

GPU
programming

basics
Prof. Marco Bertini

Data
parallelism:

GPU computing

CPUs vs. GPUs
• The design of a CPU is optimized for sequential code performance.

• out-of-order execution, branch-prediction

• large cache memories to reduce latency in memory access

• multi-core

• GPUs:

• many-core

• massive floating point computations for video games

• much larger bandwidth in memory access

• no branch prediction or too much control logic: just compute

CPUs vs. GPUs
• The design of a CPU is optimized for sequential code performance.

• out-of-order execution, branch-prediction

• large cache memories to reduce latency in memory access

• multi-core

• GPUs:

• many-core

• massive floating point computations for video games

• much larger bandwidth in memory access

• no branch prediction or too much control logic: just compute

CPUs have latency oriented design:
• Large caches convert long latency RAM access to short latency
• Branch pred., OoOE, operand forwarding reduce instructions latency
• Powerful ALU for reduced operation latency

GPUs have a throughput oriented design:
• Small caches to boost RAM throughput
• Simple control (no operand forwarding, branch prediction, etc.)
• Energy efficient ALU (long latency but heavily pipelined for high throughput)
• Require massive # threads to tolerate latencies

CPUs and GPUs
• GPUs are designed as numeric computing engines,

and they will not perform well on some tasks on
which CPUs are designed to perform well;

• One should expect that most applications will use
both CPUs and GPUs, executing the sequential
parts on the CPU and numerically intensive parts
on the GPUs.

• We are going to deal with heterogenous
architectures: CPUs + GPUs.

Heterogeneous Computing

• CPU computing is good for control-intensive tasks,
and GPU computing is good for data-parallel
computation-intensive tasks.

• The CPU is optimized for dynamic workloads
marked by short sequences of computational
operations and unpredictable control flow;

• GPUs aim at workloads that are dominated by
computational tasks with simple control flow.

Heterogeneous Computing

• CPU computing is good for control-intensive tasks,
and GPU computing is good for data-parallel
computation-intensive tasks.

• The CPU is optimized for dynamic workloads
marked by short sequences of computational
operations and unpredictable control flow;

• GPUs aim at workloads that are dominated by
computational tasks with simple control flow.

Bandwidth in a CPU-GPU System

Bandwidth in a CPU-GPU System

NVIDIA GTX980 (Maxwell): 224 GB/s
NVIDIA Titan X (Maxwell): 336 GB/s
NVIDIA Titan X (Pascal): 480 GB/s

NVIDIA GTX1080Ti: 484 GB/s

Heterogeneous Computing

• A heterogeneous application consists of two parts:

• Host code

• Device code

• Host code runs on CPUs and device code runs on
GPUs.

Threads
• Threads on a CPU are generally heavyweight entities.

The operating system must swap threads on and off
CPU execution channels to provide multithreading
capability. Context switches are slow and expensive.  
 
We deal with a few tens of threads per CPU, depending
on HyperThreading.

• Threads on GPUs are extremely lightweight. In a
typical system, thousands of threads are queued up for
work. If the GPU must wait on one group of threads, it
simply begins executing work on another.  
 
We deal with tens of thousands of threads per GPU.

SIMT
• GPU is a SIMD (Single Instruction, Multiple Data) device → it

works on “streams” of data

• Each “GPU thread” executes one general instruction on the
stream of data that the GPU is assigned to process

• NVIDIA calls this model SIMT (single instruction multiple thread)

• The SIMT architecture is similar to SIMD. Both implement
parallelism by broadcasting the same instruction to multiple
execution units.  
 
A key difference is that SIMD requires that all vector elements in a
vector execute together in a unified synchronous group, whereas
SIMT allows multiple threads in the same group to execute
independently.

SIMT
• The SIMT model includes three key features that

SIMD does not:

• Each thread has its own instruction address
counter.

• Each thread has its own register state, i.e. it has a
register set.

• Each thread can have an independent execution
path.

SIMD (SSE) view vs. SIMT (CUDA) view

37

1 2 3 4

5 6 7 8
+

=

__m128 a = _mm_set_ps (4, 3, 2, 1);
__m128 b = _mm_set_ps (8, 7, 6, 5);
__m128 c = _mm_add_ps (a, b);

a

b

c

SIMD!(SSE)!view “SIMT”!(CUDA)!view

float a[4] = {1, 2, 3, 4},
 b[4] = {5, 6, 7, 8}, c[4];

// …
// Define a compute kernel, which
// a fine-grained thread executes.
{
 int id = … ; // my thread ID
 c[id] = a[id] + b[id];
}

1 2 3 4

5 6 7 8
+ + + +

= = = =

Tuesday, October 11, 11

GPU Architecture Overview
• The GPU architecture is built around a

scalable array of Streaming Multiprocessors
(SM).

• Each SM in a GPU is designed to support
concurrent execution of hundreds of threads,
and there are multiple SMs per GPU

• NVIDIA GPUs execute threads in groups of
32 called warps. All threads in a warp execute
the same instruction at the same time.

• GPU H/Ws are differentiated based on their
“compute capabilities”. The higher the better.
Maxwell architecture (e.g. GTX980) have 5.2.  
Pascal architecture (e.g. GTX1080) GPUs
has 6.0-6.2. 
The latest Volta architecture has 7.0.

GPU Architecture Overview
• The GPU architecture is built around a

scalable array of Streaming Multiprocessors
(SM).

• Each SM in a GPU is designed to support
concurrent execution of hundreds of threads,
and there are multiple SMs per GPU

• NVIDIA GPUs execute threads in groups of
32 called warps. All threads in a warp execute
the same instruction at the same time.

• GPU H/Ws are differentiated based on their
“compute capabilities”. The higher the better.
Maxwell architecture (e.g. GTX980) have 5.2.  
Pascal architecture (e.g. GTX1080) GPUs
has 6.0-6.2. 
The latest Volta architecture has 7.0.

LD/ST: load/store data from cache and DRAM
SFU: Execute transcendental instructions such as sin,

cosine, reciprocal, and square root.

CUDA core
• It’s a vector processing unit

• Works on a single
operation

• It’s the building block of SM

• As the process reduces
them (e.g. 28nm) they
increase in number per SM

Maxwell SMM

• Four 32-core processing blocks
each with a dedicated warp
scheduler that can dispatch 2
instructions per clock

• Larger shared memory
(dedicated to SM)

• Larger L2 cache (shared by
SMs)

Pascal SM
• More SMs per GPU

• FP16 computation 
(2× faster than FP32)

• Less cores but same  
registers: more  
registers per core

• Fast HBM2 memory  
interface

• Fast NVLink bus

• Unified memory: programs can access both CPU and
GPU RAM

Volta SM
• New tensor cores

• Unified L1 / shared memory

• Independent FP32 and
INT32 cores

• More SMs per GPU

• Larger L2 cache

• New L0 instruction cache
(accessed directly from
functional units)

NVIDIA GPUs

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA

cores (128 cores per SM). It’s clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

• ~327 bytes/cycle for thew whole GPU.

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA

cores (128 cores per SM). It’s clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

• ~327 bytes/cycle for thew whole GPU.

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !

Remind that a 40-years old MOS 6502 got 4 bytes/instruction !

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA

cores (128 cores per SM). It’s clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

• ~327 bytes/cycle for thew whole GPU.

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !

Remind that a 40-years old MOS 6502 got 4 bytes/instruction !

Absolute memory bandwidths in consumer devices have gone up by
several orders of magnitude from the ~1MB/s of early 80s home
computers, but available compute resources have grown much faster
still.
The only way to stop bumping into bandwidth limits all the time is to
make sure your workloads have reasonable locality of reference so
that the caches can do their job.

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA

cores (128 cores per SM). It’s clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

• ~327 bytes/cycle for thew whole GPU.

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !

Remind that a 40-years old MOS 6502 got 4 bytes/instruction !

Absolute memory bandwidths in consumer devices have gone up by
several orders of magnitude from the ~1MB/s of early 80s home
computers, but available compute resources have grown much faster
still.
The only way to stop bumping into bandwidth limits all the time is to
make sure your workloads have reasonable locality of reference so
that the caches can do their job.

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

Pascal and Volta GPUs use High Bandwidth Memory 2 (HBM2) high-perf. RAM interface to
achieve higher bandwidth (900 GB/s)

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA

cores (128 cores per SM). It’s clocked at 1.48GHz
and memory bandwidth is 484GB/s. This means:

• ~327 bytes/cycle for thew whole GPU.

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte
every 11 instructions !

Remind that a 40-years old MOS 6502 got 4 bytes/instruction !

Absolute memory bandwidths in consumer devices have gone up by
several orders of magnitude from the ~1MB/s of early 80s home
computers, but available compute resources have grown much faster
still.
The only way to stop bumping into bandwidth limits all the time is to
make sure your workloads have reasonable locality of reference so
that the caches can do their job.

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

Pascal and Volta GPUs use High Bandwidth Memory 2 (HBM2) high-perf. RAM interface to
achieve higher bandwidth (900 GB/s)

NVLink bus connects CPU and GPU (or multiple GPUs) at 80-200 GB/s - it’s an alternative to
PCI Express

Execution
• A thread block is scheduled on only one SM. Once

a thread block is scheduled on an SM, it remains
there until execution completes. An SM can hold
more than one thread block at the same time.

CUDA

CUDA: Compute Unified Device Architecture

• It enables a general purpose programming model
on NVIDIA GPUs. Current CUDA SDK is 9.0.

• Enables explicit GPU memory management

• The GPU is viewed as a compute device that:

• Is a co-processor to the CPU (or host)

• Has its own DRAM (global memory in CUDA
parlance)

• Runs many threads in parallel

The CUDA platform
• The CUDA platform is accessible through CUDA-accelerated

libraries, compiler directives, application programming interfaces,
and extensions to industry-standard programming languages,
including C, C++, Fortran, and Python

• CUDA C is an extension of standard ANSI C with a handful of
language extensions to enable heterogeneous programming, and
also straightforward APIs to manage devices, memory, and other
tasks.

CUDA APIs
• CUDA provides two API levels for managing the GPU device and organizing threads:

• CUDA Driver API

• CUDA Runtime API

• The driver API is a low-level API and is relatively hard to program, but it provides
more control over how the GPU device is used.  
The runtime API is a higher-level API implemented on top of the driver API. Each
function of the runtime API is broken down into more basic operations issued to the
driver API.

A CUDA program
• A CUDA program consists of a mixture of the following two parts:

• The host code runs on CPU.

• The device code runs on GPU.

• NVIDIA’s CUDA nvcc compiler separates the device code from
the host code during the compilation process.

A CUDA program
• A CUDA program consists of a mixture of the following two parts:

• The host code runs on CPU.

• The device code runs on GPU.

• NVIDIA’s CUDA nvcc compiler separates the device code from
the host code during the compilation process.
NVIDIA provides the NSight IDE (based on Eclipse) to ease development of

C/C++/CUDA programming

Compiling a CUDA program
Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

What a programmer expresses in CUDA
• Computation partitioning (where does computation occur?)

• Declarations on functions __host__, __global__, __device__

• Mapping of thread programs to device:  
compute <<<gs, bs>>>(<args>)

• Data partitioning (where does data reside, who may access it and how?)

• Declarations on data __shared__, __device__, __constant__, …

• Data management and orchestration

• Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj,
cudaMemcpyDevicetoHost)

• Concurrency management

• E.g. __synchthreads()

CUDA C: C extension + API
• Declspecs

• global, device, shared, local, constant

• Keywords

• threadIdx, blockIdx

• Intrinsics

• __syncthreads

• Runtime API

• Memory, symbol, execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Languages
• The host code is written in ANSI C, and the device

code is written using CUDA C.

• You can put all the code in a single source file, or
you can use multiple source files to build your
application or libraries.

• The NVIDIA C Compiler (nvcc) generates the
executable code for both the host and device.

• Typical CUDA C extension is .cu

CUDA program structure
• A typical CUDA program structure consists of five

main steps:

1. Allocate GPU memories.

2. Copy data from CPU memory to GPU memory.

3. Invoke the CUDA functions (called kernel) to
perform program-specific computation.

4. Copy data back from GPU memory to CPU memory.

5. Destroy GPU memories.

CUDA program structure
• A typical CUDA program structure consists of five

main steps:

1. Allocate GPU memories.

2. Copy data from CPU memory to GPU memory.

3. Invoke the CUDA functions (called kernel) to
perform program-specific computation.

4. Copy data back from GPU memory to CPU memory.

5. Destroy GPU memories.

As the developer, you can express a kernel as a sequential program. Behind the scenes,
CUDA manages scheduling programmer-written kernels on GPU threads.

From the host, you define how your algorithm is mapped to the device based on application
data and GPU device capability.

CUDA program structure
• The host can operate independently of the device

for most operations. When a kernel has been
launched, control is returned immediately to the
host, freeing the CPU to perform additional tasks
complemented by data parallel code running on the
device.

• The CUDA programming model is primarily
asynchronous so that GPU computation
performed on the GPU can be overlapped with
host-device communication.

CUDA program structure
• The host can operate independently of the device

for most operations. When a kernel has been
launched, control is returned immediately to the
host, freeing the CPU to perform additional tasks
complemented by data parallel code running on the
device.

• The CUDA programming model is primarily
asynchronous so that GPU computation
performed on the GPU can be overlapped with
host-device communication.

CUDA program structure
• The host can operate independently of the device

for most operations. When a kernel has been
launched, control is returned immediately to the
host, freeing the CPU to perform additional tasks
complemented by data parallel code running on the
device.

• The CUDA programming model is primarily
asynchronous so that GPU computation
performed on the GPU can be overlapped with
host-device communication.

All the threads that are generated by a kernel during an
invocation are collectively called a grid.

Grid

• The programmer decides how to organize a grid,
to improve parallelization

• When all threads of a kernel complete their
execution, the corresponding grid terminates, and
the execution continues on the host until another
kernel is invoked.

• Grids are organized into blocks.

Hello world

• __global__ defines a kernel function, launched by host, executed on the
device

• Must return void

• By default, all functions in a CUDA program are __host__ functions if they
do not have any of the CUDA keywords in their declaration.

CUDA Function Declarations

Executed on the: Only callable
from the:

__device__ float myDeviceFunc() device device

__global__ void myKernelFunc() device host

__host__ float myHostFunc() host host

• __global__ defines a kernel function, launched by host, executed on the
device

• Must return void

• By default, all functions in a CUDA program are __host__ functions if they
do not have any of the CUDA keywords in their declaration.

CUDA Function Declarations

Executed on the: Only callable
from the:

__device__ float myDeviceFunc() device device

__global__ void myKernelFunc() device host

__host__ float myHostFunc() host host

One can use both __host__ and __device__ in a function declaration.  
 
This combination triggers the compilation system to generate two versions of the same
function.  
 
One is executed on the host and can only be called from a host function.  
The other is executed on the device and can only be called from a device or kernel function.

Hello world
#include "greeter.h"  
 
#include <stdio.h>  
#include <cuda_runtime_api.h>  
 
__global__ void helloFromGPU() {  
 printf("Hello World from GPU thread %d!\n", threadIdx);  
}  
 
int main(int argc, char **argv) {  
 greet(std::string("Pinco"));  
 
 helloFromGPU<<<1, 10>>>();  
 
 // destroy and clean up all resources associated with current device  
 // + current process.  
 cudaDeviceReset(); // CUDA functions are async...  
 // the program would terminate before CUDA kernel prints  
 return 0;  
}

Hello world
#include "greeter.h"  
 
#include <stdio.h>  
#include <cuda_runtime_api.h>  
 
__global__ void helloFromGPU() {  
 printf("Hello World from GPU thread %d!\n", threadIdx);  
}  
 
int main(int argc, char **argv) {  
 greet(std::string("Pinco"));  
 
 helloFromGPU<<<1, 10>>>();  
 
 // destroy and clean up all resources associated with current device  
 // + current process.  
 cudaDeviceReset(); // CUDA functions are async...  
 // the program would terminate before CUDA kernel prints  
 return 0;  
}

Provides declaration of greet(std::string name). 
Definition is in greeter.cpp

Hello world
#include "greeter.h"  
 
#include <stdio.h>  
#include <cuda_runtime_api.h>  
 
__global__ void helloFromGPU() {  
 printf("Hello World from GPU thread %d!\n", threadIdx);  
}  
 
int main(int argc, char **argv) {  
 greet(std::string("Pinco"));  
 
 helloFromGPU<<<1, 10>>>();  
 
 // destroy and clean up all resources associated with current device  
 // + current process.  
 cudaDeviceReset(); // CUDA functions are async...  
 // the program would terminate before CUDA kernel prints  
 return 0;  
}

Provides declaration of greet(std::string name). 
Definition is in greeter.cpp

10 CUDA threads running on the GPU. 
This uses is 1 grid.

Managing
memory

Memory model
• The CUDA programming model assumes a system composed of a

host and a device, each with its own separate memory.

• Kernels operate out of device memory. To allow you to have full
control and achieve the best performance, the CUDA runtime
provides functions to allocate device memory, release device
memory, and transfer data between the host memory and device
memory.

Standard C function CUDA C function

malloc cudaMalloc

memcpy cudaMemcpy

memset cudaMemset

free cudaFree

CUDA device memory model

Example of CUDA API

Example of CUDA API
float *Md  
int size = width * width * sizeof(float);  
cudaMalloc((void**)&Md, size);  
// ...  
cudaFree(Md);

cudaMalloc
• cudaError_t cudaMalloc (void** devPtr,  
 size_t size)

• This function allocates a linear range of device memory
with the specified size in bytes. The allocated memory is
returned through devPtr.

• if GPU memory is successfully allocated, it returns:

• cudaSuccess

• Otherwise, it returns:

• cudaErrorMemoryAllocation

CUDA errors

• You can convert an error code to a human-
readable error message with the following CUDA
run- time function:

• char* cudaGetErrorString(cudaError_t error)

• A common practice is to wrap CUDA calls in utility
functions that manage the returned error

CUDA errors

• You can convert an error code to a human-
readable error message with the following CUDA
run- time function:

• char* cudaGetErrorString(cudaError_t error)

• A common practice is to wrap CUDA calls in utility
functions that manage the returned error

#define CUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE__,__LINE__,
#value, value)

static void CheckCudaErrorAux (const char *file, unsigned line, const char
*statement, cudaError_t err) {

if (err == cudaSuccess)
return;

std::cerr << statement<<" returned " << cudaGetErrorString(err) <<  
 "("<<err<< ") at "<<file<<":"<<line << std::endl;

exit (1);
}

Use as: CUDA_CHECK_RETURN(cudaFunction(parameters));

CUDA errors

• You can convert an error code to a human-
readable error message with the following CUDA
run- time function:

• char* cudaGetErrorString(cudaError_t error)

• A common practice is to wrap CUDA calls in utility
functions that manage the returned error

#define CUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE__,__LINE__,
#value, value)

static void CheckCudaErrorAux (const char *file, unsigned line, const char
*statement, cudaError_t err) {

if (err == cudaSuccess)
return;

std::cerr << statement<<" returned " << cudaGetErrorString(err) <<  
 "("<<err<< ") at "<<file<<":"<<line << std::endl;

exit (1);
}

Use as: CUDA_CHECK_RETURN(cudaFunction(parameters));

#define CHECK(call) \
{ \
 const cudaError_t error = call; \
 if (error != cudaSuccess) \
 { \
 fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \
 fprintf(stderr, "code: %d, reason: %s\n", error, \
 cudaGetErrorString(error)); \
 exit(1); \
 } \
}

cudaMemcpy
• cudaError_t cudaMemcpy (void* dst, const void* src,  
 size_t count, cudaMemcpyKind kind)

• This function copies the specified bytes from the source memory area,
pointed to by src, to the destination memory area, pointed to by dst, with
the direction specified by kind, where kind takes one of the following types:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

• This function exhibits synchronous behavior because the host application
blocks until cudaMemcpy returns and the transfer is complete.

Organizing
threads

Thread hierarchy
• When a kernel function is launched from the host side, execution is

moved to a device where a large number of threads are generated
and each thread executes the statements specified by the  
kernel function.

• CUDA exposes a thread hierarchy abstraction to enable you to
organize your threads. This is a two-level thread hierarchy
decomposed into blocks of threads and grids of blocks

Thread memory and coop
• All threads spawned by a single kernel launch are collectively called a

grid.  
All threads in a grid share the same global memory space.  
A grid is made up of many thread blocks. A thread block is a group of
threads that can cooperate with each other using:

• Block-local synchronization

• Block-local shared memory

• Threads from different blocks cannot cooperate.

• Threads rely on the following two unique coordinates to distinguish
themselves from each other:

• blockIdx (block index within a grid)

• threadIdx (thread index within a block)

3D threadIdx
• threadIdx and blockIdx is a 3-component

vector (uint3), so that threads can be identified
using a one-dimensional, two-dimensional, or
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional
block of threads, called a thread block.

• This provides a natural way to invoke computation
across the elements in a domain such as a vector,
matrix, or volume.

3D threadIdx
• threadIdx and blockIdx is a 3-component

vector (uint3), so that threads can be identified
using a one-dimensional, two-dimensional, or
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional
block of threads, called a thread block.

• This provides a natural way to invoke computation
across the elements in a domain such as a vector,
matrix, or volume.

threadIdx and blockIdx are accessible through the fields x, y, and z respectively.
 blockIdx.x
 blockIdx.y
 blockIdx.z

 threadIdx.x
 threadIdx.y
 threadIdx.z

3D threadIdx
• threadIdx and blockIdx is a 3-component

vector (uint3), so that threads can be identified
using a one-dimensional, two-dimensional, or
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional
block of threads, called a thread block.

• This provides a natural way to invoke computation
across the elements in a domain such as a vector,
matrix, or volume.

threadIdx and blockIdx are accessible through the fields x, y, and z respectively.
 blockIdx.x
 blockIdx.y
 blockIdx.z

 threadIdx.x
 threadIdx.y
 threadIdx.z

Creating threads
• Each CUDA thread grid typically is comprised of thousands to millions

of lightweight GPU threads per kernel invocation.

• Creating enough threads to fully utilize the hardware often requires a
large amount of data parallelism; for example, each element of a large
array might be computed in a separate thread.

• kernel_name <<<grid, block>>>(argument list);

• The first value in the execution configuration is grid, i.e. the grid
dimension, the number of blocks to launch. The second value is
block,i.e. the block dimension, the number of threads within each
block. By specifying the grid and block dimensions, you configure:

• The total number of threads for a kernel

• The layout of the threads you want to employ for a kernel

Synchronizing threads

• A kernel call is asynchronous with respect to the
host thread. After a kernel is invoked, control
returns to the host side immediately.

• You can call the following function to force the host
application to wait for all kernels to complete:

• cudaError_t cudaDeviceSynchronize(void);

Demo:
organizing

threads

Summing a vector
• CPU: 
 
void sumArraysOnHost(float *A, float *B, float *C, const int N) {  
 for (int idx = 0; idx < N; idx++)  
 C[idx] = A[idx] + B[idx];  
}

• GPU  
 
__global__ void sumArraysOnGPU(float *A, float *B, float *C,
const int N) {  
 int i = threadIdx.x;  
 if (i < N)  
 C[i] = A[i] + B[i];  
}

Summing a vector
• CPU: 
 
void sumArraysOnHost(float *A, float *B, float *C, const int N) {  
 for (int idx = 0; idx < N; idx++)  
 C[idx] = A[idx] + B[idx];  
}

• GPU  
 
__global__ void sumArraysOnGPU(float *A, float *B, float *C,
const int N) {  
 int i = threadIdx.x;  
 if (i < N)  
 C[i] = A[i] + B[i];  
}

Supposing a vector with the length of 32 elements, you can invoke the kernel with 32
threads as follows:  

 sumArraysOnGPU<<<1, 32>>>(float *A, float *B, float *C, 32);

Summing a vector
• CPU: 
 
void sumArraysOnHost(float *A, float *B, float *C, const int N) {  
 for (int idx = 0; idx < N; idx++)  
 C[idx] = A[idx] + B[idx];  
}

• GPU  
 
__global__ void sumArraysOnGPU(float *A, float *B, float *C,
const int N) {  
 int i = threadIdx.x;  
 if (i < N)  
 C[i] = A[i] + B[i];  
}

Supposing a vector with the length of 32 elements, you can invoke the kernel with 32
threads as follows:  

 sumArraysOnGPU<<<1, 32>>>(float *A, float *B, float *C, 32);

Simplified version:

__global__ void sumArraysOnGPU(float *A, float *B, float *C) {
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

Matrix multiplication: CPU
void MatrixMultiplication(float* M, float* N, float* P, int width) {

 for (int i = 0; i < width; ++i)

 for (int j = 0; j < width; ++j) {

 float sum = 0;

 for (int k = 0; k < width; ++k) {

 float a = M[i * width + k];

 float b = N[k * width + j];

 sum += a * b;

 }

 P[i * width + j] = sum;

 }

}

Matrix multiplication: GPU
__global__ void MatrixMulKernel(float* Md, float* Nd,
float* Pd, int width) {

 int tx = threadIdx.x;  
 int ty = threadIdx.y;  
 
 float PValue = 0;  
 
 for(int k=0; k<width; ++k) {  
 float MdElem = Md[ty * width + k];  
 float NdElem = Nd[k * width + tx];  
 PValue += MdElem * NdElem;  
 }  
 
 Pd[ty * width + tx] = PValue;  
}

Matrix multiplication: GPU
__global__ void MatrixMulKernel(float* Md, float* Nd,
float* Pd, int width) {

 int tx = threadIdx.x;  
 int ty = threadIdx.y;  
 
 float PValue = 0;  
 
 for(int k=0; k<width; ++k) {  
 float MdElem = Md[ty * width + k];  
 float NdElem = Nd[k * width + tx];  
 PValue += MdElem * NdElem;  
 }  
 
 Pd[ty * width + tx] = PValue;  
}

Instead of two cycles on i and j, the CUDA
threading hardware generates all of the threadIdx.x

and threadIdx.y values for each thread.
Each thread uses its threadIdx.x and threadIdx.y to

identify the row of Md and the column of Nd to
perform the dot product operation.

Matrix multiplication: GPU
__global__ void MatrixMulKernel(float* Md, float* Nd,
float* Pd, int width) {

 int tx = threadIdx.x;  
 int ty = threadIdx.y;  
 
 float PValue = 0;  
 
 for(int k=0; k<width; ++k) {  
 float MdElem = Md[ty * width + k];  
 float NdElem = Nd[k * width + tx];  
 PValue += MdElem * NdElem;  
 }  
 
 Pd[ty * width + tx] = PValue;  
}

Instead of two cycles on i and j, the CUDA
threading hardware generates all of the threadIdx.x

and threadIdx.y values for each thread.
Each thread uses its threadIdx.x and threadIdx.y to

identify the row of Md and the column of Nd to
perform the dot product operation.

Thread2,3 will perform a dot product between column 2 of Nd and row 3 of Md and write the
result into element (2,3) of Pd.  

This way, the threads collectively generate all the elements of the Pd matrix.

Memory access

• M and N must be copied to the Md and Nd matrices
allocated in the GPU

• Pd must be copied from te device back to the host

• Once all these operations are concluded it’s
possible to cudaFree Md, Nd and Pd

Limitations

• All these examples use only 1 block, but there’s
limit on the number of threads per block

• Indexing no longer as simple as using only
threadIdx.x / threadIdx.y

• One will have to account for the size of the block
as well

Credits

• These slides report material from:

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)

• Prof. Dan Negrut (Univ. Wisconsin - Madison)

• NVIDIA GPU Teaching Kit

Books
• Programming Massively Parallel Processors: A

Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 2nd edition - Chapt. 1 and 3 
 
or 
 
Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 3rd edition - Chapt. 1-2

• Professional CUDA C Programming, J. Cheng, M.
Grossman and T. McKercher, Wrox - Chapt. 1-2

