
         

      

         

      

GPU 
programming 

basics
Prof. Marco Bertini



         

      

         

      

Data 
parallelism: 

GPU computing



         

      

         

      

CUDA: blocks 
and threads



         

      
         

      

SIMT execution
• Warp 

• smallest unit of concurrency: 32 threads 

• thread = single CUDA core 

• all threads execute same program 

• Block 

• can synchronize (barriers) 

• can exchange data (common "shared" memory, etc.) 

• Grid 

• grids/blocks serve as work distribution/sharing mechanism on device 
(occupancy) 

• blocks dispatched to SM (in turn run warps)



         

      
         

      

Kernel functions
• A kernel function must be called with an execution 

configuration:  

• __global__ void kernelFoo(...); // declaration  

• dim3 DimGrid(100, 50); // 5000 thread blocks  
dim3 DimBlock(4, 8, 8); // 256 threads per 
block  

• kernelFoo<<< DimGrid, DimBlock>>>(...); 

• Recall that any call to a kernel function is asynchronous  

• By default, execution on host doesn’t wait for kernel to 
finish 



         

      
         

      

Kernel functions
• A kernel function must be called with an execution 

configuration:  

• __global__ void kernelFoo(...); // declaration  

• dim3 DimGrid(100, 50); // 5000 thread blocks  
dim3 DimBlock(4, 8, 8); // 256 threads per 
block  

• kernelFoo<<< DimGrid, DimBlock>>>(...); 

• Recall that any call to a kernel function is asynchronous  

• By default, execution on host doesn’t wait for kernel to 
finish 

5000 ✕ 256 = 1.280.000 threads



         

      
         

      

Block
• The concept of block is important since it represents 

the entity that gets executed by an SM (streaming 
multiprocessor)  

• The grid of blocks can be  organized as a 3D 
structure (dim3: x, y, z): max of 65,535 by 65,535 by 
65,535 grid of blocks (about 280,000 billion blocks)  

• The threads can be organized as a 3D structure 
(dim3: x, y, z)  

• The total number of threads in each block cannot 
be larger than 1024 



         

      
         

      

Array indexing: example
• Consider indexing into an array, one thread 

accessing one element 

• Assume you launch with M=8 threads per block 
and the array is 32 entries long  

• With M threads per block a unique index for each 
thread is given by:  
int index = threadIdx.x + blockIdx.x * M;  
Where M is the size of the block of threads; i.e., 
blockDim.x 



         

      
         

      

Array indexing: example
• Consider indexing into an array, one thread 

accessing one element 

• Assume you launch with M=8 threads per block 
and the array is 32 entries long  

• With M threads per block a unique index for each 
thread is given by:  
int index = threadIdx.x + blockIdx.x * M;  
Where M is the size of the block of threads; i.e., 
blockDim.x 



         

      
         

      

Array indexing: example
• What is the array entry on which the thread with 

index 5 in block of index 2 will work ?  

• int index = threadIdx.x + blockIdx.x * blockDim.x;  
          =      5      +     2      *      8;  
          =     21;



         

      
         

      

Thread indexes

• Given block and thread indexes a thread must 
compute on which part of the data it has to work on 

• In some cases it does not need to work: check if it 
is the case 

• E.g.: two blocks with 512 threads working on an 
array of only 1000 elements long.  
Then 24 threads at the end do nothing.



         

      
         

      

Using threads
• In GPU computing you use as many threads as data items [tasks]

[jobs] you have to perform 

• This replaces the typical “for” loop. 

• Number of threads & blocks is established at run-time. 

• Number of threads = Number of data items [tasks] [jobs]  
 
It means that you’ll have to come up with a rule to match a thread 
to a data item [task] [job] that this thread needs to process. 
 
If we think about the thread structure visually, the threads will 
usually be arranged in the same shape as the data. 

• Common source of errors and frustration in GPU computing.



         

      
         

      

Built-in variables
• Each thread when executing a kernel has access to the 

following read- only built-in variables: 

• threadIdx (uint3) – contains the thread index 
within a block  

• blockDim (dim3) – contains the dimension of the 
block 

• blockIdx (uint3) – contains the block index within 
the grid 

• gridDim (dim3) – contains the dimension of the grid



         

      
         

      

Execution
• Blocks are assigned to SM. Possibly multiple blocks 

are running at the same time on a SM. 

• Threads of blocks are divided in warps (32 threads). 
Multiple warps are running at the same time. 

• At each clock tick, SM warp scheduler decides which 
warp to execute next, choosing from those not waiting 
for 

• data coming from device memory (memory latency) 

• completion of earlier instructions (pipeline delay)



         

      
         

      

Execution
• Blocks are assigned to SM. Possibly multiple blocks 

are running at the same time on a SM. 

• Threads of blocks are divided in warps (32 threads). 
Multiple warps are running at the same time. 

• At each clock tick, SM warp scheduler decides which 
warp to execute next, choosing from those not waiting 
for 

• data coming from device memory (memory latency) 

• completion of earlier instructions (pipeline delay)

So far, the warp size of 32 has been kept constant from device to device and CUDA 
version to CUDA version 



         

      
         

      

Execution
• Blocks are assigned to SM. Possibly multiple blocks 

are running at the same time on a SM. 

• Threads of blocks are divided in warps (32 threads). 
Multiple warps are running at the same time. 

• At each clock tick, SM warp scheduler decides which 
warp to execute next, choosing from those not waiting 
for 

• data coming from device memory (memory latency) 

• completion of earlier instructions (pipeline delay)

Different GPU models have different number of resident blocks (e.g. 32, 
16, 8) and different number of resident warps (e.g. 64, 48, 32).

So far, the warp size of 32 has been kept constant from device to device and CUDA 
version to CUDA version 



         

      
         

      

Transparent scalability

• Each block can execute in any order relative to others.  

• Hardware is free to assign blocks to any processor at any time 

• A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time



         

      
         

      

Executing thread blocks
• Threads are assigned to Streaming  

Multiprocessors (SM) in block granularity 

• Up to 8 blocks to each SM as 
resource allows 

• Fermi SM can take up to 1536 
threads 

• Could be 256 (threads/block) * 6 
blocks  

• Or 512 (threads/block) * 3 blocks, etc. 

• SM maintains thread/block idx #s 

• SM manages/schedules thread 
execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM



         

      
         

      

Warp scheduling
• Warps whose next instruction 

has its operands ready for 
consumption are eligible for 
execution 

• Eligible Warps are selected 
for execution on a prioritized 
scheduling policy  

• All threads in a Warp execute 
the same instruction when 
selected 



         

      
         

      

Threads and Warps
• Each thread block split into one or more warps  

• When the thread block size is not a multiple of the warp 
size, unused threads within the last warp are disabled 
automatically  

• The hardware schedules each warp independently  

• Warps within a thread block can execute independently 



         

      
         

      

Threads and Warps
• In multidimensional blocks, the x thread index runs 

first, followed by the y thread index, and finally 
followed by the z thread index  

• Thread IDs within a warp are consecutive and 
increasing  

• Threads with ID 0 through 31 make up Warp 0, 32 
through 63 make up Warp 1, etc.  

• Partitioning of threads in warps is always the same  

• You can use this knowledge in control flow 



         

      
         

      

Threads and Warps
• In multidimensional blocks, the x thread index runs 

first, followed by the y thread index, and finally 
followed by the z thread index  

• Thread IDs within a warp are consecutive and 
increasing  

• Threads with ID 0 through 31 make up Warp 0, 32 
through 63 make up Warp 1, etc.  

• Partitioning of threads in warps is always the same  

• You can use this knowledge in control flow 



         

      
         

      

Thread and Warp scheduling
• An SM can switch between warps with no apparent 

overhead  

• Warps with instructions whose inputs are ready are 
eligible to execute, and will be considered when 
scheduling 

• When a warp is selected for execution, all active threads 
execute the same instruction in lockstep fashion (i.e. the 
exact same operation in parallel on different data)



         

      
         

      

Thread and Warp scheduling
• An SM can switch between warps with no apparent 

overhead  

• Warps with instructions whose inputs are ready are 
eligible to execute, and will be considered when 
scheduling 

• When a warp is selected for execution, all active threads 
execute the same instruction in lockstep fashion (i.e. the 
exact same operation in parallel on different data)

hide (memory) latency by pipelining active warps



         

      
         

      

Thread and Warp scheduling
• Prefer thread block sizes that result in mostly full warps: 

• Bad: kernel<<<N, 1>>> ( ... ) 

• Okay: kernel<<<(N+31) / 32, 32>>>( ... )  

• Better: kernel<<<(N+127) / 128, 128>>>( ... )  

• Prefer to have enough threads per block to provide 
hardware with many warps to switch between (hides 
memory latency) 

• When a thread block finishes, a new block is launched 
on the vacated SM 



         

      
         

      

Block level synchronization
• In CUDA, synchronization can be performed at two levels:  

• System-level: Wait for all work on both the host and the 
device to complete  (cudaDeviceSynchronize). 

• Block-level: Wait for all threads in a thread block to 
reach the same point in execution on the device.  

• Because warps in a thread block are executed in an 
undefined order, CUDA provides the ability to synchronize 
their execution with a block-level barrier. You can mark 
synchronization points in the kernel using:  
__device__ void __syncthreads(void);



         

      
         

      

Thread Divergence 
• The lockstep execution of threads means that all threads must execute the same instruction 

at the same time. In other words, threads cannot diverge. 

• The most common code construct that can cause thread divergence is branching for 
conditionals in an if-then-else statement. 
 
__global__ void odd_even(int n, int* x) {  
  int i = threadIdx.x + blockDim.x * blockIdx.x;  
  if( i % 2 == 0 ) {  
    x[i] = x[i] + 1;  
  } else {  
    x[i] = x[i] + 2;  
  }  
} 

• Half the threads (even i) in the warp execute the if clause, the other half (odd i) the else 
clause  

• The system automatically handles control flow divergence, conditions in which threads within 
a warp execute different paths through a kernel  

• Often, this requires that the hardware execute multiple paths through a kernel for a warp.



         

      
         

      

Divergence and execution
• Intuitively, we would think statements in then and else blocks should be 

executed in parallel. However, because of the requirement that threads 
in a warp cannot diverge, this cannot happen.  
The CUDA platform has a workaround that fixes the problem, but has 
negative performance consequences. 

• When executing the if-then-else statement, the CUDA platform will 
instruct the warp to execute the then part first, and then proceed to the 
else part.  
While executing the then part, all threads that evaluated to false (e.g. 
the else threads) are effectively deactivated. When execution proceeds 
to the else condition, the situation is reversed.  

• The then and else parts are not executed in parallel, but in serial. This 
serialization can result in a significant performance loss. 

• Nested branches are handled similarly. 
Deeper nesting results in more threads being temporarily disabled 



         

      
         

      

Divergence and execution
__global__ void kv(int* x, int* y) {  
  int i = threadIdx.x + blockDim.x *  
          blockIdx.x;  
  int t;  
  bool b = f(x[i]);  
  if( b ) {  
    // g(x)  
    t = g(x[i]);  
  } else {  
    // h(x)  
    t = h(x[i]));  
  }  
  y[i] = t;  
} 



         

      
         

      

Divergence and deadlock
• Thread divergence can also cause a program to deadlock. 
 
//my_Func_then and my_Func_else are  
//some device functions  
if (threadIdx.x <16) {  
 myFunc_then();  
 __syncthreads();  

} else if (threadIdx.x >=16) {  
 myFunc_else();  
 __syncthreads();  

} 

• The first half of the warp will execute the then part, then wait for the 
second half of the warp to reach __syncthread().  
However, the second half of the warp did not enter the then part; 
therefore, the first half of the warp will be waiting for them forever.



         

      
         

      

Divergence and deadlock
• Thread divergence can also cause a program to deadlock. 
 
//my_Func_then and my_Func_else are  
//some device functions  
if (threadIdx.x <16) {  
 myFunc_then();  
 __syncthreads();  

} else if (threadIdx.x >=16) {  
 myFunc_else();  
 __syncthreads();  

} 

• The first half of the warp will execute the then part, then wait for the 
second half of the warp to reach __syncthread().  
However, the second half of the warp did not enter the then part; 
therefore, the first half of the warp will be waiting for them forever.

The __syncthreads() command is a block level synchronization barrier. That 
means it is safe to be used when all threads in a block reach the barrier.  

 
It is also possible to use __syncthreads() in conditional code but only when all 
threads evaluate identically such code, otherwise the execution is likely to hang



         

      
         

      

__syncthreads and deadlock
• From the NVIDIA Programming guide of Compute Capability 

7.x (Volta): 
 
Although __syncthreads() has been consistently 
documented as synchronizing all threads in the thread block, 
Pascal and prior architectures could only enforce 
synchronization at the warp level. In certain cases, this allowed 
a barrier to succeed without being executed by every thread as 
long as at least some thread in every warp reached the barrier. 
Starting with Volta, the CUDA built-in __syncthreads() and 
PTX instruction bar.sync (and their derivatives) are enforced 
per thread and thus will not succeed until reached by all non-
exited threads in the block. Code exploiting the previous 
behavior will likely deadlock and must be modified to ensure 
that all non-exited threads reach the barrier.



         

      
         

      

__syncthreads and deadlock
• The pre 7.x (Volta) behavior means that: 

• If any thread in a warp executes a PTX bar instruction (e.g. 
from _syncthreads), it is as if all the threads in the warp 
have. 

• The threads within a warp are not synchronized by 
__syncthreads(). The instruction will not cause the warp 
to stall and wait for the threads on divergent paths. Branch 
execution is serialized, so only when the branches rejoin or 
the code terminates do the threads in the warp then 
resynchronize.  
Until that, the branches run in sequence and independently. 
Again, only one thread in each warp of the block needs to hit 
__syncthreads() for execution to continue.



         

      
         

      

Divergence and programming

• In general, one does not need to consider 
divergence when reasoning about the correctness 
of a program  

• … of course consider cases that may cause a 
deadlock like the previous example 

• In general, one does need to consider divergence 
when reasoning about the performance of a 
program 



         

      
         

      

Divergence and performance
• Performance decreases with degree of divergence in warps 

__global__ void dv(int* x) {  
  int i = threadIdx.x + blockDim.x * blockIdx.x;  
 
  switch (i % 32) {  
    case 0 : x[i] = a(x[i]);  
             break;  
    case 1 : x[i] = b(x[i]);  
             break; 

    ...

    case 31: x[i] = v(x[i]);  
             break;  
  }  
}



         

      
         

      

Divergence and performance
• Performance decreases with degree of divergence in warps 

__global__ void dv(int* x) {  
  int i = threadIdx.x + blockDim.x * blockIdx.x;  
 
  switch (i % 32) {  
    case 0 : x[i] = a(x[i]);  
             break;  
    case 1 : x[i] = b(x[i]);  
             break; 

    ...

    case 31: x[i] = v(x[i]);  
             break;  
  }  
}

Warp size !



         

      
         

      

nvcc optimization
• CUDA compiler optimization replaces branch instructions 

(which cause actual control flow to diverge) with predicated 
instructions for short, conditional code segments.  

• In branch predication, a predicate variable for each thread 
is set to 1 or 0 according to a condition. The conditional 
flow paths become sequential and are coded inline, but 
only instructions with a predicate of 1 are executed. 
Instructions with a predicate of 0 do not, but the 
corresponding thread does not stall either.  

• The compiler replaces a branch instruction with predicated 
instructions only if the number of instructions in the body of 
a conditional statement is less than a certain threshold. 



         

      
         

      

nvcc optimization
• CUDA compiler optimization replaces branch instructions 

(which cause actual control flow to diverge) with predicated 
instructions for short, conditional code segments.  

• In branch predication, a predicate variable for each thread 
is set to 1 or 0 according to a condition. The conditional 
flow paths become sequential and are coded inline, but 
only instructions with a predicate of 1 are executed. 
Instructions with a predicate of 0 do not, but the 
corresponding thread does not stall either.  

• The compiler replaces a branch instruction with predicated 
instructions only if the number of instructions in the body of 
a conditional statement is less than a certain threshold. 

__global__ void odd_even(int n, int* x) {  
  int i = threadIdx.x + blockDim.x * blockIdx.x;  
 
  bool ipred = (i % 2 == 0); 
 
  if( ipred ) {  
    x[i] = x[i] + 1;  
  }  
  if( !ipred) {  
    x[i] = x[i] + 2;  
  }  
}



         

      
         

      

nvcc optimization
• CUDA compiler optimization replaces branch instructions 

(which cause actual control flow to diverge) with predicated 
instructions for short, conditional code segments.  

• In branch predication, a predicate variable for each thread 
is set to 1 or 0 according to a condition. The conditional 
flow paths become sequential and are coded inline, but 
only instructions with a predicate of 1 are executed. 
Instructions with a predicate of 0 do not, but the 
corresponding thread does not stall either.  

• The compiler replaces a branch instruction with predicated 
instructions only if the number of instructions in the body of 
a conditional statement is less than a certain threshold. 

__global__ void odd_even(int n, int* x) {  
  int i = threadIdx.x + blockDim.x * blockIdx.x;  
 
  bool ipred = (i % 2 == 0); 
 
  if( ipred ) {  
    x[i] = x[i] + 1;  
  }  
  if( !ipred) {  
    x[i] = x[i] + 2;  
  }  
}

if condition
    do this
else
    do that

On a system that uses conditional branching, this might translate to machine instructions 
looking similar to: 
branch if condition to label 1
   do that
   branch to label 2
 label 1:
   do this
 label 2:
  …

With branch predication the machine code becomes: 
(condition) do this
(not condition) do that

if condition is FALSE, then the instruction is treated as NOP



         

      
         

      

nvcc optimization
• CUDA compiler optimization replaces branch instructions 

(which cause actual control flow to diverge) with predicated 
instructions for short, conditional code segments.  

• In branch predication, a predicate variable for each thread 
is set to 1 or 0 according to a condition. The conditional 
flow paths become sequential and are coded inline, but 
only instructions with a predicate of 1 are executed. 
Instructions with a predicate of 0 do not, but the 
corresponding thread does not stall either.  

• The compiler replaces a branch instruction with predicated 
instructions only if the number of instructions in the body of 
a conditional statement is less than a certain threshold. 

__global__ void odd_even(int n, int* x) {  
  int i = threadIdx.x + blockDim.x * blockIdx.x;  
 
  bool ipred = (i % 2 == 0); 
 
  if( ipred ) {  
    x[i] = x[i] + 1;  
  }  
  if( !ipred) {  
    x[i] = x[i] + 2;  
  }  
}

if condition
    do this
else
    do that

On a system that uses conditional branching, this might translate to machine instructions 
looking similar to: 
branch if condition to label 1
   do that
   branch to label 2
 label 1:
   do this
 label 2:
  …

With branch predication the machine code becomes: 
(condition) do this
(not condition) do that

if condition is FALSE, then the instruction is treated as NOP

“predication”



         

      

         

      

Organizing 
blocks and 

threads



         

      
         

      

Grid dimensions
• gridDim.x, gridDim.y, and gridDim.z range 

from 1 to 65,536 

• All threads in a block share the same 
blockIdx.x, blockIdx.y, and blockIdx.z 
values  

• Among all blocks, the blockIdx.x value ranges 
between 0 and gridDim.x-1, the blockIdx.y 
value between 0 and gridDim.y-1, and the 
blockIdx.z value between 0 and gridDim.z-1. 



         

      
         

      

Block dimensions

• The total size of a block is limited to 1024 threads, 
with flexibility in distributing these elements into the 
three dimensions as long as the total number of 
threads does not exceed 1024. 

• For example, (512,1,1), (8,16,4), and 
(32,16,2) are all allowable blockDim values, 
but (32,32,2) is not allowable (it’s 2048).



         

      
         

      

Mapping threads to data
• The choice of 1D, 2D, or 3D thread organizations is 

usually based on the nature of the data.  
For example, pictures are a 2D array of pixels or 3D 
arrays of single channels. 

• Let us consider a 76⨉62 pixel image, and we want to 
process with a 16⨉16 threads block. 
We need 5⨉4 and some of the blocks will have 
unused threads



         

      
         

      

Mapping threads to data
• The choice of 1D, 2D, or 3D thread organizations is 

usually based on the nature of the data.  
For example, pictures are a 2D array of pixels or 3D 
arrays of single channels. 

• Let us consider a 76⨉62 pixel image, and we want to 
process with a 16⨉16 threads block. 
We need 5⨉4 and some of the blocks will have 
unused threads

We will have some code similar to: 

dim3 dimGrid(ceil(im_width/16.0), ceil(im_height/16.0), 1); 
dim3 dimBlock(16, 16, 1); 
pictureKernel<<<dimGrid,dimBlock>>>(d_Pin,d_Pout,im_width, im_height); 



         

      
         

      

2D kernel example
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int w, int h) {  
 
  // Calculate the row # of the d_Pin and d_Pout element to process  
  int row = blockIdx.y * blockDim.y + threadIdx.y;  
 
  // Calculate the column # of the d_Pin and d_Pout element to process  
  int col = blockIdx.x * blockDim.x + threadIdx.x;  
 
  // each thread computes one element of d_Pout if in range  
  if ((row < w) && (col < h)) {  
    d_Pout[ row * w + col ] = 2 * d_Pin[ row * w + col ];  
  }  
 
} 



         

      
         

      

2D kernel example
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int w, int h) {  
 
  // Calculate the row # of the d_Pin and d_Pout element to process  
  int row = blockIdx.y * blockDim.y + threadIdx.y;  
 
  // Calculate the column # of the d_Pin and d_Pout element to process  
  int col = blockIdx.x * blockDim.x + threadIdx.x;  
 
  // each thread computes one element of d_Pout if in range  
  if ((row < w) && (col < h)) {  
    d_Pout[ row * w + col ] = 2 * d_Pin[ row * w + col ];  
  }  
 
} 

Number of threads along the y axis



         

      
         

      

2D kernel example
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int w, int h) {  
 
  // Calculate the row # of the d_Pin and d_Pout element to process  
  int row = blockIdx.y * blockDim.y + threadIdx.y;  
 
  // Calculate the column # of the d_Pin and d_Pout element to process  
  int col = blockIdx.x * blockDim.x + threadIdx.x;  
 
  // each thread computes one element of d_Pout if in range  
  if ((row < w) && (col < h)) {  
    d_Pout[ row * w + col ] = 2 * d_Pin[ row * w + col ];  
  }  
 
} 

Number of threads along the y axis

Number of threads along the x axis



         

      
         

      

2D kernel example
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int w, int h) {  
 
  // Calculate the row # of the d_Pin and d_Pout element to process  
  int row = blockIdx.y * blockDim.y + threadIdx.y;  
 
  // Calculate the column # of the d_Pin and d_Pout element to process  
  int col = blockIdx.x * blockDim.x + threadIdx.x;  
 
  // each thread computes one element of d_Pout if in range  
  if ((row < w) && (col < h)) {  
    d_Pout[ row * w + col ] = 2 * d_Pin[ row * w + col ];  
  }  
 
} 

Check the unused threads

Number of threads along the y axis

Number of threads along the x axis



         

      
         

      

2D kernel example
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int w, int h) {  
 
  // Calculate the row # of the d_Pin and d_Pout element to process  
  int row = blockIdx.y * blockDim.y + threadIdx.y;  
 
  // Calculate the column # of the d_Pin and d_Pout element to process  
  int col = blockIdx.x * blockDim.x + threadIdx.x;  
 
  // each thread computes one element of d_Pout if in range  
  if ((row < w) && (col < h)) {  
    d_Pout[ row * w + col ] = 2 * d_Pin[ row * w + col ];  
  }  
 
} 

Standard 2D array coordinate conversion

Check the unused threads

Number of threads along the y axis

Number of threads along the x axis



         

      
         

      

Block and thread indices 

• Correspondences with previous code: 

• row = ix

• col = iy

• nx = w (width)

• ny = h (height)



         

      
         

      

Another example
#define CHANNELS 3 // we have 3 channels corresponding to RGB  
// The input image is encoded as unsigned characters [0, 255]  
__global__ void colorConvert(unsigned char* grayImage, unsigned char* rgbImage,  
                             int width, int height) {  
 int x = threadIdx.x + blockIdx.x * blockDim.x;  
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {  
    // get 1D coordinate for the grayscale image  
    int grayOffset = y*width + x;  
    // one can think of the RGB image having  
    // CHANNEL times columns than the gray scale image  
    int rgbOffset = grayOffset*CHANNELS;  
    unsigned char r = rgbImage[rgbOffset    ]; // red value for pixel  
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel  
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel  
    // perform the rescaling and store it  
    // We multiply by floating point constants  
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }  
}



         

      
         

      

Another example
#define CHANNELS 3 // we have 3 channels corresponding to RGB  
// The input image is encoded as unsigned characters [0, 255]  
__global__ void colorConvert(unsigned char* grayImage, unsigned char* rgbImage,  
                             int width, int height) {  
 int x = threadIdx.x + blockIdx.x * blockDim.x;  
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {  
    // get 1D coordinate for the grayscale image  
    int grayOffset = y*width + x;  
    // one can think of the RGB image having  
    // CHANNEL times columns than the gray scale image  
    int rgbOffset = grayOffset*CHANNELS;  
    unsigned char r = rgbImage[rgbOffset    ]; // red value for pixel  
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel  
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel  
    // perform the rescaling and store it  
    // We multiply by floating point constants  
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }  
}

Same as before



         

      
         

      

Another example
#define CHANNELS 3 // we have 3 channels corresponding to RGB  
// The input image is encoded as unsigned characters [0, 255]  
__global__ void colorConvert(unsigned char* grayImage, unsigned char* rgbImage,  
                             int width, int height) {  
 int x = threadIdx.x + blockIdx.x * blockDim.x;  
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {  
    // get 1D coordinate for the grayscale image  
    int grayOffset = y*width + x;  
    // one can think of the RGB image having  
    // CHANNEL times columns than the gray scale image  
    int rgbOffset = grayOffset*CHANNELS;  
    unsigned char r = rgbImage[rgbOffset    ]; // red value for pixel  
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel  
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel  
    // perform the rescaling and store it  
    // We multiply by floating point constants  
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }  
}

Same as before

Standard 2D array coordinate conversion



         

      
         

      

Another example
#define CHANNELS 3 // we have 3 channels corresponding to RGB  
// The input image is encoded as unsigned characters [0, 255]  
__global__ void colorConvert(unsigned char* grayImage, unsigned char* rgbImage,  
                             int width, int height) {  
 int x = threadIdx.x + blockIdx.x * blockDim.x;  
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {  
    // get 1D coordinate for the grayscale image  
    int grayOffset = y*width + x;  
    // one can think of the RGB image having  
    // CHANNEL times columns than the gray scale image  
    int rgbOffset = grayOffset*CHANNELS;  
    unsigned char r = rgbImage[rgbOffset    ]; // red value for pixel  
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel  
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel  
    // perform the rescaling and store it  
    // We multiply by floating point constants  
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }  
}

Same as before

Standard 2D array coordinate conversion



         

      
         

      

Another example
#define CHANNELS 3 // we have 3 channels corresponding to RGB  
// The input image is encoded as unsigned characters [0, 255]  
__global__ void colorConvert(unsigned char* grayImage, unsigned char* rgbImage,  
                             int width, int height) {  
 int x = threadIdx.x + blockIdx.x * blockDim.x;  
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {  
    // get 1D coordinate for the grayscale image  
    int grayOffset = y*width + x;  
    // one can think of the RGB image having  
    // CHANNEL times columns than the gray scale image  
    int rgbOffset = grayOffset*CHANNELS;  
    unsigned char r = rgbImage[rgbOffset    ]; // red value for pixel  
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel  
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel  
    // perform the rescaling and store it  
    // We multiply by floating point constants  
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }  
}

Same as before

Standard 2D array coordinate conversion

0.21
0.71

0.07



         

      
         

      

More complex example
• E.g. image blurring: we have to deal with more 

computations and more complex memory access 
patterns

Pixels 

processed 

by a thread 

block



         

      
         

      

 __global__ 

  void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 

  {

    int Col  = blockIdx.x * blockDim.x + threadIdx.x;

    int Row  = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {

        ... // Rest of our kernel

    }

  }

The main structure is the same 
of the first example



         

      
         

      

 __global__ 

  void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 

  {

    int Col  = blockIdx.x * blockDim.x + threadIdx.x;

    int Row  = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {

        ... // Rest of our kernel

    }

  }

The main structure is the same 
of the first example

 __global__ 
  void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {
      int Col  = blockIdx.x * blockDim.x + threadIdx.x;
      int Row  = blockIdx.y * blockDim.y + threadIdx.y;

      if (Col < w && Row < h) {
          int pixVal = 0;
          int pixels = 0;

          // Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
          for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
              for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

                  int curRow = Row + blurRow;
                  int curCol = Col + blurCol;
                  // Verify we have a valid image pixel
                  if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                      pixVal += in[curRow * w + curCol];
                      pixels++; // Keep track of number of pixels in the accumulated total
                  }
              }
          }

          // Write our new pixel value out
          out[Row * w + Col] = (unsigned char)(pixVal / pixels);
      }
  }



         

      
         

      

3D kernel
• Extend the previous case adding a plane variable 

• int plane = blockIdx.z * blockDim.z +  
            threadIdx.z  

• Linearize the 3D coordinate with: 

• 1Dcoord = Plane * height * width +  
        Row * width +  
        Col;



         

      
         

      

Guidelines
• Keep the number of threads per block a multiple of warp size (32).  

• Avoid small block sizes: Start with at least 128 or 256 threads per block.  

• When one warp stalls, the SM switches to executing other eligible warps. Ideally, 
you want to have enough warps to keep the cores of the device occupied.  

• But too many threads per block leads to fewer per-SM hardware resources 
available to each thread.  

• Keep the number of blocks much greater than the number of SMs to expose 
sufficient parallelism to your device.  

• Conduct experiments to discover the best execution configuration and resource 
usage.  

• Use the CUDA Occupancy Calculator Excel file to get help in selecting 
parameters 

• Use nvprof to profile the code



         

      
         

      

Example: block granularity evaluation
• For Matrix Multiplication using multiple blocks, should I use 

8⨉8, 16⨉16 or 32⨉32 blocks for Fermi? 

• For 8⨉8, we have 64 threads per Block. Since each SM can 
take up to 1536 threads, which translates to 24 Blocks. 
However, each SM can only take up to 8 Blocks, only 512 
threads will go into each SM! 

• For 16⨉16, we have 256 threads per Block. Since each SM 
can take up to 1536 threads, it can take up to 6 Blocks and 
achieve full capacity unless other resource considerations 
overrule. 

• For 32⨉32, we would have 1024 threads per Block. Only one 
block can fit into an SM for Fermi. Using only 2/3 of the 
thread capacity of an SM. 



         

      

         

      

CUDA 
Memory



         

      
         

      

Memory Hierarchy
• CUDA threads may access data 

from multiple memory spaces 
during their execution: 

• Each thread has private local 
memory.  

• Each thread block has shared 
memory visible to all threads of 
the block and with the same 
lifetime as the block.  

• All threads have access to the 
same global memory.



         

      
         

      

Memory and GPU performance
• Reconsider the blurKernel code: all threads access global memory for their 

input matrix elements 

• One memory accesses (4 bytes) per floating-point addition 

• Assume a GPU with 

• Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth 

• 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating 

• The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS 

• This limits the execution rate to 3.3% (50/1500) of the peak floating-point 
execution rate of the device! 

• Need to drastically cut down memory accesses to get close to the 1,500 
GFLOPS



         

      
         

      

Memory access
• In general, we use the host to: 

• Transfer data to and from global memory 

• Transfer data to and from constant memory 

• Once the data is in the device memory,  
threads can read and write (R/W) different  
parts of memory: 

• R/W per-thread register 

• R/W per-thread local memory 

• R/W per-block shared memory 

• R/W per-grid global memory 

• R per-grid constant memory



         

      
         

      

Memory access
• In general, we use the host to: 

• Transfer data to and from global memory 

• Transfer data to and from constant memory 

• Once the data is in the device memory,  
threads can read and write (R/W) different  
parts of memory: 

• R/W per-thread register 

• R/W per-thread local memory 

• R/W per-block shared memory 

• R/W per-grid global memory 

• R per-grid constant memory

The global, and constant memory spaces are persistent 
across kernel launches by the same application.



         

      
         

      

Variable qualifiers
• CUDA supports different types of qualifiers to 

assign variables to different memory components. 
Different memory components also have a life span

Qualifiers Location Scope Lifespan

Automatic variable Register Thread Kernel

Automatic array Local Thread Kernel

__device__  __shared__  int SharedVar Shared Block Kernel

__device__  int GlobalVar Global Grid Application

__device__  __constant__  int ConstVar Constant Grid Application



         

      
         

      

Registers
• Maxwell GPUs have 64K 32 bit registers. 

• Registers are dynamically partitioned across all Blocks assigned 
to the SM.  

• Once assigned to a Block, these registers are NOT accessible 
by threads in other Blocks.  

• A thread in a Block can only access registers assigned to itself.  

• On a Maxwell GPU a thread can get up to 255 registers, 
assigned by the compiler 

• Variables in a kernel that are eligible for registers but cannot fit 
into the register space allocated for that kernel will spill into local 
memory. 



         

      
         

      

Local memory
• Local memory does not exist physically: it is “local” in 

scope (i.e., it’s specific to one thread) but not in location  

• Data that is stored in “local memory” is actually placed 
in cache or the global memory at run time or by the 
compiler.  

• If too many registers are needed for computation (“high 
register pressure”) the ensuing data overflow is stored 
in local memory  

• Register and shared memory is within the SM, i.e. very 
fast. Global and instant are in the DRAM shared by the 
SMs of the GPU.



         

      
         

      

Shared memory
• Shared memory is on-chip, thus it has a much higher bandwidth 

and much lower latency than local or global memory.  
It is used similarly to CPU L1 cache, but is also programmable.  

• Each SM has a limited amount of shared memory that is 
partitioned among thread blocks.  

• Do not over-utilize shared memory or you will inadvertently 
limit the number of active warps.  

• Shared memory serves as a basic means for inter-thread 
communication. Threads within a block can cooperate by 
sharing data stored in shared memory.  

• Access to shared memory must be synchronized using  
__syncthreads()



         

      
         

      

Shared memory
• If shared memory size is known, we may use the CUDA qualifier, 
__shared__, to declare the size of shared memory statically as follows: 
 
__shared__ int sharememory[size]; 

• If the size is unknown at compile time, we need to dynamically allocate 
shared memory. Do it by prepending the keyword extern to an unsized 
memory array in the kernel: 
 
extern __shared__ int sharememory[]; 

• Then, specify the size when the kernel is launched. Here we want to 
declare a shared memory array consisting of n integers: 
 
kernel_func<<<gridSize, blockSize, n*sizeof(int)>>>  
                                              (...);



         

      
         

      

Shared memory
• If shared memory size is known, we may use the CUDA qualifier, 
__shared__, to declare the size of shared memory statically as follows: 
 
__shared__ int sharememory[size]; 

• If the size is unknown at compile time, we need to dynamically allocate 
shared memory. Do it by prepending the keyword extern to an unsized 
memory array in the kernel: 
 
extern __shared__ int sharememory[]; 

• Then, specify the size when the kernel is launched. Here we want to 
declare a shared memory array consisting of n integers: 
 
kernel_func<<<gridSize, blockSize, n*sizeof(int)>>>  
                                              (...);

A block may have 48KB shared memory, but if N blocks 
are running on a SM each block gets 48/N KB



         

      
         

      

Constant Memory 
• Constant memory resides in device memory and is 

cached in a dedicated, per-SM constant cache.  

• Kernels can only read from constant memory. Constant 
memory must therefore be initialized by the host using 
cudaMemcpyToSymbol  

• Constant memory performs best when all threads in a 
warp read from the same memory address.  

• Example: a coefficient for a mathematical formula is 
a good use case because all threads in a warp will 
use the same coefficient to conduct the same 
calculation on different data. 



         

      
         

      

Automatic Variables and Arrays
• An automatic variable is declared without any 

qualifiers. It resides in the per-thread register and is 
only accessible by that thread. 

int autovar;

• An automatic array variable resides in the per-thread 
local memory and is only accessible by that thread. 
However, it is possible for the compiler to store 
automatic arrays in the registers, if all access is 
done with constant index values. 
 
int autoarr[];



         

      
         

      

Shared, device and constant
• Appending the __shared__ variable type qualifier explicitly declares that the variable is 

shared within a thread block. 
 
__shared__ int shvar;  
// is the same as  
__device__ __shared__ int shvar2; 

• When the __device__ qualifier is used by itself, it declares the variable resides in 
global memory. Is accessible from all the threads within the grid and from the host 
through the runtime library. 
 
__device__ int dvvar; 

• Appending the __constant__ qualifier declares a constant variable that resides in the 
constant memory. Is accessible from all the threads within the grid and from the host 
through the runtime library. 
 
__constant__ int cnvar;  
// is the same as  
__device__ __constant__ int cnvar2;



         

      
         

      

Shared, device and constant
• Appending the __shared__ variable type qualifier explicitly declares that the variable is 

shared within a thread block. 
 
__shared__ int shvar;  
// is the same as  
__device__ __shared__ int shvar2; 

• When the __device__ qualifier is used by itself, it declares the variable resides in 
global memory. Is accessible from all the threads within the grid and from the host 
through the runtime library. 
 
__device__ int dvvar; 

• Appending the __constant__ qualifier declares a constant variable that resides in the 
constant memory. Is accessible from all the threads within the grid and from the host 
through the runtime library. 
 
__constant__ int cnvar;  
// is the same as  
__device__ __constant__ int cnvar2;

If data that you use turns out that can be 
used by any other thread in your block 
then you should consider using shared 

memory.



         

      
         

      

Shared, device and constant
• Appending the __shared__ variable type qualifier explicitly declares that the variable is 

shared within a thread block. 
 
__shared__ int shvar;  
// is the same as  
__device__ __shared__ int shvar2; 

• When the __device__ qualifier is used by itself, it declares the variable resides in 
global memory. Is accessible from all the threads within the grid and from the host 
through the runtime library. 
 
__device__ int dvvar; 

• Appending the __constant__ qualifier declares a constant variable that resides in the 
constant memory. Is accessible from all the threads within the grid and from the host 
through the runtime library. 
 
__constant__ int cnvar;  
// is the same as  
__device__ __constant__ int cnvar2;

If data that you use turns out that can be 
used by any other thread in your block 
then you should consider using shared 

memory.

__device__ and __constant__ are accessible through cudaGetSymbolAddress() / 
cudaGetSymbolSize() / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol()



         

      
         

      

Pinned memory: why ?
• To allow programmers to use a larger virtual 

address space than is actually available in the 
RAM, CPUs (or hosts, in the language of GPGPU) 
implement a virtual memory system, in which a 
memory page may be swapped out to disk. When 
needed the page is read back from disk. 

• The CUDA driver may need to request the CPU to 
read back the page from disk, slowing down the 
access to RAM.



         

      
         

      

Pinned memory
• To improve data transfer speed between host and 

device, you can pin device memory to the host 
memory, which will allow the system to use Direct 
Memory Access (DMA) transfer between the host 
and GPU whenever data transfer is specified, 
which is significantly faster.  

• To do so, you can simply replace malloc() by the 
API function, cudaMallocHost(). Es.: 
 
cudaMallocHost((int **) &h_t1, size);

This function prevents the memory from being swapped out.



         

      
         

      

Pinned memory: performance

• Pinned memory is more expensive to allocate/
deallocate, but has higher transfer throughput. 

• It is conveniente when dealing with large buffers, 
e.g. tens/hundreds of MBs that have to be 
transferred back and forth.



         

      
         

      

Unified memory
• Since CUDA 6.0 (and Kepler architecture) has 

been introduced a Unified Memory scheme that 
unifies (virtually) host and GPU memory. 

• No need for explicit data transfer (that still 
happens, of course, since physically memory is 
separated) 

• Similar to OS virtual memory 

• Slower execution than manually optimized 
memory management



         

      
         

      

Unified memory
• Since CUDA 6.0 (and Kepler architecture) has 

been introduced a Unified Memory scheme that 
unifies (virtually) host and GPU memory. 

• No need for explicit data transfer (that still 
happens, of course, since physically memory is 
separated) 

• Similar to OS virtual memory 

• Slower execution than manually optimized 
memory management

Use cudaMallocManaged() to allocate Unified Memory, accessible from CPU and GPU: 
cudaError_t cudaMallocManaged(void** ptr, size_t size);



         

      
         

      

Unified Memory
• On systems with pre-Pascal GPUs like the Tesla 

K80, calling cudaMallocManaged() allocates size 
bytes of managed memory on the GPU device that 
is active when the call is made. Internally, the driver 
also sets up page table entries for all pages covered 
by the allocation, so that the system knows that the 
pages are resident on that GPU. 

• Since these older GPUs can’t page fault, all data 
must be resident on the GPU just in case the kernel 
accesses it (even if it won’t). This means there is 
potentially migration overhead on each kernel 
launch.



         

      
         

      

Unified Memory
• On Pascal and later GPUs, managed memory may not be 

physically allocated when cudaMallocManaged() returns; 
it may only be populated on access (or prefetching). In other 
words, pages and page table entries may not be created 
until they are accessed by the GPU or the CPU. The pages 
can migrate to any processor’s memory at any time, and the 
driver employs heuristics to maintain data locality and 
prevent excessive page faults. 

• Since Tesla P100 (Pascal) there is hardware page faulting 
and migration support. kernel launches without any migration 
overhead, and when it accesses any absent pages, the GPU 
stalls execution of the accessing threads, and the Page 
Migration Engine migrates the pages to the device before 
resuming the threads.



         

      
         

      

Credits

• These slides report material from: 

• Prof. Dan Negrut (Univ. Wisconsin - Madison) 

• Philip Nee (Cornell Univ.) 

• NVIDIA GPU Teaching Kit



         

      
         

      

Books
• Programming Massively Parallel Processors: A 

Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufmann - 2nd edition - Chapt. 4-5 
 
or 
 
Programming Massively Parallel Processors: A 
Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufmann - 3rd edition - Chapt. 3-4 

• Professional CUDA C Programming, J. Cheng, M. 
Grossman and T. McKercher, Wrox - Chapt. 3


