M Media Integration and Communication Center - University of Florence, Italy

T

Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
bertini@dsi.unifi.it
http://www.dsi.unifl.it/~bertini/

mailto:bertini@dsi.unifi.it
mailto:bertini@dsi.unifi.it
http://viplab.dsi.unifi.it/~bertini
http://viplab.dsi.unifi.it/~bertini

M Media Integration and Communication Center - University of Florence, Italy

A

Design pattern

Factory

N———

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy {, @/f\

Some motivations

® Consider a user interface toolkit to support
multiple look-and-feel standards:

® for portability an application must not hard code
its widgets for one look and feel.

® Use of the factory pattern allows:

® generation of different instances of a class, using
same parameter types

® increase of system flexibility — code can use an
object of an interface (type) w/o knowing which
class (implementation) it belongs to

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy EL- é,f\

Factory pattern

® Problem

® You want a class to create a related class
polymorphically

® Context

® Each class knows which version of the related class it
should create

® Solution

® Declare abstract method that derived classes
override

® Consequences

® Type created matches type(s) it's used with

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy

Factory pattern

T

® Factory:a class whose sole job is to easily
create and return instances of other classes:

® it's a creational pattern; makes it easier to
construct complex objects, create individual
objects in situations where the constructor
alone is inadequate.

® instead of calling a constructor, use a static
method in a "factory” class to set up the
object

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy fL- é\

Pattern intent

® Define an interface for creating an object, but
let subclasses decide which class to instantiate.

® | ets a class defer instantiation to subclasses

® \We’'ll see some variations on the theme of
Factory

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy fL- é\

The problem with hew

® |n some cases there’s need to instantiate closely
related classes (e.g. derived from a common base)
depending on some criteria, e.g..

® Duck duck;
1f (picnic) {
duck = new MallardDuck(),
} else 1f(decorating) {

duck = new DecoyDuck();
} else 1f(C 1nBathTub) {

duck = new RubberDuck(); {‘ A

¥

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy fL— @4\
— ~ - ‘\

The problem with hew

® |n some cases there’s need to instantiate closely
related classes (e.g. derived from a common base)
depending on some criteria, e.g.:

® Duck duck: What happens if we

. ,) have to add another
1t C pienic) { gquek?

duck = new MallardDuck(); &
} else if(decorating) {

duck = new DecoyDuck(); -
} else if(inBathTub) { |

duck = new RubberDuck(); {‘

N & /
..L _.}\{)_\3 AI‘;_.' i

¥

lunedi 24 maggio 2010

[

M Media Integration and Communication Center - University of Florence, Italy

Simple Factory

N—

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy

T

Goal

Encapsulate the creation of related classes into
one class: we’ll have to modify only that class
when the implementation changes

The factory will handle the details of object
creation

The Simple Factory is not a real Design
Pattern, it's more a programming idiom

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy f’-— éﬁf\

Design Patterns and
Programming Idioms

® According to Alexander, a pattern:

® Describes a recurring problem

® Describes the core of a solution
® |s capable of generating many distinct designs
® An |ldiom is more restricted
® Still describes a recurring problem
® Provides a more specific solution, with fewer variations
® Applies only to a narrow context

® e.g.,the C++ language

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy ﬂ-— &f\‘

Simple Factory example N

Pizza* orderPizza(string type) {
Pizza* pizza = 0;

1f (type.compare(“4cheeses”) == 0)

pizza = new FourCheesesPizza();

else 1f (type.compare(“zucchini”) == 0)
pizza = new ZucchiniPizza();

else 1f (type.compare(“ham_mushrooms”) == 0)
pizza = new HamMushroomsPizza();

pizza->prepare();
pizza->bake();
pizza->box();
return pizza;

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\

Simple Factory examplé

Pizza* orderPizza(string type) { .
Pizza* pizza = 0, Adding new types of

pizzas will require

1f (type.compare(“4cheeses™) == 0) . change this code

pizza = new FourCheesesPizza();

else 1f (type.compare(“zucchini”) == 0)
pizza = new ZucchiniPizza();

else 1f (type.compare(“ham_mushrooms”) == 0)
pizza = new HamMushroomsPizza();

pizza->prepare();
pizza->bake();
pizza->box();
return pizza;

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy [L- é\

Simple Factory examplé

Pizza* orderPizza(string type) { .
Pizza* pizza = 0, Adding new types of

pizzas will require

1f (type.compare(“4cheeses™) == 0) . change this code

pizza = new FourCheesesPizza();

else 1f (type.compare(“zucchini”) == 0)
pizza = new ZucchiniPizza();

else 1f (type.compare(“ham_mushrooms”) == 0)
pizza = new HamMushroomsPizza();

pizza->prepare();
pizza->bake(); This part of code will
pizza->box(); - S

r'etur'n p'i_zza; I"emaln e Same

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy EL— @4\

Encapsulating object creation

class SimplePizzaFactory {
public: Pizza* createPizza(string type) const {

Pizza* pizza = 0;

1f (type.compare(“4cheeses”) == 0)
pizza = new FourCheesesPizza();

else 1f (type.compare(“zucchini”) == 0)
pizza = new ZucchiniPizza();

else 1f (type.compare(“ham_mushrooms”) == 0@)
pizza = new HamMushroomsPizza();

return pizza;

}
s

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy f’-— é\

Using the Simple Factory

class PizzaStore {
private: SimplePizzaFactory* _factory;

public: PizzaStore(SimplePizzaFactory* factory) :
_factory(factory) { }

public: Pizza* orderPizza(string type) {
Pizza* pizza;
pizza = _factory->createPizza(type);
pizza->prepare();
pizza->bake();
pizza->box();

return pizza;

}
s

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy ﬂ-— @f\

e :

Using the Simple Factory

Hold a reference to a

class PizzaStore { Simple Factory

private: SimplePizzaFactory* _factory;

public: PizzaStore(SimplePizzaFactory* factory) :
_factory(factory) { }

public: Pizza* orderPizza(string type) {
Pizza* pizza;
pizza = _factory->createPizza(type);
pizza->prepare();
pizza->bake();
pizza->box();

return pizza;

}
s

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy ﬂ-— ﬁf{\

;‘-

Using the Simple Factory

Hold a reference to a

class PizzaStore { Simple Factory

private: SimplePizzaFactory* _factory;

. . . . Get the factory
public: PizzaStore(SimplePizzaFactory* factory) passedin the
_factory(factory) { } constructor

public: Pizza* orderPizza(string type) {
Pizza* pizza;
pizza = _factory->createPizza(type);
pizza->prepare();
pizza->bake();
pizza->box();

return pizza;

}
s

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy ﬂ-— ﬂ,f\‘

— ~) S——

Using the Simple Factory

Hold a reference to a

class PizzaStore { Simple Factory

private: SimplePizzaFactory* _factory;

. . . . Get the factory
public: PizzaStore(SimplePizzaFactory* factory) passedin the
_factory(factory) { } constructor

public: Pizza* orderPizza(string type) { Use the factory

P?Zza* pizza; . with the create()
pizza = _factory->createPizza(type); i) foczad] of

pizza->prepare(); using a New
pizza->bake();
pizza->box();

return pizza;

}
s

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy [L— é,f\

N——

~

Simple Factory UML class
diagram

S S5 PiZ(Z)a This is the product
izzaStore implePizzaFactory prepare)
orderPizza() g createPizza() " bake() of the faCtory' It's an
This is the client of The create method is
the factory often static

FourCheesePizza ZucchiniPizza HamMushroomsPizza

Concrete products
of the factory.

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy

A

Factory Method

Class creational

N———

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy fL— ﬂ/f\

Some motivations

® Use the Factory Method pattern when

® a class can’t anticipate the class of objects
It must create

® a class wants its subclasses to specify the
object it creates

® classes delegate responsibility to one of
several helper subclasses, and you want
to localize the knowledge of which
helper subclass is the delegate

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, | fL— é,f\

Factory Method

® Problem

® You want a class to create a related class
polymorphically
® Context

® Each class knows which version of the related
class it should create

® Solution

® Declare abstract method that derived classes
override

® Consequences
® T[ype created matches type(s) it’s used with

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy

[

Factory method UML class
diagram

All products must
implement the same
interface so that the
classes which use the
products can refer to the
interface and not to the
concrete class

Product

Creator

T

factoryMethod()
anOperation()

ConcreteProduct

ConcreteCreator

factoryMethod()

The concrete creator is the only responsible for creating one
or more concrete products, and is the only class that knows

how to create these products

The abstract
factoryMethod() must

be implemented by all the
subclasses.The other
methods are there to
operate on products
produced by the factory
method.

The implementation of
factoryMethod()

actually produces
products

® Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy

[

N——

Factory Method example
UML class diagram

NaplesPizzaStore
createPizza()
orderPizza()

Product
classes

FlorencePizzaStore
createPizza()
orderPizza()

The concrete products
produced by the different
concrete factories

Pizza
Factories produce products,
like this abstract product
NaplesFourCheesePizza FlorenceFourCheesePizza
NaplesVeggiePizza FlorenceVeggiePizza
= =
NaplesHamMushroomsPizza FlorenceHamMushroomsPizza
= -

Concrete creator classes.They create

PizzaStore Abstract creator class.The creator does not know
createPizza() which concrete product is produced, but may have code
orderPizza() that depends on an abstract product

Creator
classes

different styles of pizza implementing the
abstract factory method

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy f’ é\

Participants

® Product: defines the interface of objects the factory
method creates

® ConcreteProduct: implements the Product interface

® Creator:declares the factory method, which returns
an object of type Product. Creator may also define a
default implementation of the factory method that
returns a default ConcreteProduct object. May call
the factory method to create a Product object

® ConcreteCreator: overrides the factory method to
return an instance of a ConcreteProduct

lunedi 24 maggio 2010

Media Integration and Communication Center - University of Florence, | ﬂ-— Kf{\

Factory Method example

class PizzaStore {
protected: PizzaStore() { }
public: virtual ~PizzaStore() = 0 { }

public: Pizza* orderPizza(string type) const {

Pizza* pizza;

pizza = createPizza(type);

cout << "- Making a
pizza->prepare();
pizza->bake();
pizza->cut();
pizza->box();
return pizza;

¥

public: virtual Pizza* createPizza(string type) const =

s

<< plzza->getName() <<

<< endl;

0,

lunedi 24 maggio 2010

Media Integration and Communication Center - University of Florence, | [L- é\

Factory Method example

class PizzaStore {
protected: PizzaStore() { }
public: virtual ~PizzaStore() = 0 { }

public: Pizza* orderPizza(s’cr'wLnThe createPizza() is
Pizza* pizza; back into the PizzaStore

object rather than in a
factory object

pizza = createPizza(type);

<< plzza->getName() << " -" << endl;

cout << "- Making a
pizza->prepare();
pizza->bake();
pizza->cut();
pizza->box();
return pizza;

¥

public: virtual Pizza* createPizza(string type) const = 0;

s

lunedi 24 maggio 2010

Media Integration and Communication Center - University of Florence, | fL- é\

Factory Method example

class PizzaStore {
protected: PizzaStore() { }
public: virtual ~PizzaStore() = 0 { }

public: Pizza* orderPizza(s’cr'wLnThe createPizza() is
Pizza* pizza; back into the PizzaStore

object rather than in a
factory object

pizza = createPizza(type);

<< plzza->getName() << " -" << endl;

cout << "- Making a
pizza->prepare();
pizza->bake();

pizza-:__ '
0izza-: “The factory object has

return been moved to this
¥ method

public: virtual Pizza* createPizza(string type) const = 0;

s

lunedi 24 maggio 2010

Media Integration and Communication Center - University of Florence, | EL- @/5\

Factory Method example

class PizzaStore {
protected: PizzaStore() { }
public: virtual ~PizzaStore() = 0 { }

public: Pizza* orderPizza(s’cr'wLnThe createPizza() is
Pizza* pizza; back into the PizzaStore

object rather than in a
factory object

pizza = createPizza(type);

cout << "- Making a " << pizza->getName() << " -" << endl;
pizza->prepare();

pizza->bake();

pizza-:__ '~ ,
pizza-: The factory object has The factory method is
return been moved to this abstract in the

¥ method PizzaStore

public: virtual Pizza* createPizza(string type) const = 0;

s

lunedi 24 maggio 2010

—

Factory Method example - con

N Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\
A - ‘\

class NaplesPizzaStore : public PizzaStore {

public: Pizza* createPizza(string type) const {

1f(type.compare("fourcheese") == 0) {
return new NaplesStyleFourCheesePizza();

} else 1f(type.compare("veggie") == 0) {
return new NaplesStyleVeggiePizza();

} else 1f(type.compare("clam"™) == 0) {
return new NaplesStyleClamPizza();

} else 1f(type.compare("hammushrooms") == 0) {
return new NaplesStyleHamMushroomsPizza();

} else return 0;

¥

lunedi 24 maggio 2010

[

o

Factory Method example - con

K Media Integration and Communication Center - University of Florence, Italy

class NaplesPizzaStore : public PizzaStore {

public: Pizza* createPizza(:The createPlzza() of the

if(type.compare("fourc Naples pizza store ensures that
return new NaplesStyl niz7a5 are created as in Naples:

} else if(type.compare(', . :
return new NaplesStyl thick, large crust and using only

1 else if(type.compare(buffalo mozzarella cheese
return new NaplesStyletLamrizza();

} else 1f(type.compare("hammushrooms") == 0) {
return new NaplesStyleHamMushroomsPizza();

} else return 0;

¥

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy

I

—

Factory Method example - con

class NaplesPizzaStore : public PizzaStore {

public: Pizza* createPizza(:The CI"GCI'tGP'I.ZZCI() of the

if(type.compare("fourc Naples pizza store ensures that
return new Naplesstyl niz7a5 are created as in Naples:

} else if(type.compare(', . :
return new NaplesStyl thick, large crust and using only

1 else if(type.compare(buffalo mozzarella cheese
return new NaplesStyletLamrizza();

} else 1f(type.compare("hammushrooms") == 0) {
return new NaplesStyleHamMushroomsPizza();

} else return 0;

. 5 Each subclass of PizzaStore overrides the abstract
createP1zza() method, while all subclasses use

the orderP1zza() method defined in PizzaStore.

| S—

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy f’ é,f\

Decoupling

® The P1zzaStore: :orderP1zza() is defined

in the abstract PizzaStore class, not in the
subclasses: the method does not know which
subclass is running the code and making the pizzas

® it's decoupled from that code

® When orderP1zza() calls createPi1zza()

one of the subclasses is called in action, depending
on the PizzaStore subclass

® it's NOT a real time decision by the subclass

lunedi 24 maggio 2010

A

—

K Media Integration and Communication Center - University of Florence, Italy

The factory method

® The factory method handles the object creation and
encapsulates it in a subclass. This decouples the client

code in the superclass (e.g. code like orderPizza
()) from the object creation in the subclass.

® the factory method has to be virtual and possibly
also pure virtual (but a default implementation may
be provided, to obtain flexibility: subclasses can
override how they are created)

® the factory method may be parameterized (or not)
to select among variations of the product (e.g.
useful for de-serialization)

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy fL- é\

How to get a pizza

® (et a pizza store:
PizzaStore* mergellinaStore = new NaplesPizzaStore();

® Take an order:
mergellinaStore->orderPizza(“veggie”);

¢ The orderP1zza() method calls the createP1zza() method

implemented in the subclass:
Pizza* pizza = createPizza(“veggie”);

® The orderPizza() finished preparing it:
pizza->prepare();
pizza->bake();

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy f’-— &f\

Implementing pizzas

class Pizza {
protected: string _name;
protected: string _dough;
protected: string _sauce;
protected: list< string > _toppings;
protected: Pizza() { }
public: virtual ~Pizza() =0 { }
public: virtual void prepare() const {
cout << "Preparing " << _name.c_str() << endl;

cout << "Tossing dough..." << endl;
cout << "Adding sauce..." << endl;
cout << "Adding toppings: " << endl;

for(list< string >::iterator 1tr = _toppings.begin();
_toppings.end() !'= itr; ++itr) {
cout << " " << 1tr->c_str() << endl;

¥
¥

public: virtual void bake() const {
cout << "Bake for 25 minutes at 350" << endl;

ks
// void bake(); void cut(); void box(); string getName();

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy

Implementing pizzas

class pizza ¢ Abstract class (it has abstract methods)

protected: string _name;
protected: string _dough;
protected: string _sauce;
protected: list< string > _toppings;
protected: Pizza() { }
public: virtual ~Pizza() =0 { }
public: virtual void prepare() const {
cout << "Preparing " << _name.c_str() << endl;

A

cout << "Tossing dough..." << endl;
cout << "Adding sauce..." << endl;
cout << "Adding toppings: " << endl;

for(list< string >::iterator 1tr = _toppings.begin();
_toppings.end() !'= itr; ++itr) {
cout << " " << 1tr->c_str() << endl;

¥
¥

public: virtual void bake() const {
cout << "Bake for 25 minutes at 350" << endl;

ks
// void bake(); void cut(); void box(); string getName();

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy fL- é\

Implementing pizzas

class pizza ¢ Abstract class (it has abstract methods)

protected: string _name;
protected: string _dough;
protected: string _sauce;
protected: list< string > _toppings;
protected: Pizza() { }
public: virtual ~Pizza() =0 { }
public: virtual void prepare() const {
cout << "Preparing " << _name.c_str() << endl;

oo epanins , .
ot < a2 The class provides some basic default

cout << "Adding sau

cout << "Adding top methods for preparing, baking, cutting,...

for(list< string >

_toppings.end(| hey are virtual and can be overridden by the

, cout << << subclasses

}

public: virtual void bake() const {
cout << "Bake for 25 minutes at 350" << endl;

¥
// void bake(); void cut(); void box(); string getName(); ...

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy EL— @4\

Implementing pizzas - cont

class NaplesStyleVeggiePizza : public Pizza {
public: NaplesStyleVeggiePizza() {

_name = "Naples Style Veggie Pizza";
_dough = "Thick Crust Dough";
_sauce = "Marinara Sauce";

_toppings.push_back("Buffalo Mozzarella Cheese");

_toppings.push_back("Garlic");
_toppings.push_back("Onion");
_toppings.push_back("Mushrooms");
_toppings.push_back("Friarelli");

}

public: virtual void bake() const {
cout << "Bake for 20 minutes at 350" << endl;

}
b

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\

v ~) S——

Implementing pizzas - con

class NaplesStyleVeggiePizza : public Pizza {
public: NaplesStyleVeggiePizza() {

_name = "Naples Style Veggie Pizza";
_dough = "Thick Crust Douah":

-souce = Marina The Naples style pizza has its thick crust,
_toppings.push_bc marinara sauce, friarelli veggie and uses buffalo
_toppings.push_bc MoOzzarella cheese

_toppings.push_back(wunion);
_toppings.push_back("Mushrooms");
_toppings.push_back("Friarelli");

}

public: virtual void bake() const {
cout << "Bake for 20 minutes at 350" << endl;

}
b

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy fL_ é\

ol ~) W—

Implementing pizzas - con

class NaplesStyleVeggiePizza : public Pizza {
public: NaplesStyleVeggiePizza() {

_name = "Naples Style Veggie Pizza";
_dough "Thick Crust Douah":

-sauce = Mamna" The Naples style pizza has its thick crust,
_toppings.push_bc marinara sauce, friarelli veggie and uses buffalo
_toppings.push_bc MoOzzarella cheese

_toppings.push_back(wunion);
_toppings.push_back("Mushrooms");
_toppings.push_back("Friarelli");

}

public: virtual void bake() const {
cout << "Bake for 20 minutes at 350" << endl;

}
}; The Naples style pizza is baked less time, to

make a soft crust

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\
L (7}

~

Putting everything togethﬁer

PizzaStore* mergellinaStore = new NaplesPizzaStore();

Pizza* pizza = mergellinaStore->orderPizza(“veggie”);

This approach is useful also if there’s only one concrete creator since the Factory
Method decouples product implementation from its use

The factory method and creator do not need to be abstract, they may provide some
basic implementation

The implementation of each concrete store looks like the Simple Factory, but in this
previous approach the factory is another object composed with the PizzaStore, here it is

a subclass extending an abstract class

* it’s not a one-shot solution, we are using a framework that let’s subclasses decide
which implementation will be used

* the factory method can also change the products created: it’'s more flexible

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy fL_ é\

Lazy initialization

® The constructor simply initializes the product
to 0, the creation is delegated to the accessor
method (check also the Singleton pattern!):

class Creator {
public: Creator() { _product = 0; };
public: Product* getProduct();
protected: virtual Product* createProduct();
private: Product* _product;
¥
Product* Creator::getProduct() {
1f (_product == 0) {
_product = createProduct();

h

return _product;

h

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy

A

Abstract Factory

Object creational

N———

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy

Motivation

® Consider a user interface toolkit to support
multiple look-and-feel standards.

® For portability an application must not hard
code its widgets for one look and feel.

® How to design the application so that
incorporating new look and feel
requirements will be easy?

{L——. .
N4

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy f’ é\

Solution

® Define an abstract WidgetFactory class.

® This class declares an interface to create
different kinds of widgets.

® There is one abstract class for each kind of widget
and concrete subclasses implement widgets for
different standards.

o WidgetFactory offers an operation to return a
new widget object for each abstract widget class.
Clients call these operations to obtain instances of
widgets without being aware of the concrete
classes they use.

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, | fL— @/f\

Intent and appllcab ity

® Provide an interface for creating families of related or
dependent objects w/o specifying their concrete classes

® This pattern can be applied when:

® a system should be independent of how its products are
created, composed or represented

® a system should be configured with one or multiple families
of products

® a family of related product objects is designed to be used
together (and there’s need to enforce this constraint)

® there is need to provide a class library of products
revealing their interfaces and not their implementations

lunedi 24 maggio 2010

Media Integration and Communication Center - University of Florence, Italy

[

Abstract Factory UML class

The Abstract Factory

diagram

defines the interface that AbstractFactory
all the factories must createProductA() «—
implement. It provides createProductB()
methods or producing
the products
ConcreteFactory1 ConcreteFactory2
createProductA() createProductA()
createProductB() createProductB()

The concrete factories
implement the different
product families. The client
use one of these factories to
create a product.

The ConcreteFactory| may
create wxVVidgets widgets,
while the ConcreteFactory2
may create QT widgets

These abstract
classes are the

AbstractProductA

Client \

product families

These abstract

AbstractProductB

The Client is written
against the abstract
factory and
composed at runtime

with an actual factory
ProductA2 ProductA1

classes are the
product families

>{ ProductB2 \ ‘ ProductB1 |<—

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy f’ é\

Participants

® AbstractFactory: declares an interface for operations
that create abstract product objects

® ConcreteFactory: implements the operations to
create concrete product objects

® AbstractProduct: declares an interface for a type of
product object

® ConcreteProduct: defines a product to be object
created by the corresponding concrete factory,
implementing the AbstractProduct interface

® (Client: uses only the interfaces create by the
AbstractXXX classes

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy f’ é,f\

Collaborations

® Normally a single instance of a
ConcreteFactory class is created at run-time.
This factory creates objects having a
particular implementation, to create different
objects use a different factory. This promotes
consistency among products: products of a
whole family are created.

® AbstractFactory defers creation to the
ConcreteFactory classes. It insulates the client
from implementation classes.

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy f’ é,f\

Implementation

® An application typically needs only one
instance of a factory: these are implemented
using the Singleton pattern

e Often the concrete factories are built using the
Factory Method pattern for each product

® The AbstractFactory usually defines a different
operation for each kind of product; these
products are encoded in the operation
signatures, thus adding a new kind of product
requires changing the interface.

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\
A - ‘\

Abstract Factory: example

// Abstract Factory
class PizzalngredientFactory {
public:
virtual Dough* createDough() const =

0
virtual Sauce* createSauce() const = 0;
virtual Cheese* createCheese() const =
0;
virtual std::vector< Veggies* >

createVeggies() const = 0;
virtual Clams* createClam() const = 0;

virtual ~PizzalIngredientFactory() = @ {}
s

}

class NaplesPizzalngredientFactory :
public PizzalngredientFactory {

public: Dough* createDough() const {
return new ThickCrustDough();

Iy

public: Sauce* createSauce() const {
return new MarinaraSauce();

Iy

public: Cheese* createCheese() const {
return new BuffaloMozzarellaCheese();

Iy

public: std::vector< Veggies* >

createVeggies() const {
std: :vector< Veggies* > veggies;
veggies.push_back(new Friarelli());
veggies.push_back(new Onion());
veggies.push_back(new Mushroom());
veggies.push_back(new RedPepper());
return veggies;

ks

public: Clams* createClam() const {
return new FreshClams();

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy fL- é\
~ - ‘\

Abstract Factory: example

class NaplesPizzalngredientFactory :
public PizzalngredientFactory {
public: Dough* createDough() const {
return new ThickCrustDough();

// Aostract Factory Ve have many classes:
class PizzalngredientFactory { - (j.
public: one for each ingredient.
virtual Dough* createDough() const = 0; .
virtual Sauce* createSauce() const = 0; If there,s need for d %
' 1 Ch * Ch = - . .
Q;thua eese* createCheese() const common funCthnallty in
virtual std::vector< Veggies* > .
createVeggies() const = 0; a” the faCtOrles 3:
virtual Clams* createClam() const = 0; . ’
virtual ~PizzalngredientFactory() = 0 {} Implement d methOd .
b here.);

I Ul 11 V\.—yyl—\.—g,

h

public: Clams* createClam() const {
return new FreshClams();

}
+s

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\
A - ‘\

Abstract Factory: example

// Abstract Factory
class PizzalngredientFactory {
public:
virtual Dough* createDough() const =

0
virtual Sauce* createSauce() const = 0;
virtual Cheese* createCheese() const =
0;
virtual std::vector< Veggies* >

createVeggies() const = 0;
virtual Clams* createClam() const = 0;

virtual ~PizzalIngredientFactory() = @ {}
s

}

class NaplesPizzalngredientFactory :
public PizzalngredientFactory {

public: Dough* createDough() const {
return new ThickCrustDough();

Iy

public: Sauce* createSauce() const {
return new MarinaraSauce();

Iy

public: Cheese* createCheese() const {
return new BuffaloMozzarellaCheese();

Iy

public: std::vector< Veggies* >

createVeggies() const {
std: :vector< Veggies* > veggies;
veggies.push_back(new Friarelli());
veggies.push_back(new Onion());
veggies.push_back(new Mushroom());
veggies.push_back(new RedPepper());
return veggies;

ks

public: Clams* createClam() const {
return new FreshClams();

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy fL- é\
~ - ‘\

Abstract Factory: example

class NaplesPizzalngredientFactory :
public PizzalngredientFactory {
public: Dough* createDough() const {
return new ThickCrustDough();

ks
/, We are Creating a public: Sauce* CI.“eateSauce() const {
1 . . return new MarinaraSauce();
- specific version of P
public: Cheese* createCheese() const {
ingredient for each return new BuffaloMozzarellaCheese();
ks
@.faCtOI")'. public: std::vector< Veggies* >
’ i . createVeggies() const {
Some |ngr’ed|ents ma)l be std: :vector< Veggies* > veggies;
. veggies.push_back(new Friarelli());
shared by different veggies.push_back(new Onion());
1. . veggies.push_back(new Mushroom());
‘factories, though. veggies.push_back(new RedPepper());
return veggies;
ks

public: Clams* createClam() const {
return new FreshClams();

}
+s

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy EL— ﬁff\
& - N

Abstract Factory: example

class Pizza {
private: std::string _name;
protected:
Dough* _dough;
Sauce* _sauce;
std: :vector< Veggies* > _veggies;
Cheese* _cheese;
Clams* _clam;
Pizza() { }
public: virtual void prepare() const = 0;
virtual ~Pizza() {
for(std::vector< Veggies* >::1iterator 1itr = _veggies.begin();
_vegglies.end() != itr; ++1tr) {
delete *1itr;
Iy
_veggies.clear(Q);
Iy
virtual void bake() const {
std: :cout << "Bake for 25 minutes at 350"

<< std::endl;

h

virtual void box() const {
std::cout << "Place pizza in official

PizzaStore box" << std::endl;
1 //...all the other methods...

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy [L- é\
A - ‘\

Abstract Factory: examplﬁe

class Pizza {
private: std::string _name;

protected: The pure virtual prepare
Dough* _dough; .
Sauce* _sauce; methOd W|” CO”eCt a”
std: :vector< Veggies* > _veggies; . .
Cheese* _cheese; the Ingl‘edlents from the
Clams* _clam; . -
Pizza() { } ingredient factory

public: virtual void prepare() const = 0;
virtual ~Pizza() {
for(std::vector< Veggies* >::1iterator 1itr = _veggies.begin();
_vegglies.end() != itr; ++1tr) {
delete *1itr;
Iy
_veggies.clear(Q);
Iy
virtual void bake() const {
std: :cout << "Bake for 25 minutes at 350"

<< std::endl;

h

virtual void box() const {
std::cout << "Place pizza in official

PizzaStore box" << std::endl;
1 //...all the other methods...

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy fL_ é\

Abstract Factory: example

® The concrete product classes get their ingredients
from the ingredient factories: there’s no more need for
specific classes for the regional versions

N——

class ClamPizza : public Pizza {
private: PizzaIngredientFactory* _ingredientFactory;
public: ClamPizza(PizzalngredientFactory*
ingredientFactory) :
_ingredientFactory(ingredientFactory) {
¥

void prepare() const {

std::cout << "Preparing " << getName().c_str() << std::endl;
_dough = _ingredientFactory->createDough();

_sauce = _ingredientFactory->createSauce();
_cheese = _ingredientFactory->createCheese();
_clam = _ingredientFactory->createClam();

}
¥

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy

[

Abstract Factory: example

class NaplesPizzaStore : public PizzaStore {

public: Pizza* createPizza(std::string item) const {

Q;

Pizza* pizza = 0;

PizzalngredientFactory* ingredientFactory = new NaplesPizzalngredientFactory

1f(i1tem.compare("cheese") == 0) {

¥

pizza = new CheesePizza(ingredientFactory);
pizza->setName("Naples Style Cheese Pizza");
else 1f(item.compare("veggie") == 0) {
pizza = new VeggiePizza(ingredientFactory);
pizza->setName("Naples Style Veggie Pizza");
else 1f(item.compare("clam") == 0) {

pizza = new ClamPizza(ingredientFactory);
pizza->setName("Naples Style Clam Pizza");
else 1f(item.compare("pepperoni") == 0) {
pizza = new PepperoniPizza(ingredientFactory);
pizza->setName("Naples Style Pepperoni Pizza");

return pizza;

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy

[

Abstract Factory: example

class NaplesPizzaStore : public PizzaStore {

public: Pizza* createPizza(std::string item) const {

Q;

Pizza* pizza = 0;

The store is composed
with the regional
ingredient factory.

PizzalngredientFactory* ingredientFactory = new NaplesPizzalngredientFactory

1f(i1tem.compare("cheese") == 0) {

¥

pizza = new CheesePizza(ingredientFactory);
pizza->setName("Naples Style Cheese Pizza");
else 1f(item.compare("veggie") == 0) {
pizza = new VeggiePizza(ingredientFactory);
pizza->setName("Naples Style Veggie Pizza");
else 1f(item.compare("clam") == 0) {

pizza = new ClamPizza(ingredientFactory);
pizza->setName("Naples Style Clam Pizza");
else 1f(item.compare("pepperoni") == 0) {
pizza = new PepperoniPizza(ingredientFactory);
pizza->setName("Naples Style Pepperoni Pizza");

return pizza;

lunedi 24 maggio 2010

N Media Integration and Communication Center - University of Florence, Italy

[

Abstract Factory: example

class NaplesPizzaStore : public PizzaStore {

public: Pizza* createPizza(std::string item) const {

Q;

Pizza* pizza = 0;

The store is composed
with the regional
ingredient factory.

PizzalngredientFactory* ingredientFactory = new NaplesPizzalngredientFactory

1f(i1tem.compare("cheese") == 0) {

¥

pizza = new CheesePizza(ingredientFactory);
pizza->setName("Naples Style Cheese Pizza");
else 1f(item.compare("veggie") == 0) {
pizza = new VeggiePizza(ingredientFactory);
pizza->setName("Naples Style Veggie Pizza");
else 1f(item.compare("clam") == 0) {

pizza = new ClamPizza(ingredientFactory);
pizza->setName("Naples Style Clam Pizza");
else 1f(item.compare("pepperoni") == 0) {
pizza = new PepperoniPizza(ingredientFactory);
pizza->setName("Naples Style Pepperoni Pizza");

return pizza;

For each type of product
we pass the factory it
needs, to get the
ingredients from it.

The factory (built
according to Abstract
Factory pattern) creates
a family of products

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy ﬂ— @4\
2 - ‘\

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

Pizza* pizza = nStore->orderPizza("cheese");

std::cout << "Just ordered a " << pizza->toString() << std::endl;

pizza = nStore->orderPizza("clam”);

std::cout << "Just ordered a " << pizza->toString() << std::endl;

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy EL— Kfl\
& - N

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

The orderPizza()

: : _ method calls the
Pi1zza* pizza = nStore->orderPizza("cheese"); createPizza()

method

std::cout << "Just ordered a " << pizza->toString() << std::endl;

pizza = nStore->orderPizza("clam”);

std::cout << "Just ordered a " << pizza->toString() << std::endl;

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy ﬂ-— @f\
~ - ‘\

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

The orderPizza()

: : _ method calls the
Pi1zza* pizza = nStore->orderPizza("cheese"); createPizza()

method

. When the createP1zza() method is

std::cout << called the factory gets involved

"1ng() << std::endl;
pizza = nStore->orderPizza("clam”);

std::cout << "Just ordered a " << pizza->toString() << std::endl;

lunedi 24 maggio 2010

K Media Integration and Communication Center - University of Florence, Italy E.L— ﬁ,f\
& - N

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

The orderPizza()

: : . method calls the
Pi1zza* pizza = nStore->orderPizza("cheese"); createPizza()

method

. When the createP1zza() method is

Std::cout << called the factory gets involved

"1ng() << std::endl;

When prepare() method is called the

pizza = nStor« . .
factory creates the ingredients

std::cout << "Just ordered a " << pizza->toString() << std::endl;

lunedi 24 maggio 2010

M Media Integration and Communication Center - University of Florence, Italy EL- é,f\

Credits

® These slides are (heavily) based on the material of:
® Glenn Puchtel
® Fred Kuhns,Washington University

® Aditya P. Matur, Purdue University

lunedi 24 maggio 2010

http://www.wustl.edu/
http://www.wustl.edu/

