
Laboratorio di Tecnologie 
dell'Informazione

Ing. Marco Bertini
bertini@dsi.unifi.it

http://www.dsi.unifi.it/~bertini/

lunedì 7 marzo 2011

mailto:bertini@dsi.unifi.it
mailto:bertini@dsi.unifi.it
http://viplab.dsi.unifi.it/~bertini
http://viplab.dsi.unifi.it/~bertini


Introduction

lunedì 7 marzo 2011



Why OO Development?

• Improved structure of software – easier to: 

• Understand 

• Maintain 

• Enhance 

• Reusable software components & modules: 

• Enhance an existing component 

• Make new components more generalised

lunedì 7 marzo 2011



Structured vs. OO approach

• Structured analysis and design (or structured 
programming) mostly focussed on procedural 
structure and as such, functionality relating to 
the same data was still often spread throughout 
the software system.

• The object oriented paradigm focuses on 
structuring the system around the data by 
encapsulating data inside objects so that all 
functionality relating to that data is, in theory, 
contained within the object itself.

lunedì 7 marzo 2011



3 Key OO concepts

• Main idea: encapsulate data inside an “Object”

1. Data Abstraction: because the data is now seen not in 
terms of the pure data values but instead in terms of 
the operation that we can perform on that data.

• ADT’s, information hiding: because the details of the 
data formats and how those operations are actually 
implemented are hidden from other code that uses 
an object. 

• C++ classes: the principle facility used to implement 
data abstraction.

lunedì 7 marzo 2011



3 Key OO concepts - cont.

2. Inheritance (generalisation) 

• Class hierarchies, inheritance: some classes of object 
are generalisations of other more specific classes of 
objects and so it makes sense to put general 
functionality into what we refer to as a base class 
and to allow more specific functionality to be placed 
in classes derived from the base class. The derived 
classes are said to inherit (or extend) functionality 
from the base class.

lunedì 7 marzo 2011



3 Key OO concepts - cont.

3. Polymorphism: we can use different types of objects in the same way 
and that the software system, in this case C++ but could be Java, will 
work out for us which functionality should actually be invoked 
according to the actual type of object that is involved in a particular 
usage.

• Same operations on different classes/objects: arithmetic operators 
that can apply to both integer and floating point numbers, although 
the actual implementation of arithmetic is quite different.

• Virtual functions 

• Operator overloading

In C++ polymorphism is supported on objects using what are 
called virtual functions as well as through further overloading of 
standard operators.

lunedì 7 marzo 2011



Objects and Classes

• An object is like an ordinary variable: is an 
actual instance of a software entity that holds 
real information, perhaps about something in 
the real world. 

• Holds information 

• Software realisation of some real world 
“thing” 

• Can have certain operation applied to it 

lunedì 7 marzo 2011



Objects and Classes

• A class is (like) a type: 

• Abstraction of a set of objects that behave 
identically: brings together the implementation of 
data and operations

• Defines internal implementation, operations 

• Can create (instantiate) objects from a class: just 
like for a built-in type (int or float), a user defined 
type using the class facility can then be instantiated 
into objects or variables.

lunedì 7 marzo 2011



Objects and Classes

• Classes help you organize your code and to reason 
about your programs.

• A class is the representation of an idea, a concept, in 
the code. An object of a class represents a particular 
example of the idea in the code.

• Without classes, a reader of the code would have to 
guess about the relationships among data items and 
functions - classes make such relationships explicit and 
“understood” by compilers. With classes, more of the 
high-level structure of your program is reflected in the 
code, not just in the comments.

lunedì 7 marzo 2011



OO methods

• OO methods are a set of techniques for 
analyzing, decomposing and modularizing 
software systems architectures

• In general, systems evolve and functionality 
changes, but the objects (and classes of 
objects) tend to remain stable over time

• The object oriented paradigm influences the 
entire software development process. It 
proceeds through a set of phases, although the 
boundaries are often blurred.

lunedì 7 marzo 2011



OO Software Development

• OO Analysis: 

• Identifying required functionality, classes and their relationships: 
often uses tools drawn from the Unified Modelling Language (UML) 
such as class diagrams and use cases.

• OO Design: 

• Specifying class hierarchies, class interfaces and class behaviour: 
UML tools such as class diagrams, interaction diagrams and state 
diagrams can be used in OO design. 

• OO Programming: 

• Implementing an OO design in an OO programming language: in 
this phase code is actually written, tested and integrated with other 
code. 

lunedì 7 marzo 2011



OOA

• Object-oriented analysis (OOA) applies 
object-modeling techniques to analyze the 
functional requirements for a system.

• OOA looks at the problem domain, with the 
aim of producing a conceptual model of the 
information that exists in the area being 
analyzed and understanding the requirements.

• Analysis models do not consider any 
implementation constraints that might exist.

lunedì 7 marzo 2011

http://en.wikipedia.org/wiki/Problem_domain
http://en.wikipedia.org/wiki/Problem_domain


OOD

• Object-oriented design (OOD) elaborates the 
analysis models to produce implementation 
specifications.

• During OOD developers create abstractions and 
mechanisms necessary to meet the systems’ 
behavioral requirements determined during 
OOA

• The concepts in the analysis model are mapped 
onto implementation classes. The result is a 
model of the solution domain, a detailed 
description of how the system is to be built.

lunedì 7 marzo 2011



OOD - cont.

• OOD is relatively independent of the 
programming language used

• OOA focuses on what the system does, OOD 
on how the system does it.

lunedì 7 marzo 2011



Goals of design

• Create software that is easy to change and 
extend, i.e. flexible.

• Decompose the system into modules, 
determining relations between them, e.g. 
identifying dependencies and form of 
communications

• classes, their use, inheritance, composition

• attain highly cohesive, loosely coupled 
software

lunedì 7 marzo 2011



Object Oriented Programming
• Object-oriented programming (OOP) is primarily 

concerned with programming language and software 
implementation issues

• OOP is a programming paradigm that uses “objects” 
– data structures consisting of data and methods 
together with their interactions – to design 
applications and computer programs.

• An object-oriented program may be viewed as a 
collection of interacting objects, as opposed to the 
structural model, in which a program is seen as a list 
of tasks (subroutines) to perform.

lunedì 7 marzo 2011

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Programming_paradigm


Procedural Programming vs. OOP 

• A program can be viewed as a 
sequence of procedure calls.
The main program is 
responsible to pass data to 
the individual calls, the data is 
processed by the procedures.

• A program can be viewed as a 
web of interacting objects, 
each house-keeping its own 
state

Object 1
data

Object 2
data

Object 4
data

Object 3
data

Main program
data

Procedure 1 Procedure 2 Procedure 3

lunedì 7 marzo 2011



C++
"I invented the term 'Object-Oriented', and I can tell 

you I did not have C++ in mind."

- Alan Kay

lunedì 7 marzo 2011



History of C++

• C++ invented by Bjarne Stroustrup, early 1980’s

• C++ is not just an Object-Oriented Programming 
Language, it’s multi-paradigm

• First commercial release 1985 was a C 
preprocessor. 

• ISO Standard in 1998 (C++98), updated in 2003

• Waiting for new standard C++0x (ready for 
2011 ?)

lunedì 7 marzo 2011



C++ and C

• C++ is a direct descendant of C that retains 
almost all of C as a subset. 

• C++ provides stronger type checking than C 
and directly supports a wider range of 
programming styles than C. 

lunedì 7 marzo 2011



C++ sub-languages

• C++ can be considered as a federation of 
languages; the primary sublanguages are:

• C: since C++ supports every programming 
technique supported by C

• Object Oriented C++: with classes, 
encapsulation, inheritance, polymorphism, etc.

• Template C++: generic programming in C++

lunedì 7 marzo 2011



The first C++ program

lunedì 7 marzo 2011



The C++ “Hello world”

#include <iostream>

int main() {

 // let’s greet

    std::cout << "Hello, new world!\n";
}

To compile: 
g++ -Wall –o hello hello.cpp

lunedì 7 marzo 2011



Makefiles

• Larger (real world) projects will require to use a 
Makefile.

• A makefile is a text file (that is referenced by the 
make command) that describes the building of 
targets (executables and libraries), and contains 
information such as source-level dependencies 
and build-order dependencies. 

• Eclipse is an IDE that handles these makefiles

lunedì 7 marzo 2011



Credits

• These slides are (heavily) based on the 
material of Dr. Ian Richards, CSC2402, Univ. of 
Southern Queensland

• Dr. Douglas C. Schmidt, Washington 
University, St. Louis

lunedì 7 marzo 2011


