Scheduler

Dispatch Unit

Dispatch Unit

Interconnect Network
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| D/ST: load/store data from cache and DRAM

SFU: Executg transclendental Instructions such as sin, Ove rVIeW

cosine, reciprocal, and square root.

Instruction Cache |

- The GPU architecture is built around a —_—
scalable array of Streaming Multiprocessors et Dhpuhint
(S M ) . Register File (32,768 x 32-bit)
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- Each SM in a GPU is designed to support T
concurrent execution of hundreds of threads, -
and there are multiple SMs per GPU
- NVIDIA GPUs execute threads in groups of SFU
32 called warps. All threads in a warp execute
the same instruction at the same time.
- GPU H/Ws are differentiated based on their
“compute capabilities”. The higher the better.
Maxwell architecture (e.g. GTX980) have 5.2. SFU
Pascal architecture (e.g. GTX1080) GPUs
has 6.0-6.2.

The latest Volta architecture has 7.0. S

64 KB Shared Memory / L1 Cache

Uniform Cache
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CUDA core

It's a vector processing unit

- Works on a single  CUDACore
operation L Enr
! 1
- It's the building block of SM FPUnit || INT Uni

- As the process reduces
them (e.g. 28nm) they
iIncrease in number per SM
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PolyMorph Engine 3.0

| | Tessellator | | Viewport Transform

Attribute Setup | | Stream Output

[ WarpScheduler |

- Four 32-core processing blocks |SEEE=saE ===
each with a dedicated war - o - o o
scheduler that can dispatch 2 T T
instructions per clock —— ——

Core  Core Core

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
3 3

dedicated to SM

Core Core Core

- Larger shared memory

Core Core Core

- Larger L2 cache (shared b
SMs —1
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Pascal SM

- More SMs per GPU

- FP16 computation
(2x faster than FP32)

8
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egister Register File (32,768 x 32-bit)
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- Less cores but same
# registers: more
registers per core
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- Fast HBM2 memory
Interface

- Fast NVLink bus

- Unified memory: programs can access both CPU and
GPU RAM



UNIVERSITA
DEGLI STUDI

FIRENZE

New tensor cores

Unified L1 / shared memory

Independent FP32 and
INT32 cores

More SMs per GPU
Larger L2 cache
New LO instruction cache

(accessed directly from
functional units)

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR

INT INT FP32 FP32 GORE GORE

INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR

INT INT [FP32 FP32 GORE GORE

INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

LO Instructio

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR

INT INT FP32 FP32 GORK GORE

INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR

INT INT FP32 FP32 GORK GORE

INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU
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NVIDIA GPUs

Volta Architecture
(compute capabilities 7.x)

Tesla V Series

Pascal Architecture
(compute capabilities 6.x)

GeForce 1000 Series

Quadro P Series

Tesla P Series

Maxwell Architecture
(compute capabilities 5.x)

Tegra X1

GeForce 900 Series

Quadro M Series

IS ERYSERES

Kepler Architecture
(compute capabilities 3.x)

GeForce 700 Series
GeForce 600 Series

Quadro K Series

Tesla K Series

Embedded

‘ IPPBfessional -
" Workstation

| TT—

v
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Back to bandwidth

- ANVIDIA GTX1080Ti has 28 SM and 3584 CUDA
cores (128 cores per SM). It's clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

- ~327 bytes/cycle for thew whole GPU.
- 11.7 bytes/cycle per SM (~4x of Intel i7-7700K)

- 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !
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Back to bandwidth

- ANVIDIA GTX1080Ti has 28 SM and 3584 CUDA

cores (128 cores per SM). It's clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

- ~327 bytes/cycle for thew whole GPU.
- 11.7 bytes/cycle per SM (~4x of Intel i7-7700K)

- 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !
Remind that a 40-years old MOS 6502 got 4 bytes/instruction !
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Absolute memory bandwidths in consumer devices have gone up by

several orders of magnitude from the ~1MB/s of early 80s home
computers, but available compute resources have grown much faster
still.
The only way to stop bumping into bandwidth limits all the time is to
make sure your workloads have reasonable locality of reference so

C that the caches can do their job. |z

da

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

- ~327 bytes/cycle for thew whole GPU.
- 11.7 bytes/cycle per SM (~4x of Intel i7-7700K)

- 0.09 bytes/cycle per CUDA core, i.e. only one byte

every 11 instructions !
Remind that a 40-years old MOS 6502 got 4 bytes/instruction !
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Absolute memory bandwidths in consumer devices have gone up by
several orders of magnitude from the ~1MB/s of early 80s home
computers, but available compute resources have grown much faster
still.

. The only way to stop bumping into bandwidth limits all the time is to
make sure your workloads have reasonable locality of reference so
C that the caches can do their job. |z

da

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

- ~327 bytes/cycle for thew whole GPU.

Pascal and Volta GPUs use High Bandwidth Memory 2 (HBMZ2) high-pert. RAM interface to
achieve higher bandwidth (900 GB/s)

L 4

- 0.09 bytes/cycle per CUDA core, i.e. only one byte

every 11 instructions !
Remind that a 40-years old MOS 6502 got 4 bytes/instruction !
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Absolute memory bandwidths in consumer devices have gone up by
several orders of magnitude from the ~1MB/s of early 80s home
computers, but available compute resources have grown much faster
still.

. The only way to stop bumping into bandwidth limits all the time is to
make sure your workloads have reasonable locality of reference so
C that the caches can do their job. |z

da

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

- ~327 bytes/cycle for thew whole GPU.

Pascal and Volta GPUs use High Bandwidth Memory 2 (HBMZ2) high-perf. RAM interface to
achieve higher bandwidth (900 GB/s)

NVLink bus connects CPU and GPU (or multiple GPUs) at 80-200 GB/s - it's an alternative to

PCIl Express
* U.UY DYlesS/CyCie per VUDA COre, 1.e. Or1ly orie pyle

every 11 instructions !
Remind that a 40-years old MOS 6502 got 4 bytes/instruction !



- Athread block is scheduled on only one SM. Once
a thread block is scheduled on an SM, it remains
there until execution completes. An SM can hold
more than one thread block at the same time.

Execution

Software

Hardware
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CUDA: Compute Unified Device Architecture

» It enables a general purpose programming model
on NVIDIA GPUs. Current CUDA SDK is 9.0.

- Enables explicit GPU memory management
- The GPU is viewed as a compute device that:
» |s a co-processor to the CPU (or host)

- Has its own DRAM (global memory in CUDA
parlance)

- Runs many threads in parallel
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"The CUDA platform

- The CUDA platform is accessible through CUDA-accelerated
libraries, compiler directives, application programming interfaces,
and extensions to industry-standard programming languages,
including C, C++, Fortran, and Python

- CUDA C is an extension of standard ANSI C with a handful of
language extensions to enable heterogeneous programming, and
also straightforward APls to manage devices, memory, and other
tasks.

GPU Computing Applications

Libraries and Middleware

CUFFT VSIPL

CUBLAS CULA Theust A PhysX MATLAB
CURAND MAGMA NPP e | optix Mathematica
CUSPARSE it th it

Programming Languages

. Directives
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CUDA APils

- CUDA provides two API levels for managing the GPU device and organizing threads:
- CUDA Driver API
- CUDA Runtime API

- The driver APl is a low-level API and is relatively hard to program, but it provides
more control over how the GPU device is used.
The runtime APl is a higher-level AP| implemented on top of the driver API. Each
function of the runtime API is broken down into more basic operations issued to the
driver API.

CPU
Applications

CUDA Libraries

CUDA Runtime

CUDA Diriver

GPU
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A CUDA program

- A CUDA program consists of a mixture of the following two parts:

a)

‘flll

- The host code runs on CPU.

- The device code runs on GPU.

- NVIDIA's CUDA nvcc compiler separates the device code from
the host code during the compilation process.

CUDA Libraries \ Integrated CPU+GPU Code \
CUDA Compiler I

CUDA Assembly \ \
for Computing (PTX) CPU Host Code
CUDA Driver Debugger _
& Runtime \ Profiler \ C Compiler \
GPU I CPU I
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A CUDA program

- A CUDA program consists of a mixture of the following two parts:

a)

‘flll

- The host code runs on CPU.

- The device code runs on GPU.

NVIDIA provides the NSight IDE (based on Eclipse) to ease development of
C/C++/CUDA programming

CUDA Libraries \ Integrated CPU+GPU Code \
CUDA Compiler I

CUDA Assembly \ \
for Computing (PTX) CPU Host COde
CUDA Driver Debugger _
& Runtime \ Profiler \ C Compiler \
GPU I CPU I
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Compiling a CUDA program

Integrated C programs with CUDA extensions

NVCC Compiler

Host Code

Host C Compiler/ Linker

Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.
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What a programmer expresses in CUDA

- Computation partitioning (where does computation occur?)
- Declarations on functions __host__, __global__, __device__

- Mapping of thread programs to device:
compute <<<gs, bs>>>(<args>)

- Data partitioning (where does data reside, who may access it and how?)
- Declarations on data __shared__, __device__, __constant__
- Data management and orchestration

- Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj,
cudaMemcpyDevicetoHost)

- Concurrency management

- E.g. __synchthreads()
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CUDA C: C extension + API

- Declspecs

- global, device, shared, local, constant

- Keywords

- threadIdx, blockIdx

« Intrinsics

__syncthreads

* Runtime API

- Memory, symbol, execution management

* Function launch

__device__ float filter[N];
__global__ void convolve (float *image) {
__Shared__ float region[M];

region[threadIdx] = image[1];

__syncthreads()

image[j] = result;

¥

// Allocate GPU memory
vold *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);



Languages

- The host code is written in ANSI C, and the device

code Is written using CUDA C.

* You can put all the code in a single source file, or
you can use multiple source files to build your
application or libraries.

- The NVIDIA C Compiler (nvcc) generates the
executable code for both the host and device.

- Typical CUDA C extension is . cU



CU DA program structure

» Atypical CUDA program structure consists of five
main steps:

1.

2.

3.

Allocate GPU memories.
Copy data from CPU memory to GPU memory.

Invoke the CUDA functions (called kernel) to
perform program-specific computation.

. Copy data back from GPU memory to CPU memory.

Destroy GPU memories.
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CUDA program structure

» Atypical CUDA program structure consists of five
main steps:

1. Allocate GPU memories.

2. Copy data from CPU memory to GPU memory.

As the developer, you can express a kernel as a sequential program. Behind the scenes,
CUDA manages scheduling programmer-written kernels on GPU threads.

From the host, you define how your algorithm is mapped to the device based on application
data and GPU device capability.

4. Copy data back from GPU memory to CPU memory.

5. Destroy GPU memories.



CU DA program structure

- The host can operate independently of the device
for most operations. \When a kernel has been
launched, control is returned immediately to the
host, freeing the CPU to perform additional tasks

complemented by data parallel code running on the
device.

- The CUDA programming model is primarily
asynchronous so that GPU computation
performed on the GPU can be overlapped with
host-device communication.
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CUDA program structure

CUDA C/C++ Application

Host = CPU
Host code gggg

Device = GPU

Parallel code W % %
os=CPU 2332

Device = GPU

T s | - |

Parallel code
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CUDA program structure

CUDA C/C++ Application

Host code T 3333

Device = GPU

Parallel code % % %
o code o =CP 3333

L

All the threads that are generated by a kernel during an
invocation are collectively called a grid.

Parallel code




AP | UNIVERSITA
(g2 = | DEGLI STUDI

2" | FIRENZE

- The programmer decides how to organize a grid,
to improve parallelization

- When all threads of a kernel complete their
execution, the corresponding grid terminates, and
the execution continues on the host until another
kernel is invoked.

- Grids are organized into blocks.
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Hello world
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CUDA Function Declarations

Only callable

Executed on the:

from the:

__device__ float myDeviceFunc() device device
__global__ void myKernelFunc() device host
__host__ float myHostFunc() host host

- __global__ defines a kernel function, launched by host, executed on the
device

- Must return void

- By default, all functions in a CUDA program are __host__ functions if they
do not have any of the CUDA keywords in their declaration.
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CUDA Function Declarations

FIRENZE

Only callable

Executed on the:

from the:

__device__ float myDeviceFunc() device device
__global__ void myKernelFunc() device host
__host__ float myHostFunc() host host

One can use both __host__ and __device__ in a function declaration.

This combination triggers the compilation system to generate two versions of the same
function.

One is executed on the host and can only be called from a host function.
The other is executed on the device and can only be called from a device or kernel function.
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Hello world

#include "greeter.h"

#include <stdio.h>
#include <cuda_runtime_ap1i.h>

__global__ void helloFromGPU() {
printf("Hello World from GPU thread %d!\n", threadIdx);
¥

int main(int argc, char **argv) {
greet(std: :string("Pinco"));

helloFromGPU<<<1, 10>>>();

// destroy and clean up all resources associated with current device
// + current process.
cudaDeviceReset(); // CUDA functions are async...

// the program would terminate before CUDA kernel prints
return 0;
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Hello world

Provides declaration of greet(std: :string name).
Definition is in greeter.cpp

#1include "greeter.h" <

#include <stdio.h>
#include <cuda_runtime_ap1i.h>

__global__ void helloFromGPU() {
printf("Hello World from GPU thread %d!\n", threadIdx);
¥

int main(int argc, char **argv) {
greet(std: :string("Pinco"));

helloFromGPU<<<1, 10>>>();

// destroy and clean up all resources associated with current device
// + current process.
cudaDeviceReset(); // CUDA functions are async...

// the program would terminate before CUDA kernel prints
return 0;
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Hello world

Provides declaration of greet(std: :string name).
Definition is in greeter.cpp

#1include "greeter.h" <

#include <stdio.h>
#include <cuda_runtime_ap1i.h>

__global__ void helloFromGPU() {
printf("Hello World from GPU thread %d!\n", threadIdx);
¥

int main(int argc, char **argv) {
greet(std: :string("Pinco"));

10 CUDA threads running on the GPU.
This uses is 1 grid.

// destroy and clean up all resources associated with current device

// + current process.
cudaDeviceReset(); // CUDA functions are async...

// the program would terminate before CUDA kernel prints

helloFromGPU<<<1, 10>>>(); <

return 0;
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Memory model

- The CUDA programming model assumes a system composed of a
host and a device, each with its own separate memory.

- Kernels operate out of device memory. To allow you to have full
control and achieve the best performance, the CUDA runtime
provides functions to allocate device memory, release device

memory, and transfer data between the host memory and device
memory.

Standard C function CUDA C function
malloc cudaMalloc
memcpy cudaMemcpy
memset cudaMemset

free cudafFree
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CUDA device memory model

* Device code can: (Device) Grid
— R/W per-thread registers Block (0, 0) Block (1, 0)
— R/W per-thread local memory
Shared Memory Shared Memory

— R/W per-block shared memory
— R/W per-grid global memory Registers I MMI Registers I """""I

! ! I !

— Read only per-grid constant

memory Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)
* Host code can I I I I
Global

— Transfer data to/from per-grid Host ¢ pgemory

global and constant memories
Constant
IR Memory
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Example of CUDA API

Grid
e cudaMalloc() o (0o e
— Allocates object in the device DG ock (1, 0)
global memory
Shared Memory Shared Memory

— Two parameters

« Address of a pointe

Registers Registers Registers Registers
allocated object

! ! ! !

Thread (0, 0)  Thread (1,0) @ Thread (0, 0) Thread (1, 0)

! ! ! !

lobal Memory

» Size of of allocated object in
terms of bytes

e cudaFree()

— Frees object from device
global memory <+—» Constant Memory

* Pointer to freed object
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T 1oat *Md
1nt size width * width * sizeof(float);

Exa m cudaMalloc((void**)&Md, size);

cudaFree(Md);
Grid
e cudaMalloc() o (0o e
— Allocates object in the device DG ock (1, 0)
global memory
Shared Memory Shared Memory

— Two parameters

« Address of a pointe
allocated object

Registers Registers Registers Registers
s ! ! !

Thread (0, 0) | Thread (1,0) @ Thread (0,0) Thread (1, 0)

! ! ! !

lobal Memory

» Size of of allocated object in
terms of bytes

e cudaFree()

— Frees object from device
global memory +—» Constant Memory

* Pointer to freed object
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cudaMalloc

cudakrror_t cudaMalloc ( void** devPtr,
size_t size )

This function allocates a linear range of device memory
with the specified s1ze in bytes. The allocated memory is

returned through devPtr.

If GPU memory is successfully allocated, it returns:
+ cudaSuccess

Otherwise, it returns:

 cudaErrorMemoryAllocation
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CUDA errors

* You can convert an error code to a human-

readable error message with the following CUDA
run- time function:

char* cudaGetErrorString(cudakrror_t error)

- A common practice is to wrap CUDA calls in utility
functions that manage the returned error



#define tUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE
#value, value)

LINE__,

e

static void CheckCudaErrorAux (const char *file, unsigned line, const char
*statement, cudaError_t err) {
1f (err == cudaSuccess)
return;
std::cerr << statement<<" returned " << cudaGetErrorString(Cerr) <<

"("<<err<< ") at "<<file<<":"<<l1ne << std::endl;
exit (1);
¥

Use as: CUDA_CHECK_RETURN(CcudaFunction(parameters));

+ char* cudaGetErrorString(cudaError_t error)

- A common practice is to wrap CUDA calls in utility
functions that manage the returned error



#define tUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE
#value, value)

LINE__,

e

static void CheckCudaErrorAux (const char *file, unsigned line, const char
*statement, cudaError_t err) {
1f (err == cudaSuccess)
return;
std::cerr << statement<<" returned " << cudaGetErrorString(Cerr) <<
"("<<err<< ") at "<<file<<":"<<l1ine << std::endl;
exit (1);

}

Use as: CUDA_CHECK_RETURN(CcudaFunction(parameters));

#define CHECK(call)

{
const cudaError_t error = call;
1f (error != cudaSuccess)
{

fprintf(stderr, "Error: %s:%d, ", __FILE LINE__);
fprintf(stderr, "code: %d, reason: %s\n", error,

cudaGetErrorString(error));
ex1t(1l);

—— 9 — —

A AV A A A A A v d
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cudaMemcpy

e cudakrror_t cudaMemcpy ( void* dst, const void* src,
size_t count, cudaMemcpyKind kind )

-+ This function copies the specified bytes from the source memory area,
pointed to by src, to the destination memory area, pointed to by dst, with

the direction specified by kind, where kind takes one of the following types:
- cudaMemcpyHostToHost

- cudaMemcpyHostToDevice

- cudaMemcpyDevice ToHost

- cudaMemcpyDeviceToDevice

- This function exhibits synchronous behavior because the host application
blocks until cudaMemcpy returns and the transfer is complete.
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Thread hierarchy

- When a kernel function is launched from the host side, execution is
moved to a device where a large number of threads are generated
and each thread executes the statements specified by the
kernel function.

Wll

- CUDA exposes a thread hierarchy abstraction to enable you to
organize your threads. This is a two-level thread hierarchy
decomposed into blocks of threads and grids of blocks

Host | | Device
Grid

Kernel = Block Block Block
(0, 0) (1,0) (2,0)

Block”~  Block | Block
0,1 1) @)

Block (1, 1)
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Thread memory and coop

- All threads spawned by a single kernel launch are collectively called a
grid.
All threads in a grid share the same global memory space.
A grid is made up of many thread blocks. A thread block is a group of
threads that can cooperate with each other using:
- Block-local synchronization
- Block-local shared memory
- Threads from different blocks cannot cooperate.

- Threads rely on the following two unique coordinates to distinguish
themselves from each other:

- blockldx (block index within a grid)

- threadldx (thread index within a block)
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3D threadldx

- threadIdx and blockIdx is a 3-component

vector (uint3), so that threads can be identified

using a one-dimensional, two-dimensional, or
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional
block of threads, called a thread block.

- This provides a natural way to invoke computation
across the elements in a domain such as a vector,
matrix, or volume.
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3D threadldx

- threadIdx and blockIdx is a 3-component

vector (uint3), so that threads can be identified

using a one-dimensional, two-dimensional, or
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional
block of threads, called a thread block.

threadldx and blockldx are accessible through the fields x, y, and z respectively.
blockIdx.x

blockIdx.y
blockIdx.z

threadIdx. x
threadldx.y
threadIldx.z
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« A thread block is a batch Host SR
of threads that can Grid1
cooperate with each cornel
. - Block Block
other by: 3 = e
— Synchronizing their ook Y _—
i ocC oC \
execution O i 1)\
* For hazard-free shared > / A
’ / \
memory accesses [ Gid2 ‘.‘ .\
// ’ i ‘
— Efficiently sharing data Kernel ——f—> / g ‘\\
through a low-latency S , l

shared memory

e Two threads from two
different blocks cannot
cooperate

(-I-

nreadIdx. x
nreadldx.y
threadldx.z

(-|-
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Creating threads

- Each CUDA thread grid typically is comprised of thousands to millions
of lightweight GPU threads per kernel invocation.

- Creating enough threads to fully utilize the hardware often requires a
large amount of data parallelism; for example, each element of a large
array might be computed in a separate thread.

- kernel_name <<<grid, block>>>(Cargument list);

- The first value in the execution configuration is grid, i.e. the grid
dimension, the number of blocks to launch. The second value is
block.i.e. the block dimension, the number of threads within each

block. By specifying the grid and block dimensions, you configure:

- The total number of threads for a kernel

- The layout of the threads you want to employ for a kernel



Synchronlzmg threads

- A kernel call is asynchronous with respect to the
host thread. After a kernel is invoked, control
returns to the host side immediately.

* You can call the following function to force the host
application to wait for all kernels to complete:

-+ cudakrror_t cudaDeviceSynchronize(void);
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threads
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Summing a vector

volid sumArraysOnHost(float *A, float *B, float *C, const int N) {
for (1int 1dx = 0; 1dx < N; 1dx++)
C[i1dx] = A[i1dx] + B[i1dx];

- GPU

__global__ void sumArraysOnGPU(float *A, float *B, float *C,
const 1nt N) {
int 1 = threadldx.x;
1f (1 < N)
C[i] = A[1] + B[1i];
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Summing a vector

lll

CPU:

volid sumArraysOnHost(float *A, float *B, float *C, const int N) {

LA 2 nd+ A A - M. - A, ~ NI a Av N

Supposing a vector with the length of 32 elements, you can invoke the kernel with 32
threads as follows:

sumArraysOnGPU<<<1, 32>>>(float *A, float *B, float *C, 32);

__global__ void sumArraysOnGPU(float *A, float *B, float *C,
const 1nt N) {
int 1 = threadldx.x;
1f (1 < N)
C[i] = A[1] + B[1];
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Summing a vector
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- CPU:

volid sumArraysOnHost(float *A, float *B, float *C, const int N) {

LA 2 nd+ A A - M. 2 A~ ~ NI a Av N

Supposing a vector with the length of 32 elements, you can invoke the kernel with 32
threads as follows:

sumArraysOnGPU<<<1, 32>>>(float *A, float *B, float *C, 32);

Simplified version:

__global__ void sumArraysOnGPU(float *A, float *B, float *C) {
int 1 = threadldx.x;

C[i] = A[1] + B[1];
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Matrix multiplication: CPU

void MatrixMultiplication(float* M, float* N, float* P, int width) {
for (int 1 = 0; 1 < width; ++1)
for (int Jj = 0; J < width; ++3) {
float sum = 0;

for (int k = 0; k < width; ++k) {

N
float a = M[1 * width + k];
float b = N[k * width + j1; 5
sum += a * b;
} ; : lf
P[1 * width + j] = sum;
}
) " WIDTH . WIDTH .
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Matrix multiplication: GPU

__global__ void MatrixMulKernel(float* Md, float* Nd,
float* Pd, 1int width) {

int tx = threadldx.x;
int ty = threadIldx.y;

float PValue = 0;

for(int k=0; k<width; ++k) {
float MdElem = Md[ty * width + k];
float NdElem = Nd[k * width + tx];
PValue += MdElem * NdElem;

¥

Pd[ty * width + tx] = PValue;
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Matrix multiplication: GPU

__global__ void MatrixMulKernel(float* Md, float* Nd,
float* Pd, int width) {

Instead of two cycles on i and |, the CUDA
threadIdx.x; threading hardware generates all of the threadldx.x
threadIdx.y; and threadldx.y values for each thread.

Each thread uses its threadldx.x and threadldx.y to
identify the row of Md and the column of Nd to

perform the dot product operation.

1nt tx
int ty

float PValue = 0;

for(int k=0; k<width; ++k) {
float MdElem = Md[ty * width + k];
float NdElem = Nd[k * width + tx];
PValue += MdElem * NdElem;

¥

Pd[ty * width + tx] = PValue;
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Matrix multiplication: GPU

__global__ void MatrixMulKernel(float* Md, float* Nd,
float* Pd, int width) {

Instead of two cycles on i and |, the CUDA

1nt tx = threadldx.x; threading hardware generates all of the threadldx.x
1nt ty = threadIdx.y; and threadldx.y values for each thread.
Each thread uses its threadldx.x and threadldx.y to
| ity th fM N | fN
float PValue = 0: identify the row of Md and the column of Nd to

perform the dot product operation.

for(int k=0; k<width; ++k) {
float MdElem = Md[ty * width + k];
float NdElem = Nd[k * width + tx];
PValue += MdElem * NdElem;

¥

Pdltv * width + tx1 = PValue:
Thread2 s will perform a dot product between column 2 of Nd and row 3 of Md and write the

result into element (2,3) of Pd.
This way, the threads collectively generate all the elements of the Pd matrix.



Memory access

» M and N must be copied to the Md and Nd matrices
allocated in the GPU

- Pd must be copied from te device back to the host

- Once all these operations are concluded it's

possible to cudaFree Md, Nd and Pd
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Limitations

- All these examples use only 1 block, but there’s
limit on the number of threads per block

- Indexing no longer as simple as using only
threadldx.x/threadldx.y

* One will have to account for the size of the block
as well
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- These slides report material from:
- Prof. Jan Lemeire (Vrjie Universiteit Brussel)
- Prof. Dan Negrut (Univ. Wisconsin - Madison)

- NVIDIA GPU Teaching Kit



- Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 2nd edition - Chapt. 1 and 3

or

Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 3rd edition - Chapt. 1-2

» Professional CUDA C Programming, J. Cheng, M.
Grossman and T. McKercher, Wrox - Chapt. 1-2



