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CPUs vs. GPUs
• The design of a CPU is optimized for sequential code performance.  

• out-of-order execution, branch-prediction 

• large cache memories to reduce latency in memory access  

• multi-core 

• GPUs:  

• many-core 

• massive floating point computations for video games 

• much larger bandwidth in memory access 

• no branch prediction or too much control logic: just compute



         

      
         

      

CPUs vs. GPUs
• The design of a CPU is optimized for sequential code performance.  

• out-of-order execution, branch-prediction 

• large cache memories to reduce latency in memory access  

• multi-core 

• GPUs:  

• many-core 

• massive floating point computations for video games 

• much larger bandwidth in memory access 

• no branch prediction or too much control logic: just compute

CPUs have latency oriented design: 
• Large caches convert long latency RAM access to short latency 
• Branch pred., OoOE, operand forwarding reduce instructions latency 
• Powerful ALU for reduced operation latency 

GPUs have a throughput oriented design: 
• Small caches to boost RAM throughput 
• Simple control (no operand forwarding, branch prediction, etc.) 
• Energy efficient ALU (long latency but heavily pipelined for high throughput) 
• Require massive # threads to tolerate latencies



         

      
         

      

CPUs and GPUs
• GPUs are designed as numeric computing engines, 

and they will not perform well on some tasks on 
which CPUs are designed to perform well;  

• One should expect that most applications will use 
both CPUs and GPUs, executing the sequential 
parts on the CPU and numerically intensive parts 
on the GPUs.  

• We are going to deal with heterogenous 
architectures: CPUs + GPUs.



         

      
         

      

Heterogeneous Computing 

• CPU computing is good for control-intensive tasks, 
and GPU computing is good for data-parallel 
computation-intensive tasks.  

• The CPU is optimized for dynamic workloads 
marked by short sequences of computational 
operations and unpredictable control flow;  

• GPUs aim at workloads that are dominated by 
computational tasks with simple control flow. 
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Bandwidth in a CPU-GPU System 



         

      
         

      

Bandwidth in a CPU-GPU System 

NVIDIA GTX980 (Maxwell): 224 GB/s 
NVIDIA Titan X (Maxwell): 336 GB/s 
NVIDIA Titan X (Pascal): 480 GB/s 

NVIDIA GTX1080Ti: 484 GB/s



         

      
         

      

Heterogeneous Computing 

• A heterogeneous application consists of two parts:  

• Host code  

• Device code  

• Host code runs on CPUs and device code runs on 
GPUs. 



         

      
         

      

Threads
• Threads on a CPU are generally heavyweight entities. 

The operating system must swap threads on and off 
CPU execution channels to provide multithreading 
capability. Context switches are slow and expensive.  
 
We deal with a few tens of threads per CPU, depending 
on HyperThreading. 

• Threads on GPUs are extremely lightweight. In a 
typical system, thousands of threads are queued up for 
work. If the GPU must wait on one group of threads, it 
simply begins executing work on another.  
 
We deal with tens of thousands of threads per GPU.



         

      
         

      

SIMT
• GPU is a SIMD (Single Instruction, Multiple Data) device → it 

works on “streams” of data 

• Each “GPU thread” executes one general instruction on the 
stream of data that the GPU is assigned to process 

• NVIDIA calls this model SIMT (single instruction multiple thread) 

• The SIMT architecture is similar to SIMD. Both implement 
parallelism by broadcasting the same instruction to multiple 
execution units.  
 
A key difference is that SIMD requires that all vector elements in a 
vector execute together in a unified synchronous group, whereas 
SIMT allows multiple threads in the same group to execute 
independently. 



         

      
         

      

SIMT
• The SIMT model includes three key features that 

SIMD does not:  

• Each thread has its own instruction address 
counter.  

• Each thread has its own register state, i.e. it has a 
register set. 

• Each thread can have an independent execution 
path. 



         

      
         

      

SIMD (SSE) view vs. SIMT (CUDA) view

37
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__m128 a = _mm_set_ps (4, 3, 2, 1);
__m128 b = _mm_set_ps (8, 7, 6, 5);
__m128 c = _mm_add_ps (a, b);

a

b

c

SIMD!(SSE)!view “SIMT”!(CUDA)!view

float a[4] = {1, 2, 3, 4},
        b[4] = {5, 6, 7, 8}, c[4];

// …
// Define a compute kernel, which
// a fine-grained thread executes.
{
  int id = … ;  // my thread ID
  c[id] = a[id] + b[id];
}
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+ + + +
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Tuesday, October 11, 11



         

      
         

      

GPU Architecture Overview 
• The GPU architecture is built around a 

scalable array of Streaming Multiprocessors 
(SM).  

• Each SM in a GPU is designed to support 
concurrent execution of hundreds of threads, 
and there are multiple SMs per GPU  

• NVIDIA GPUs execute threads in groups of 
32 called warps. All threads in a warp execute 
the same instruction at the same time.  

• GPU H/Ws are differentiated based on their 
“compute capabilities”. The higher the better. 
Maxwell architecture (e.g. GTX980) have 5.2.  
Pascal architecture (e.g. GTX1080) GPUs 
has 6.0-6.2. 
The latest Volta architecture has 7.0.



         

      
         

      

GPU Architecture Overview 
• The GPU architecture is built around a 

scalable array of Streaming Multiprocessors 
(SM).  

• Each SM in a GPU is designed to support 
concurrent execution of hundreds of threads, 
and there are multiple SMs per GPU  

• NVIDIA GPUs execute threads in groups of 
32 called warps. All threads in a warp execute 
the same instruction at the same time.  

• GPU H/Ws are differentiated based on their 
“compute capabilities”. The higher the better. 
Maxwell architecture (e.g. GTX980) have 5.2.  
Pascal architecture (e.g. GTX1080) GPUs 
has 6.0-6.2. 
The latest Volta architecture has 7.0.

LD/ST: load/store data from cache and DRAM 
SFU: Execute transcendental instructions such as sin, 

cosine, reciprocal, and square root.



         

      
         

      

CUDA core
• It’s a vector processing unit 

• Works on a single 
operation 

• It’s the building block of SM 

• As the process reduces 
them (e.g. 28nm) they 
increase in number per SM



         

      
         

      

Maxwell SMM

• Four 32-core processing blocks 
each with a dedicated warp 
scheduler that can dispatch 2 
instructions per clock 

• Larger shared memory 
(dedicated to SM) 

• Larger L2 cache (shared by 
SMs)



         

      
         

      

Pascal SM
• More SMs per GPU 

• FP16 computation 
(2× faster than FP32)

• Less cores but same  
# registers: more  
registers per core

• Fast HBM2 memory  
interface

• Fast NVLink bus

• Unified memory: programs can access both CPU and 
GPU RAM



         

      
         

      

Volta SM
• New tensor cores 

• Unified L1 / shared memory 

• Independent FP32 and 
INT32 cores 

• More SMs per GPU 

• Larger L2 cache 

• New L0 instruction cache 
(accessed directly from 
functional units)



         

      
         

      

NVIDIA GPUs



         

      
         

      

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA 

cores (128 cores per SM). It’s clocked at 1.48GHz 
and memory bandwidth is 484GB/s. This means: 

• ~327 bytes/cycle for thew whole GPU. 

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte 
every 11 instructions !
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Absolute memory bandwidths in consumer devices have gone up by 
several orders of magnitude from the ~1MB/s of early 80s home 
computers, but available compute resources have grown much faster 
still. 
The only way to stop bumping into bandwidth limits all the time is to 
make sure your workloads have reasonable locality of reference so 
that the caches can do their job. 

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler 
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)



         

      
         

      

Back to bandwidth
• A NVIDIA GTX1080Ti has 28 SM and 3584 CUDA 

cores (128 cores per SM). It’s clocked at 1.48GHz 
and memory bandwidth is 484GB/s. This means: 

• ~327 bytes/cycle for thew whole GPU. 

• 11.7 bytes/cycle per SM (~4× of Intel i7-7700K)

• 0.09 bytes/cycle per CUDA core, i.e. only one byte 
every 11 instructions !

Remind that a 40-years old MOS 6502 got 4 bytes/instruction !

Absolute memory bandwidths in consumer devices have gone up by 
several orders of magnitude from the ~1MB/s of early 80s home 
computers, but available compute resources have grown much faster 
still. 
The only way to stop bumping into bandwidth limits all the time is to 
make sure your workloads have reasonable locality of reference so 
that the caches can do their job. 

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler 
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

Pascal and Volta GPUs use High Bandwidth Memory 2 (HBM2)  high-perf. RAM interface to 
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• ~327 bytes/cycle for thew whole GPU. 
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• 0.09 bytes/cycle per CUDA core, i.e. only one byte 
every 11 instructions !

Remind that a 40-years old MOS 6502 got 4 bytes/instruction !

Absolute memory bandwidths in consumer devices have gone up by 
several orders of magnitude from the ~1MB/s of early 80s home 
computers, but available compute resources have grown much faster 
still. 
The only way to stop bumping into bandwidth limits all the time is to 
make sure your workloads have reasonable locality of reference so 
that the caches can do their job. 

L2 caches of NVIDIA GPUs are going up from 1536KB in Kepler 
(K40), to 4096KB in Pascal (GP100) and 6144KB in Volta (GV100)

Pascal and Volta GPUs use High Bandwidth Memory 2 (HBM2)  high-perf. RAM interface to 
achieve higher bandwidth (900 GB/s)

NVLink bus connects CPU and GPU (or multiple GPUs) at 80-200 GB/s - it’s an alternative to 
PCI Express



         

      
         

      

Execution
• A thread block is scheduled on only one SM. Once 

a thread block is scheduled on an SM, it remains 
there until execution completes. An SM can hold 
more than one thread block at the same time. 



         

      

         

      

CUDA



         

      
         

      

CUDA: Compute Unified Device Architecture

• It enables a general purpose programming model 
on NVIDIA GPUs. Current CUDA SDK is 9.0. 

• Enables explicit GPU memory management  

• The GPU is viewed as a compute device that: 

• Is a co-processor to the CPU (or host) 

• Has its own DRAM (global memory in CUDA 
parlance) 

• Runs many threads in parallel 



         

      
         

      

The CUDA platform
• The CUDA platform is accessible through CUDA-accelerated 

libraries, compiler directives, application programming interfaces, 
and extensions to industry-standard programming languages, 
including C, C++, Fortran, and Python  

• CUDA C is an extension of standard ANSI C with a handful of 
language extensions to enable heterogeneous programming, and 
also straightforward APIs to manage devices, memory, and other 
tasks. 



         

      
         

      

CUDA APIs
• CUDA provides two API levels for managing the GPU device and organizing threads:  

• CUDA Driver API  

• CUDA Runtime API  

• The driver API is a low-level API and is relatively hard to program, but it provides 
more control over how the GPU device is used.  
The runtime API is a higher-level API implemented on top of the driver API. Each 
function of the runtime API is broken down into more basic operations issued to the 
driver API. 



         

      
         

      

A CUDA program
• A CUDA program consists of a mixture of the following two parts:  

• The host code runs on CPU.  

• The device code runs on GPU.  

• NVIDIA’s CUDA nvcc compiler separates the device code from 
the host code during the compilation process. 



         

      
         

      

A CUDA program
• A CUDA program consists of a mixture of the following two parts:  

• The host code runs on CPU.  

• The device code runs on GPU.  

• NVIDIA’s CUDA nvcc compiler separates the device code from 
the host code during the compilation process. 
NVIDIA provides the NSight IDE (based on Eclipse) to ease development of 

C/C++/CUDA programming



         

      
         

      

Compiling a CUDA program
Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.



         

      
         

      

What a programmer expresses in CUDA
• Computation partitioning (where does computation occur?) 

• Declarations on functions __host__, __global__, __device__ 

• Mapping of thread programs to device:  
compute <<<gs, bs>>>(<args>) 

• Data partitioning (where does data reside, who may access it and how?) 

• Declarations on data __shared__, __device__, __constant__, … 

• Data management and orchestration 

• Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, 
cudaMemcpyDevicetoHost)

• Concurrency management 

• E.g. __synchthreads()



         

      
         

      

CUDA C: C extension + API
• Declspecs 

• global, device, shared, local, constant 

• Keywords 

• threadIdx, blockIdx 

• Intrinsics 

• __syncthreads

• Runtime API 

• Memory, symbol, execution management 

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

  __shared__ float region[M];
  ... 

  
region[threadIdx] = image[i]; 

  __syncthreads()  
  ... 

  image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);



         

      
         

      

Languages
• The host code is written in ANSI C, and the device 

code is written using CUDA C.  

• You can put all the code in a single source file, or 
you can use multiple source files to build your 
application or libraries.  

• The NVIDIA C Compiler (nvcc) generates the 
executable code for both the host and device.  

• Typical CUDA C extension is .cu



         

      
         

      

CUDA program structure
• A typical CUDA program structure consists of five 

main steps:  

1. Allocate GPU memories.  

2. Copy data from CPU memory to GPU memory.  

3. Invoke the CUDA functions (called kernel) to 
perform program-specific computation.  

4. Copy data back from GPU memory to CPU memory.  

5. Destroy GPU memories. 



         

      
         

      

CUDA program structure
• A typical CUDA program structure consists of five 

main steps:  

1. Allocate GPU memories.  

2. Copy data from CPU memory to GPU memory.  

3. Invoke the CUDA functions (called kernel) to 
perform program-specific computation.  

4. Copy data back from GPU memory to CPU memory.  

5. Destroy GPU memories. 

As the developer, you can express a kernel as a sequential program. Behind the scenes, 
CUDA manages scheduling programmer-written kernels on GPU threads.  

From the host, you define how your algorithm is mapped to the device based on application 
data and GPU device capability.



         

      
         

      

CUDA program structure
• The host can operate independently of the device 

for most operations. When a kernel has been 
launched, control is returned immediately to the 
host, freeing the CPU to perform additional tasks 
complemented by data parallel code running on the 
device.  

• The CUDA programming model is primarily 
asynchronous so that GPU computation 
performed on the GPU can be overlapped with 
host-device communication.
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CUDA program structure
• The host can operate independently of the device 

for most operations. When a kernel has been 
launched, control is returned immediately to the 
host, freeing the CPU to perform additional tasks 
complemented by data parallel code running on the 
device.  

• The CUDA programming model is primarily 
asynchronous so that GPU computation 
performed on the GPU can be overlapped with 
host-device communication.

All the threads that are generated by a kernel during an 
invocation are collectively called a grid.



         

      
         

      

Grid

• The programmer decides how to organize a grid, 
to improve parallelization 

• When all threads of a kernel complete their 
execution, the corresponding grid terminates, and 
the execution continues on the host until another 
kernel is invoked. 

• Grids are organized into blocks.



         

      

         

      

Hello world



         

      
         

      

• __global__ defines a kernel function, launched by host, executed on the 
device  

• Must return void

• By default, all functions in a CUDA program are __host__ functions if they 
do not have any of the CUDA keywords in their declaration. 

CUDA Function Declarations 

Executed on the: Only callable 
from the:

__device__ float myDeviceFunc() device device

__global__ void myKernelFunc() device host

__host__ float myHostFunc() host host



         

      
         

      

• __global__ defines a kernel function, launched by host, executed on the 
device  

• Must return void

• By default, all functions in a CUDA program are __host__ functions if they 
do not have any of the CUDA keywords in their declaration. 

CUDA Function Declarations 

Executed on the: Only callable 
from the:

__device__ float myDeviceFunc() device device

__global__ void myKernelFunc() device host

__host__ float myHostFunc() host host

One can use both __host__ and __device__ in a function declaration.  
 
This combination triggers the compilation system to generate two versions of the same 
function.  
 
One is executed on the host and can only be called from a host function.  
The other is executed on the device and can only be called from a device or kernel function.  



         

      
         

      

Hello world
#include "greeter.h"  
 
#include <stdio.h>  
#include <cuda_runtime_api.h>  
 
__global__ void helloFromGPU() {  
    printf("Hello World from GPU thread %d!\n", threadIdx);  
}  
 
int main(int argc, char **argv) {  
    greet(std::string("Pinco"));  
 
    helloFromGPU<<<1, 10>>>();  
 
    // destroy and clean up all resources associated with current device  
    //                                                  + current process.  
    cudaDeviceReset(); // CUDA functions are async...  
                       // the program would terminate before CUDA kernel prints  
    return 0;  
}
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}

Provides declaration of greet(std::string name). 
Definition is in greeter.cpp



         

      
         

      

Hello world
#include "greeter.h"  
 
#include <stdio.h>  
#include <cuda_runtime_api.h>  
 
__global__ void helloFromGPU() {  
    printf("Hello World from GPU thread %d!\n", threadIdx);  
}  
 
int main(int argc, char **argv) {  
    greet(std::string("Pinco"));  
 
    helloFromGPU<<<1, 10>>>();  
 
    // destroy and clean up all resources associated with current device  
    //                                                  + current process.  
    cudaDeviceReset(); // CUDA functions are async...  
                       // the program would terminate before CUDA kernel prints  
    return 0;  
}

Provides declaration of greet(std::string name). 
Definition is in greeter.cpp

10 CUDA threads running on the GPU. 
This uses is 1 grid.



         

      

         

      

Managing 
memory



         

      
         

      

Memory model
• The CUDA programming model assumes a system composed of a 

host and a device, each with its own separate memory.  

• Kernels operate out of device memory. To allow you to have full 
control and achieve the best performance, the CUDA runtime 
provides functions to allocate device memory, release device 
memory, and transfer data between the host memory and device 
memory. 

Standard C function CUDA C function

malloc cudaMalloc

memcpy cudaMemcpy

memset cudaMemset

free cudaFree



         

      
         

      

CUDA device memory model



         

      
         

      

Example of CUDA API



         

      
         

      

Example of CUDA API
float *Md  
int size = width * width * sizeof(float);  
cudaMalloc((void**)&Md, size);  
// ...  
cudaFree(Md); 



         

      
         

      

cudaMalloc
• cudaError_t cudaMalloc ( void** devPtr,  
                         size_t size )  

• This function allocates a linear range of device memory 
with the specified size in bytes. The allocated memory is 
returned through devPtr.  

• if GPU memory is successfully allocated, it returns:  

• cudaSuccess  

• Otherwise, it returns:  

• cudaErrorMemoryAllocation 



         

      
         

      

CUDA errors

• You can convert an error code to a human-
readable error message with the following CUDA 
run- time function:  

• char* cudaGetErrorString(cudaError_t error) 

• A common practice is to wrap CUDA calls in utility 
functions that manage the returned error



         

      
         

      

CUDA errors

• You can convert an error code to a human-
readable error message with the following CUDA 
run- time function:  

• char* cudaGetErrorString(cudaError_t error) 

• A common practice is to wrap CUDA calls in utility 
functions that manage the returned error

#define CUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE__,__LINE__, 
#value, value)

static void CheckCudaErrorAux (const char *file, unsigned line, const char 
*statement, cudaError_t err) {

if (err == cudaSuccess)
return;

std::cerr << statement<<" returned " << cudaGetErrorString(err) <<  
                 "("<<err<< ") at "<<file<<":"<<line << std::endl;

exit (1);
}

Use as: CUDA_CHECK_RETURN(cudaFunction(parameters));



         

      
         

      

CUDA errors

• You can convert an error code to a human-
readable error message with the following CUDA 
run- time function:  

• char* cudaGetErrorString(cudaError_t error) 

• A common practice is to wrap CUDA calls in utility 
functions that manage the returned error

#define CUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE__,__LINE__, 
#value, value)

static void CheckCudaErrorAux (const char *file, unsigned line, const char 
*statement, cudaError_t err) {

if (err == cudaSuccess)
return;

std::cerr << statement<<" returned " << cudaGetErrorString(err) <<  
                 "("<<err<< ") at "<<file<<":"<<line << std::endl;

exit (1);
}

Use as: CUDA_CHECK_RETURN(cudaFunction(parameters));

#define CHECK(call)                                              \
{                                                                \
    const cudaError_t error = call;                              \
    if (error != cudaSuccess)                                    \
    {                                                            \
        fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__);   \
        fprintf(stderr, "code: %d, reason: %s\n", error,         \
                cudaGetErrorString(error));                      \
        exit(1);                                                 \
    }                                                            \
}



         

      
         

      

cudaMemcpy 
• cudaError_t cudaMemcpy ( void* dst, const void* src,  
                    size_t count, cudaMemcpyKind kind ) 

• This function copies the specified bytes from the source memory area, 
pointed to by src, to the destination memory area, pointed to by dst, with 
the direction specified by kind, where kind takes one of the following types:  

• cudaMemcpyHostToHost 

• cudaMemcpyHostToDevice 

• cudaMemcpyDeviceToHost 

• cudaMemcpyDeviceToDevice 

• This function exhibits synchronous behavior because the host application 
blocks until cudaMemcpy returns and the transfer is complete. 



         

      

         

      

Organizing 
threads



         

      
         

      

Thread hierarchy
• When a kernel function is launched from the host side, execution is 

moved to a device where a large number of threads are generated 
and each thread executes the statements specified by the  
kernel function.  

• CUDA exposes a thread hierarchy abstraction to enable you to 
organize your threads. This is a two-level thread hierarchy 
decomposed into blocks of threads and grids of blocks 



         

      
         

      

Thread memory and coop
• All threads spawned by a single kernel launch are collectively called a 

grid.  
All threads in a grid share the same global memory space.  
A grid is made up of many thread blocks. A thread block is a group of 
threads that can cooperate with each other using:  

• Block-local synchronization  

• Block-local shared memory 

• Threads from different blocks cannot cooperate. 

• Threads rely on the following two unique coordinates to distinguish 
themselves from each other:  

• blockIdx (block index within a grid)  

• threadIdx (thread index within a block) 



         

      
         

      

3D threadIdx 
• threadIdx and blockIdx is a 3-component 

vector (uint3), so that threads can be identified 
using a one-dimensional, two-dimensional, or 
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional 
block of threads, called a thread block.  

• This provides a natural way to invoke computation 
across the elements in a domain such as a vector, 
matrix, or volume.



         

      
         

      

3D threadIdx 
• threadIdx and blockIdx is a 3-component 

vector (uint3), so that threads can be identified 
using a one-dimensional, two-dimensional, or 
three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional 
block of threads, called a thread block.  

• This provides a natural way to invoke computation 
across the elements in a domain such as a vector, 
matrix, or volume.

threadIdx and blockIdx are accessible through the fields x, y, and z respectively.  
     blockIdx.x
    blockIdx.y
    blockIdx.z

    threadIdx.x
    threadIdx.y
    threadIdx.z
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Creating threads
• Each CUDA thread grid typically is comprised of thousands to millions 

of lightweight GPU threads per kernel invocation.  

• Creating enough threads to fully utilize the hardware often requires a 
large amount of data parallelism; for example, each element of a large 
array might be computed in a separate thread.  

• kernel_name <<<grid, block>>>(argument list);  

• The first value in the execution configuration is grid, i.e. the grid 
dimension, the number of blocks to launch. The second value is 
block,i.e. the block dimension, the number of threads within each 
block. By specifying the grid and block dimensions, you configure:  

• The total number of threads for a kernel  

• The layout of the threads you want to employ for a kernel 



         

      
         

      

Synchronizing threads

• A kernel call is asynchronous with respect to the 
host thread. After a kernel is invoked, control 
returns to the host side immediately.  

• You can call the following function to force the host 
application to wait for all kernels to complete:  

• cudaError_t cudaDeviceSynchronize(void);



         

      

         

      

Demo: 
organizing 

threads



         

      
         

      

Summing a vector
• CPU: 
 
void sumArraysOnHost(float *A, float *B, float *C, const int N) {  
    for (int idx = 0; idx < N; idx++)  
        C[idx] = A[idx] + B[idx];  
} 

• GPU  
 
__global__ void sumArraysOnGPU(float *A, float *B, float *C, 
const int N) {  
    int i = threadIdx.x;  
    if (i < N)  
      C[i] = A[i] + B[i];  
}



         

      
         

      

Summing a vector
• CPU: 
 
void sumArraysOnHost(float *A, float *B, float *C, const int N) {  
    for (int idx = 0; idx < N; idx++)  
        C[idx] = A[idx] + B[idx];  
} 

• GPU  
 
__global__ void sumArraysOnGPU(float *A, float *B, float *C, 
const int N) {  
    int i = threadIdx.x;  
    if (i < N)  
      C[i] = A[i] + B[i];  
}

Supposing a vector with the length of 32 elements, you can invoke the kernel with 32 
threads as follows:  

       sumArraysOnGPU<<<1, 32>>>(float *A, float *B, float *C, 32); 



         

      
         

      

Summing a vector
• CPU: 
 
void sumArraysOnHost(float *A, float *B, float *C, const int N) {  
    for (int idx = 0; idx < N; idx++)  
        C[idx] = A[idx] + B[idx];  
} 

• GPU  
 
__global__ void sumArraysOnGPU(float *A, float *B, float *C, 
const int N) {  
    int i = threadIdx.x;  
    if (i < N)  
      C[i] = A[i] + B[i];  
}

Supposing a vector with the length of 32 elements, you can invoke the kernel with 32 
threads as follows:  

       sumArraysOnGPU<<<1, 32>>>(float *A, float *B, float *C, 32); 

Simplified version:  

__global__ void sumArraysOnGPU(float *A, float *B, float *C) {
       int i = threadIdx.x;
       C[i] = A[i] + B[i];
} 



         

      
         

      

Matrix multiplication: CPU
void MatrixMultiplication(float* M, float* N, float* P, int width) { 

   for (int i = 0; i < width; ++i)

     for (int j = 0; j < width; ++j) {

        float sum = 0;

        for (int k  = 0; k < width; ++k) {

           float a = M[i * width + k];

           float b = N[k * width + j];

           sum += a * b;

         }

       P[i * width + j] = sum; 

     }

}



         

      
         

      

Matrix multiplication: GPU
__global__ void MatrixMulKernel(float* Md, float* Nd, 
float* Pd, int width) {

  int tx = threadIdx.x;  
  int ty = threadIdx.y;  
 
  float PValue = 0;  
 
  for(int k=0; k<width; ++k) {  
    float MdElem = Md[ty * width + k];  
    float NdElem = Nd[k * width + tx];  
    PValue += MdElem * NdElem;  
  }  
 
  Pd[ty * width + tx] = PValue;  
}



         

      
         

      

Matrix multiplication: GPU
__global__ void MatrixMulKernel(float* Md, float* Nd, 
float* Pd, int width) {

  int tx = threadIdx.x;  
  int ty = threadIdx.y;  
 
  float PValue = 0;  
 
  for(int k=0; k<width; ++k) {  
    float MdElem = Md[ty * width + k];  
    float NdElem = Nd[k * width + tx];  
    PValue += MdElem * NdElem;  
  }  
 
  Pd[ty * width + tx] = PValue;  
}

Instead of two cycles on i and j, the CUDA 
threading hardware generates all of the threadIdx.x 

and threadIdx.y values for each thread.  
Each thread uses its threadIdx.x and threadIdx.y to 

identify the row of Md and the column of Nd to 
perform the dot product operation. 



         

      
         

      

Matrix multiplication: GPU
__global__ void MatrixMulKernel(float* Md, float* Nd, 
float* Pd, int width) {

  int tx = threadIdx.x;  
  int ty = threadIdx.y;  
 
  float PValue = 0;  
 
  for(int k=0; k<width; ++k) {  
    float MdElem = Md[ty * width + k];  
    float NdElem = Nd[k * width + tx];  
    PValue += MdElem * NdElem;  
  }  
 
  Pd[ty * width + tx] = PValue;  
}

Instead of two cycles on i and j, the CUDA 
threading hardware generates all of the threadIdx.x 

and threadIdx.y values for each thread.  
Each thread uses its threadIdx.x and threadIdx.y to 

identify the row of Md and the column of Nd to 
perform the dot product operation. 

Thread2,3 will perform a dot product between column 2 of Nd and row 3 of Md and write the 
result into element (2,3) of Pd.  

This way, the threads collectively generate all the elements of the Pd matrix. 



         

      
         

      

Memory access

• M and N must be copied to the Md and Nd matrices 
allocated in the GPU 

• Pd must be copied from te device back to the host 

• Once all these operations are concluded it’s 
possible to cudaFree Md, Nd and Pd



         

      
         

      

Limitations

• All these examples use only 1 block, but there’s 
limit on the number of threads per block 

• Indexing no longer as simple as using only 
threadIdx.x / threadIdx.y 

• One will have to account for the size of the block 
as well 
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Books
• Programming Massively Parallel Processors: A 

Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufmann - 2nd edition - Chapt. 1 and 3 
 
or 
 
Programming Massively Parallel Processors: A 
Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufmann - 3rd edition - Chapt. 1-2 

• Professional CUDA C Programming, J. Cheng, M. 
Grossman and T. McKercher, Wrox - Chapt. 1-2


