
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

mercoledì 9 aprile 14

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

Inheritance
"In the one and only true way, the object-oriented

version of ‘Spaghetti code’ is, of course, ‘Lasagna code’.
(too many layers)."
- Roberto Waltman.

mercoledì 9 aprile 14

Why inheritance ?
• For software re-use: re-use an existing class in new

classes that are specializations of the base class

• A new class is derived from the base class and it
inherits the facilities of the base class

• A derived class may itself be the basis of further
inheritance -forms a class hierarchy

• The derived class extends the functionalities of the
base class

• Inheritance is the second most important concept in
object-oriented programming - the first is abstract
data type

mercoledì 9 aprile 14

Why inheritance ? - cont.

• Inheritance allows us to avoid duplication of
code or functions by getting all the features of
another class simply by naming it in an
inheritance.

• Then, if the private data or the coding
needed to implement any of the common
features needs to be changed, it is changed
only in the base class and not in the derived
classes that obtain the changes automatically

mercoledì 9 aprile 14

When to use inheritance

• Use inheritance as a specification device.

• “Human beings abstract things on two
dimensions: part-of and kind-of. A Ford Taurus
is-a-kind-of-a Car, and a Ford Taurus has-a
Engine, Tires, etc. The part-of hierarchy has
been a part of software since the ADT style
became relevant; inheritance adds "the other"
major dimension of decomposition.”

From: C++ FAQ Lite - [19.2]

mercoledì 9 aprile 14

Using inheritance

• The design of class hierarchies is a key skill in
object oriented design.

• Only use inheritance when there is a clear "is a"
relationship between the derived classes and the
base class

• Inheritance expresses the natural relationship
that, for example, "a bus is a vehicle."

• An instance of a derived class could substitute an
instance of a base class (derived is_a base)

mercoledì 9 aprile 14

Inheritance in C++ - example

class Person {
public:
const string& getName() const;
// ...
};

class Student : public Person {
// ...
};
class Staff : public Person {
// ...
};

class Permanent : public Staff {
// ...
};
class Casual : public Staff {
// ...
};

• After each derived class name there is a colon “:” followed
by the keyword “public” and then the name of the class
from which it is inheriting. The colon represents inheritance.

• The keyword public after the colon says that we are using
public inheritance. This is the most common form of
inheritance although it is possible to have protected and
private inheritance.

• These different kinds of inheritance relate to whether the
public members of the base class will or will not be
accessible to the users of the derived class. With public
inheritance the public members of the base class effectively
become public members of the derived class.

mercoledì 9 aprile 14

Inheritance access specifiers

Base class member accessBase class member accessBase class member access

public protected private

Derived class
inheritance access

public whatever function
methods of D
friends of D

classes derived from D
not accessible

Derived class
inheritance access protected

methods of D
friends of D

classes derived from D

methods of D
friends of D

classes derived from D
not accessible

Derived class
inheritance access

private methods of D
friends of D

methods of D
friends of D not accessible

class D : public B {};
class D : protected B {};
class D : private B {};

class B {
public:
 void pub();
protected:
 void prot();
private:
 void priv();
};

mercoledì 9 aprile 14

Inheritance access specifiers
• a public derived class inherits the public

and protected members of the base
maintaining their access level

• a protected derived class inherits the public
and protected members of the base but
expose them as protected

• a private derived class expose the public
and protected members of the base as
private

mercoledì 9 aprile 14

Class interface

• A class has two distinct interfaces for two
distinct sets of clients:

• It has a public interface that serves
unrelated classes

• It has a protected interface that serves
derived classes

mercoledì 9 aprile 14

Access control

• The private members of a class remain just
private! A derived class CAN NOT access
the private members of the base class, even
though they do inherit them (they are
included in an object of the derived class)

• Private members are only accessible via the
public methods of the base class. They cannot
be accessed directly by users of the derived
class nor can they be accessed directly by the
methods of the derived class.

mercoledì 9 aprile 14

Protected Members

• What if we want a class member to be
visible to the methods of a derived class
but not to be visible to users of either the
base class or the derived class?

• C++ protected members.

• If there are levels of indirect inheritance
through a class hierarchy, protected
members will be accessible throughout the
class hierarchy.

mercoledì 9 aprile 14

Protected Members - cont.

class baseClass{
public:
 void method1();
protected:
 void method2();
};

class derivedClass :
public baseClass {
public:
 void method3() {
 method2(); // OK
 };
};

derivedClass d;

d.method1(); // OK

d.method3(); // OK

d.method2(); // ERROR!
method2 is protected

mercoledì 9 aprile 14

Access control hint

• Declare your base class's data members as
private and use protected inline access
functions by which derived classes will access
the private data in the base class. This way the
private data declarations can change, but the
derived class's code won't break (unless you
change the protected access functions)

From: C++ FAQ Lite - [19.7]

mercoledì 9 aprile 14

Accessing Base Class Members

• An object of a derived class inherits the members of the base class, eg.

• Casual cas;
std::cout << "Name: " << cas.GetName() << endl;

• Real power of inheritance is when we don't know the actual type of an
object, eg.

• Person *p;
p = findPerson(...);
std::cout << "Name: " << p->getName() << std::endl;

• This is an example of polymorphism.

mercoledì 9 aprile 14

Accessing Base Class Members

• An object of a derived class inherits the members of the base class, eg.

• Casual cas;
std::cout << "Name: " << cas.GetName() << endl;

• Real power of inheritance is when we don't know the actual type of an
object, eg.

• Person *p;
p = findPerson(...);
std::cout << "Name: " << p->getName() << std::endl;

• This is an example of polymorphism.

Where is it implemented ? Looks
like implemented in Casual class,
but could be also in base class

mercoledì 9 aprile 14

Accessing Base Class Members

• An object of a derived class inherits the members of the base class, eg.

• Casual cas;
std::cout << "Name: " << cas.GetName() << endl;

• Real power of inheritance is when we don't know the actual type of an
object, eg.

• Person *p;
p = findPerson(...);
std::cout << "Name: " << p->getName() << std::endl;

• This is an example of polymorphism.

Where is it implemented ? Looks
like implemented in Casual class,
but could be also in base class

p is a pointer to the base class
FindPerson may return derived
classes, but we can invoke methods
of the base class without knowing
what p has become.
There’s need of a bit of work... see it in a few slides

mercoledì 9 aprile 14

Inheritance vs. Composition

• Why not this?

• class Student {
public:
 Person details;
 // ...
};

• This is composition. It is used when objects of one class contain or comprise
one or more objects of another class:

• Student s;
cout << "Name: " << s.details.GetName();

Notice access using two levels of member selection

mercoledì 9 aprile 14

Inheritance vs. Composition - cont.

• Use inheritance for "is_a" relationships, composition for
“has_a” or "contains" or "is_comprised_of" relationships.

• Consider the case of multiple instances of a class within
another class, e.g.

• class Person {
public:
 Address home;
 Address office;
 // ...
};

• Can't do this with inheritance!

mercoledì 9 aprile 14

Composition and relationships

• When an object contains another object there
could be a relation that is different form has_a
and is more like is_implemented_in_terms_of,
e.g. when one class heavily relies on the
behaviour of a contained class, modifying some
of its features

mercoledì 9 aprile 14

Using derived classes

It is possible to use an object instantiated
from a derived class whenever it is possible
to use an object instantiated from the base
class (because derived obj is_a base obj):

class Employee {
 string first_name, family_name;
 Date hiring_date;
 short department;
 // ...
};
class Manager : public Employee {
 set<Employee*> group;
 short level;
 // ...
};

void paySalary(Employee* e)
{
 //... code to pay salary
}
//...
Employee *e1;
Manager *m1;
//...
paySalary(e1);
paySalary(m1);

mercoledì 9 aprile 14

Public inheritance and is_a

• If D extends publicly B then D is_a B and any
function that expects a B (or pointer to B or
reference to B) will also take D (or pointer to
D or reference to D)
class Person {...};
class Student : public Person {...};
void eat(const Person& p);
void study(const Student& s);
Person p;
Student s;
eat(p); // OK
eat(s); //OK: s is_a p
study(s); // OK
study(p); // bad: p is not an s

mercoledì 9 aprile 14

Public inheritance and is_a - cont.

• But be careful with
design:

class Bird {
public:
 virtual void fly();
...
};

class Penguin : public Bird
{ ... };

Penguin p;
p.fly(); // but penguins
 // do not fly !

• Perhaps it’s better to
have:

class Bird { ... };

class FlyingBird : public
Bird {
public:
 virtual void fly();
}

class Penguin : public Bird
{ ... };

mercoledì 9 aprile 14

Public inheritance and is_a - cont.

• Public inheritance asserts that everything that
applies to base object applies to derived object

• it’s up to you to design correctly the base
class, so that penguins do not fly!

mercoledì 9 aprile 14

Private inheritance

• The behaviour is quite different when
inheriting privately: we do not have anymore a
is_a relation, the compiler will not convert the
derived class to base:

class Student : private Person { ... };

void eat(const Person& p);

Student s;
eat(s); // error: now a Student is not a Person !

mercoledì 9 aprile 14

Private inheritance - cont.

• All that is inherited becomes private: it’s an
implementation detail

• Private inheritance means that the derived
class D is_implemented_in_terms_of the base
class B, not that D is_a B

• Use private inheritance if you want to inherit
the implementation of the base class, use
public inheritance to get also the interface

mercoledì 9 aprile 14

Private inheritance - cont.

• Remind that also composition let to
implement a class in terms of another
(composed) class

• Use composition whenever you can and
private inheritance when you need, e.g. when
you need to access protected parts of a class
or redefine virtual methods (more on this
later)

mercoledì 9 aprile 14

Constructors and inheritance

• When an object of a derived class is created,
the constructors (if any) of each inherited class
are invoked in sequence prior to the final class
constructor (if any). It’s a bottom-up process.

• Default constructors are invoked automatically.

• If a base class does not have a default
constructor, any other constructor must be
invoked explicitly by the derived class's
constructor in its initialisation list.

mercoledì 9 aprile 14

Constructors and inheritance - cont.

class Derived: public Base {
private:
 int d;
public:
 Derived();
 Derived(int a, int b, int c, int d);
 void print();
};

Derived::Derived() { d=0;}
Derived::Derived(int a=0, int b=0, int c=0, int d=0) :
Base(a,b,c) // Use a,b,c as parameters to the c’tor of Base
{ this->d = d; }
Derived::Derived(int a=0, int b=0, int c=0, int d=0) :
Base(a,b,c) , d(d) {}

mercoledì 9 aprile 14

Destructors and Inheritance

• Just like constructors, except the order is
reversed! It’s a top-down process.

• When a derived class is destroyed, the
derived class destructor (if any) will be
invoked first and then the base class
destructor (if any) will be invoked.

• Destructors are not overloaded or invoked
explicitly so we don't have the confusion over
which destructor is invoked!

mercoledì 9 aprile 14

Multiple inheritance

• A class may derive from several base classes

• Just report all the base classes after the “:”,
and state the access level, e.g.:
class Employee { /* ... */ };
class Manager : public Employee { /* ... */ };
class Director : public Manager { /* ... */ };
class Temporary { /* ... */ };
class Secretary : public Employee { /* ... */ };
class Tsec : public Temporary, public Secretary { /
* ... */ };
class Consultant : public Temporary, public Manager
{ /* ... */ };

mercoledì 9 aprile 14

A bit of UML class diagram

method() : return type
method(param type, ...) : return type
...

attribute1 name: type
attribute2 name: type
...

class name

Temporary

Tsec

Consultant

Employee

Secretary

Manager

Director

mercoledì 9 aprile 14

Polymorphism

mercoledì 9 aprile 14

Polymorphism

• A derived class can override a method inherited
from a base class

• the class should simply include a declaration of the
method (and provide an implementation)

• the overridden method often adds some
behaviour according to the specialization of the
derived class (may upcall the base method)

• The method is polymorphic because it has a
different implementation depending if it’s invoked on
the base or the derived class

mercoledì 9 aprile 14

Override vs. overload

• Overloaded method: same method name but
different parameters (in the same class)

• Overridden method: same name and
parameters in a class hierarchy

mercoledì 9 aprile 14

Late binding

• The override feature lets different implementations of a method to
exist: this introduces a problem of binding the invocation of a
method to a particular implementation:

• the decision is based on the type of the class used to refer to a
method:

• <var>.op() uses the op() of the class of <var>

• <addr_expr>->op() uses the op() of the class of
<addr_expr> that may be different from the class of the
instantiated object

mercoledì 9 aprile 14

Late binding - example
class Base {
public:
	 Base();
	 virtual ~Base();
	 void foo() {
 std::cout << "Base::foo" << std::endl;
 };
 int foo2() {
 std::cout << "Base::foo2" << std::endl;
 return -1;
 };
};

class Derived1: public Base {
public:
	 Derived1();
	 virtual ~Derived1();
	 void foo() {
 Base::foo(); // upcall
 std::cout << "Derived1::foo" << std::endl;
 };
 int foo2() {
 std::cout << "Derived1::foo2()" << std::endl;
 return 1;
 };
};

Base *pBase;
Derived1 aD1;

cout << "pBase = &D1" << endl;
pBase = &aD1; // Base pointer to derived class
pBase->foo(); // Base::foo() because of static
bind

cout << "D1::foo()" << endl;
aD1.foo(); // Derived1::foo()

// cast to call the method of derived class
((Derived1 *)pBase)->foo2(); // Derived1::foo2()

mercoledì 9 aprile 14

Virtual methods

• Virtual methods avoid the need for a client
of a class to know the concrete type of the
instance it is using

• in the previous example we had to cast a
base pointer to use a method overridden
in the derived class

• One or more methods of a derived class
can be declared as virtual adding the
keyword in their declaration

mercoledì 9 aprile 14

Virtual methods - cont.

• A virtual method in the base class remains
virtual in the derived classes (even if the
virtual declaration is not expressly used)

• The virtual declaration modifies the binding:
the implementation that is used is always that
of the instantiated class

mercoledì 9 aprile 14

Virtual methods - example
class Base {
public:
	 Base();
	 virtual ~Base();
	 void foo() {
 std::cout << "Base::foo" << std::endl;
 };
 virtual int bar(int i) {
	 	 std::cout << "Base::bar" << i <<
 std::endl;
	 	 return (i);
	 };
};

class Derived1: public Base {
public:
	 Derived1();
	 virtual ~Derived1();
	 void foo() {
 Base::foo(); // upcall
 std::cout << "Derived1::foo" << std::endl;
 };
 virtual int bar(int i) {
 std::cout << "Derived1::bar" << i <<
 std::endl;
 return (i+1);
 };
};

Base *pBase;
Derived1 aD1;

cout << "pBase = &D1" << endl;
pBase = &aD1; // Base pointer to derived class
pBase->foo(); // Base::foo()

cout << "D1::foo()" << endl;
aD1.foo(); // Derived1::foo()

// NO need to cast the pointer: it’s a virtual
method
pBase->bar(1); // Derived1::bar()

mercoledì 9 aprile 14

Why virtual methods ?
• The use of virtual methods greatly reduces the

coupling of a client and a hierarchy of classes
developed from a base class

• a pointer of base class type does not require to
know what type it is pointing at: the late
(dynamic) binding will solve the problem !

• Virtual methods are the key facility to
polymorphism: the function that is invoked using a
base class pointer (or reference) can have many
form, depending upon the actual type of object that
is being used.

mercoledì 9 aprile 14

Rules for Virtual Functions

• A virtual function must be marked virtual in the base class.

• A function in a derived class with the same signature as a virtual
function in the base class will be virtual even if not marked
virtual. Always mark it anyway.

• A separate definition (i.e. not within the class declaration) of a
virtual function is not marked virtual.

• Top level functions cannot be virtual. It would not make any
sense...

• Class functions (marked static) cannot be virtual. It would not
make any sense...

mercoledì 9 aprile 14

override and final (C++11)

• The new C++11 standard introduces two
specifiers for virtual functions:

• override: indicates that a method in a
derived class intends to be an override of a
virtual method in the base class

• final: indicates that a method in a base
class can not be overridden in a base class

mercoledì 9 aprile 14

override and final (C++11)

• The new C++11 standard introduces two
specifiers for virtual functions:

• override: indicates that a method in a
derived class intends to be an override of a
virtual method in the base class

• final: indicates that a method in a base
class can not be overridden in a base class

Remember to tell the compiler to
use the new standard

mercoledì 9 aprile 14

override (c++11)
class B {
public:
 virtual void f1(int)
 const;
 virtual void f2();
 void f3();
};

class D1 : B {
public:
 void f1(int) const override;
 // ok: f1 matches f1 in the base
 void f2(int) override;
 // error: B has no f2(int)
 void f3() override;
 // error: f3 not virtual
 void f4() override;
 // error: B doesn't have a
 // function named f4
};

mercoledì 9 aprile 14

final (C++11)
class B {
public:
 virtual void f1(int)
 const;
 virtual void f2();
 void f3();
};

class D2 : B {
public:
// inherits f2() and
// f3() from B and
// overrides f1(int)
 void f1(int) const
 final;
 // subsequent classes
 // can't override f1 (int)
};

class D3 : D2 {
public:
 void f2();
 // ok: overrides f2
 // inherited from the
 // indirect base, B
 void f1(int) const;
 // error: D2 declared f1
 // as final

};

mercoledì 9 aprile 14

final (C++11)

• final can also block the possibility to derive
from a class, e.g.:

class	 SuperCar	 final	 :	 public	 Car
{
//
};

• ... it’s not possible to derive from SuperCar.

mercoledì 9 aprile 14

Back to Open-Closed Principle

• Let’s review how inheritance and
polymorphism help us to address the
Open-Closed Principle in the problem:

• We have an application that must be able to draw
circles and squares on a standard GUI. The circles and
squares must be drawn in a particular order.
A list of the circles and squares will be created in the
appropriate order and the program must walk the list
in that order and draw each circle or square.
We want to be able to add new shapes.

mercoledì 9 aprile 14

OCP - cont.

class Shape {
public:
 virtual void draw() const = 0;
};

class Square : public Shape {
public:
 virtual void draw() const;
};

class Circle : public Shape {
public:
 virtual void draw() const;
};

void
DrawAllShapes(List<Shape*>&
list) {
 for(Iterator<Shape*>i(list);
 i;
 i++) {
 (*i)->draw();
 }
}

mercoledì 9 aprile 14

OCP - cont.

class Shape {
public:
 virtual void draw() const = 0;
};

class Square : public Shape {
public:
 virtual void draw() const;
};

class Circle : public Shape {
public:
 virtual void draw() const;
};

void
DrawAllShapes(List<Shape*>&
list) {
 for(Iterator<Shape*>i(list);
 i;
 i++) {
 (*i)->draw();
 }
}

We use an abstract class and
virtual methods to be open to
changes: new shapes have to
extend the base abstract class,
and DrawAllShapes() does
not require to change.

mercoledì 9 aprile 14

OCP - cont.

class Shape {
public:
 virtual void draw() const = 0;
};

class Square : public Shape {
public:
 virtual void draw() const;
};

class Circle : public Shape {
public:
 virtual void draw() const;
};

void
DrawAllShapes(List<Shape*>&
list) {
 for(Iterator<Shape*>i(list);
 i;
 i++) {
 (*i)->draw();
 }
}

We use an abstract class and
virtual methods to be open to
changes: new shapes have to
extend the base abstract class,
and DrawAllShapes() does
not require to change.

Consider this a list containing Shape*.
You’ll see how this type of stuff works
when studying templates.

mercoledì 9 aprile 14

OCP - cont.

class Shape {
public:
 virtual void draw() const = 0;
};

class Square : public Shape {
public:
 virtual void draw() const;
};

class Circle : public Shape {
public:
 virtual void draw() const;
};

void
DrawAllShapes(List<Shape*>&
list) {
 for(Iterator<Shape*>i(list);
 i;
 i++) {
 (*i)->draw();
 }
}

We use an abstract class and
virtual methods to be open to
changes: new shapes have to
extend the base abstract class,
and DrawAllShapes() does
not require to change.

The concept of “iterator” we’ll be seen
later when studying STL. For now think
that it just runs through the element of
the list

Consider this a list containing Shape*.
You’ll see how this type of stuff works
when studying templates.

mercoledì 9 aprile 14

Constructors and Destructors

• Constructors cannot be virtual: a
constructor is invoked on an explicit type,
there is no need for polymorphism to be
considered

• Destructors can be virtual. Making them
virtual ensures that the correct ones are
called if the object is identified by a base
class reference or pointer.

• Notice that the Eclipse class wizard
always creates virtual destructors !

mercoledì 9 aprile 14

Virtual destructors
• Remind to declare virtual destructors in

polymorphic base classes (i.e. those who have
at least one virtual method)

• class TimeKeeper {
public:
 TimeKeeper();
 ~TimeKeeper();
 virtual getCurrentTime();
 ..
};

class AtomicTimeKeeper :
public TimeKeeper {...};

class WristWatch : public
TimeKeeper {...};

• TimeKeeper* getTimeKeeper();
...
TimeKeeper* ptk =
getTimeKeeper(); // get it
... // use it
delete ptk; // release it

mercoledì 9 aprile 14

Virtual destructors
• Remind to declare virtual destructors in

polymorphic base classes (i.e. those who have
at least one virtual method)

• class TimeKeeper {
public:
 TimeKeeper();
 ~TimeKeeper();
 virtual getCurrentTime();
 ..
};

class AtomicTimeKeeper :
public TimeKeeper {...};

class WristWatch : public
TimeKeeper {...};

• TimeKeeper* getTimeKeeper();
...
TimeKeeper* ptk =
getTimeKeeper(); // get it
... // use it
delete ptk; // release it

The derived part of
the object will not
be released leaking
resources

mercoledì 9 aprile 14

Virtual destructors
• Remind to declare virtual destructors in

polymorphic base classes (i.e. those who have
at least one virtual method)

• class TimeKeeper {
public:
 TimeKeeper();
 ~TimeKeeper();
 virtual getCurrentTime();
 ..
};

class AtomicTimeKeeper :
public TimeKeeper {...};

class WristWatch : public
TimeKeeper {...};

• TimeKeeper* getTimeKeeper();
...
TimeKeeper* ptk =
getTimeKeeper(); // get it
... // use it
delete ptk; // release it

The derived part of
the object will not
be released leaking
resources

Solve the issue
declaring a virtual
destructor

mercoledì 9 aprile 14

Virtual destructors - cont.

• Guideline: if a class does not contain a virtual
method then probably it is not meant to be a
base class (or it’s a base class not to be used
polymorphically)

• Guideline: it is not useful to declare a virtual
destructor if there is no other virtual method
in the class:

• we waste memory for the creation of the
virtual table used to manage virtual
functions

mercoledì 9 aprile 14

Virtual destructors - cont.

• What happens if you derive from a class with
no virtual destructor ?

class SpecialString : public std::string { // std::string
... // has no virtual
}; // destructor

SpecialString* pss = new SpecialString(“Problems are
coming”);

std::string* ps;
...
ps = pss; // SpecialString is_a std::string
...
delete ps; // Ouch! We use the std::string destructor, any
 // resource managed by SpecialString is leaked

mercoledì 9 aprile 14

Factory

• A way to further exploit polymorphism
achieved using virtual methods is the use of
a factory class (covered later in the course)
that instantiate objects depending on some
conditions, e.g.:

class Factory {
public:
 Base* getInstance();
 ...
}
Base* Factory::getInstance() {
 if (...)
 return new Base;
 else
 return new Derived;
}

int main() {
 Base* pBase;
 Factory *pFactory;
 ...
 pBase = pFactory->getInstance();
 ...
 pBase->aVirtualMethod();
 ...
}

mercoledì 9 aprile 14

Covariant return type
• An overridden method in a derived class can

return a type derived from the type returned
by the base-class method.

class Base {
public:
 virtual Base* clone() const;
};

class Derived : public Base {
public:
 virtual Derived* clone() const;
};

Derived* Derived::clone() const {
 return new Derived(*this);
}

Derived orig;
Base* pB = &orig;
Derived* clonedObj = pB->clone();
// clonedObj gets a clone of orig

mercoledì 9 aprile 14

Name hiding

• If a base class declares a member function and
a derived class declares a member function
with the same name but different parameter
types and/or constness, then the base method
is “hidden” rather than “overloaded” or
“overridden” (even if the method is virtual)

mercoledì 9 aprile 14

http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html

Name hiding - example

class Base {
 public:
 void f(double x); // doesn't matter whether or not this is virtual
 };

 class Derived : public Base {
 public:
 void f(char c); // doesn't matter whether or not this is virtual
 };

 int main() {
 Derived* d = new Derived();
 Base* b = d;
 b->f(65.3); // okay: passes 65.3 to f(double x)
 d->f(65.3); // bizarre: converts 65.3 to a char ('A' if ASCII)
 // and passes it to f(char c); does NOT call f(double x)!!
 delete d;
 return 0;
}

mercoledì 9 aprile 14

Name hiding - example

class Base {
 public:
 void f(double x); // doesn't matter whether or not this is virtual
 };

 class Derived : public Base {
 public:
 void f(char c); // doesn't matter whether or not this is virtual
 };

 int main() {
 Derived* d = new Derived();
 Base* b = d;
 b->f(65.3); // okay: passes 65.3 to f(double x)
 d->f(65.3); // bizarre: converts 65.3 to a char ('A' if ASCII)
 // and passes it to f(char c); does NOT call f(double x)!!
 delete d;
 return 0;
}

Solutions:

class Derived : public Base {
 public:
 using Base::f; // This un-hides Base::f(double x)
 void f(char c);
 };

or otherwise:

class Derived : public Base {
 public:
 // a redefinition that simply calls Base::f(double x)
 void f(double x) { Base::f(x); }
 void f(char c);
 };

mercoledì 9 aprile 14

Name hiding - cont.

• The rationale of this behaviour is that it prevents from
accidentally inheriting overloads from a distant base class
when creating a new class, e.g. in a library

• if you need those overloads use the using
declaration seen before

• it’s something similar to name hiding of variables:
double x;

void someFunc() {
 int x; // hides the global variable declared before
 ...
}

mercoledì 9 aprile 14

Name hiding - cont.

• Name hiding and public inheritance do not mix
well: remind that Derived object is_a Base
object, but hiding names make this not to hold
true !

• If you inherit publicly from a class and redefine
a method perhaps you should have declared
the method as virtual, when accessing derived
class through a base class pointer, we may call
the base class method instead of redefined
one

mercoledì 9 aprile 14

Name hiding - cont.

class B {
public:
 void mf();
 ...
};

Class D: public B {
public:
 void mf(); // hides B::mf()
 ...
};

D x;
B* pB = &x;
D* pD = &x;

pD->mf(); // calls D::mf()
pB->mf(); // calls B::mf()
// should have been virtual
// to call D::mf()

This public inheritance does not behave
like a is_a relationship: D should have
inherited the implementation of B::mf() !
This name hiding is bad design !

mercoledì 9 aprile 14

Name hiding - cont.

class B {
public:
 void mf();
 ...
};

Class D: public B {
public:
 void mf(); // hides B::mf()
 ...
};

D x;
B* pB = &x;
D* pD = &x;

pD->mf(); // calls D::mf()
pB->mf(); // calls B::mf()
// should have been virtual
// to call D::mf()

This public inheritance does not behave
like a is_a relationship: D should have
inherited the implementation of B::mf() !
This name hiding is bad design !

A better design requires either to:
1. Avoid to redefine mf() in D, thus inheriting the implementation of B
or
2. Declare B::mf() as virtual and provide a new specialized version in D

In this way a D is_a B
mercoledì 9 aprile 14

Fragile base class

• Languages like C++ (and Java) suffer from a problem which is
known as fragile base classes. Base classes are termed fragile when
adding new features to a base class leads to breaking existing
derived classes.

• When adding a new virtual method to a base class, existing
methods with the same name in derived classes will automatically
override the new method. If the semantics of the new method
doesn't match the existing method in the derived class, which it
almost certainly won't, then trouble ensues. This problem occurs
because in C++ (and Java) the user cannot specify their intent with
respect to overriding, so overriding happens silently by default.

mercoledì 9 aprile 14

Abstract classes

mercoledì 9 aprile 14

Why abstract classes ?

• There are many situations where the base class
in a class hierarchy should be an abstract class,
that is, no objects can be instantiated from it.

• it includes special declarations of virtual
methods but not their implementation

• An abstract class is a base from which defining
other concrete classes

• A pure abstract class has no implementation of
its methods

mercoledì 9 aprile 14

Why abstract classes ? - cont.

• A client may rely on the “interface” provided
by an abstract class without need to know
details on the classes that implement it

• it’s a technique that decouples objects,
especially when considering pure abstract
classes that do NOT provide inheritance of
the implementation but allow the
substitution mechanism

mercoledì 9 aprile 14

Abstract classes: how

• An abstract base class is one that has at least one pure virtual
function.

• A pure virtual function is declared using the special syntax:

virtual void Method1() = 0;

• The above function does not need to be defined as it does not
really exist and will never be called!

• A class derived from an abstract base class must override all of
its pure virtual functions or it too will be an abstract base class.

mercoledì 9 aprile 14

Class Hierarchy example

class Vehicle {
public:
 virtual int getNumWheels() const = 0;
};

class MotorCycle: public Vehicle {
public:
 virtual int getNumWheels() const
{ return 2; }
};

class Car : public Vehicle {
public:
 virtual int getNumWheels() const {
 return 4; }
};

class Truck : public Vehicle {
public:
 Truck(int w = 10) : wheels(w) {}
 virtual int getNumWheels() const {
 return wheels;
 }

private:
 int wheels;
};

Vehicle* p = new Car();
std::cout << p->getNumWheels() <<
std::endl;

mercoledì 9 aprile 14

Pure virtual destructor

• If you want to make a base class abstract but
have no method that is pure virtual declare
the destructor as pure virtual !
See the trick:

• class AWOV { // Abstract W/O Virtuals
public:
 virtual ~AWOV() = 0;
 ...
};

AWOV::~AWOV() {} // REMIND: you HAVE to define the
 // pure virtual destructor !

mercoledì 9 aprile 14

Pure virtual destructor

• If you want to make a base class abstract but
have no method that is pure virtual declare
the destructor as pure virtual !
See the trick:

• class AWOV { // Abstract W/O Virtuals
public:
 virtual ~AWOV() = 0;
 ...
};

AWOV::~AWOV() {} // REMIND: you HAVE to define the
 // pure virtual destructor !

We have declared pure
virtual but the compiler
needs a destructor that is
called when it reaches the
base class. Forget it and the
linker will complain.

mercoledì 9 aprile 14

RTTI
Run-time type identification

mercoledì 9 aprile 14

Why RTTI ?

• Once we have obtained a pointer to an object, it is possible to use it
to invoke a polymorphic function without having to know the type
of the object

• the C++ late binding will ensure that the correct (virtual)
function is called according to the actual type of object.

• But what if there are operations that are unique to a particular
type ? If we have the wrong type then there is no point in invoking a
function that does not exist! One possible solution to this problem
is to be able to explicitly determine the type of objects pointed to
at runtime.

mercoledì 9 aprile 14

How RTTI works

• We have a base class pointer, we can then cast it to a pointer
to a specific derived class and then test to see if the cast
worked or not.

• If the actual object is of the desired type then the cast can
work, if not, then the cast will fail. Such a cast is called a
dynamic cast.

• We use the dynamic_cast to attempt to cast a pointer to
a base class to point to an object of a derived class.

mercoledì 9 aprile 14

C++ dynamic_cast

• The dynamic_cast is used to check at run-time
whether a cast is type safe.

• It is only legal on a polymorphic type, i.e. a class that has
at at least one virtual method. More specifically:

• The source type (in round brackets) must be a pointer
or reference to a polymorphic type.

• The target type (in angled brackets) must be a pointer
or reference, but need not be polymorphic.

• We are working on pointers, therefore a failure results in
a 0 pointer (always check if we got 0 as result!)

mercoledì 9 aprile 14

dynamic_cast example

class B {
public:
 virtual void f() {…}
};

class D1 : public B {
public:
 virtual void f() {…}
 void D1specific() {…}
};

class D2 : public B {
public:
...
};

B* bp;
D1* dp;
bp = new D1;
dp = dynamic_cast<D1>(bp);
if (dp != 0) {
 dp->D1specific();
}
bp = new D2;
dp = dynamic_cast<D1>(bp);
if (dp != 0) {
 dp->D1specific();
}

mercoledì 9 aprile 14

dynamic_cast example

class B {
public:
 virtual void f() {…}
};

class D1 : public B {
public:
 virtual void f() {…}
 void D1specific() {…}
};

class D2 : public B {
public:
...
};

B* bp;
D1* dp;
bp = new D1;
dp = dynamic_cast<D1>(bp);
if (dp != 0) {
 dp->D1specific();
}
bp = new D2;
dp = dynamic_cast<D1>(bp);
if (dp != 0) {
 dp->D1specific();
}

More realistically: when using a
Factory to get the instances, we
do not know what is the real
type of the object

mercoledì 9 aprile 14

dynamic_cast to reference

• If we use dynamic_cast to reference we can not
check for a 0, because a reference must always be
valid

• C++ uses a different error handling mechanism we
will see in a future lecture: exceptions:

try {
 T& tref = dynamic_cast<T&>(xref);
} catch(bad_cast) {
 // ...
}

mercoledì 9 aprile 14

typeid
• The typeid operator returns an identification of the

type of a basic type, a class, a variable or any expression.
May be useful to store objects to file, recording the type
of each object.

• Requires #include<typeinfo>.

• typeid actually returns a reference to an object in the
system class type_info.

• You don't need to know the internal details, e.g. to test
if a variable is of a particular type:
if(typeid(x) == typeid(float)) {
 // ...
}

mercoledì 9 aprile 14

Multiple inheritance

mercoledì 9 aprile 14

Multiple inheritance

• It’s more complex than single inheritance: the
inheritance hierarchy is no longer a strict
hierarchy (tree) but becomes a network (or
graph).

• There’s the IS A relationship between a
derived class and its base classes, e.g.:
a tutor IS A student and
a tutor IS A temporary employee

mercoledì 9 aprile 14

Multiple Inheritance Rules

• No real changes from single to multiple inheritance.

• The derived class inherits all the data members and methods from the
bases classes.

• Protected members of base classes can be accessed by the derived class, as
before.

• Name conflicts can result in members of the base classes have the same
name (solve by appropriate using of declarations or by full qualification of
the names).

• Constructors of each base class (if any) will similarly be invoked prior to
the derived class constructor (if any). Destructors likewise but in the
reverse order.

mercoledì 9 aprile 14

Multiple Inheritance
characteristics

• Base c’tors are called in the order of the
inheritance declared in the class declaration, e.g.:
class Bat : public Mammal, public Winged {...
 Bat(); // the Mammal() c’tor is called before Winged()

• Solve ambiguities using scope resolution, e.g.:
Bat aBat;
aBat.Mammal::eat(); // if both Mammal and Winged
 // have a eat() method

mercoledì 9 aprile 14

Diamond problem

• The diamond problem is an ambiguity that arises
with multiple inheritance when two classes B and C
inherit from A, and class D inherits from both B and
C.

• The result will be the replication of that base class
in the derived class that uses multiple inheritance.

• If a method in D calls a method defined in A (and
does not override the method), and B and C have
overridden that method differently, then from which
class does it inherit: B, or C?

mercoledì 9 aprile 14

http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_overriding_(programming)
http://en.wikipedia.org/wiki/Method_overriding_(programming)

Diamond problem

• The diamond problem is an ambiguity that arises
with multiple inheritance when two classes B and C
inherit from A, and class D inherits from both B and
C.

• The result will be the replication of that base class
in the derived class that uses multiple inheritance.

• If a method in D calls a method defined in A (and
does not override the method), and B and C have
overridden that method differently, then from which
class does it inherit: B, or C?

turnOn()
engine : int

Vehicle

Seaplane

turnOn()
wingSpan : int
Airplane

turnOn()

displacement :
int

Boat

turnOn()
engine : int

Vehicle

Seaplane

turnOn()
wingSpan : int
Airplane

turnOn()

displacement :
int

Boat

mercoledì 9 aprile 14

http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_overriding_(programming)
http://en.wikipedia.org/wiki/Method_overriding_(programming)

Virtual inheritance

• Virtual inheritance is a kind of inheritance that
solves some of the problems caused by
multiple inheritance (particularly the "diamond
problem") by clarifying ambiguity over which
ancestor class members to use.

• A multiply-inherited base class is denoted as
virtual with the virtual keyword.

mercoledì 9 aprile 14

http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Diamond_problem
http://en.wikipedia.org/wiki/Diamond_problem
http://en.wikipedia.org/wiki/Diamond_problem
http://en.wikipedia.org/wiki/Diamond_problem

Virtual inheritance example

class Base {
 public:
 ...
 protected:
 int data_;
 };

class Der1 : public virtual Base {
 public:
 ...
 };

class Der2 : public virtual Base {
 public:
 ...
 };

class Join : public Der1, public Der2 {
 public:
 void method()
 {
 data_ = 1;
 // good: this is now
 // unambiguous, otherwise should
 // have used Der1::data_|Der2::...
 }
 };

int main() {
 Join* j = new Join();
 Base* b = j; // good: this is now
 // unambiguous

 }

mercoledì 9 aprile 14

Virtual inheritance example

class Base {
 public:
 ...
 protected:
 int data_;
 };

class Der1 : public virtual Base {
 public:
 ...
 };

class Der2 : public virtual Base {
 public:
 ...
 };

class Join : public Der1, public Der2 {
 public:
 void method()
 {
 data_ = 1;
 // good: this is now
 // unambiguous, otherwise should
 // have used Der1::data_|Der2::...
 }
 };

int main() {
 Join* j = new Join();
 Base* b = j; // good: this is now
 // unambiguous

 }

this is the key

mercoledì 9 aprile 14

Pointer conversions

• Conversions (either implicit or explicit) from a
derived class pointer or reference to a base class
pointer or reference must refer unambiguously to
the same accessible base class object, e.g.:
class W { /* ... */ };
class X : public W { /* ... */ };
class Y : public W { /* ... */ };
class Z : public X, public Y { /* ... */ };
int main () {
 Z z;
 X* pX = &z; // valid
 Y* pY = &z; // valid
 W* pW = &z; // error, ambiguous reference to class W
 // X's W or Y's W ?
}

mercoledì 9 aprile 14

Class adapter
Virtual methods, private inheritance, abstract classes

and multiple inheritance, all put together

mercoledì 9 aprile 14

Use of multiple inheritance

• In the following example is shown an interesting
use of multiple inheritance, along with abstract
class, virtual methods and private inheritance.

• A class (Adapter) adapts the interface of another
class (Adaptee) to a client, using the expected
interface described in an abstract class (Target)

• This is the “Class Adapter” pattern: lets classes
work together that couldn’t otherwise because
of compatible interfaces

mercoledì 9 aprile 14

“Class Adapter” UML class
diagram

Client

request()
Target

specRequest()
Adaptee

request()
Adapter

The Client needs to
interact with a
Target object

The Adapter lets the Adaptee to
respond to request of a Target by
extending both Target and Adaptee

The Adaptee could
not respond to
Client because it
does not have the
required method

mercoledì 9 aprile 14

Class Adapter example

class Adaptee {
public:
 getAlpha() {return alpha;};
 getRadius() {return radius;};
private:
 float alpha;
 float radius;
};

class Target {
public:
 virtual float getX() = 0;
 virtual float getY() = 0;
};

class Adapter : private Adaptee, public Target
{
public:
 virtual float getX();
 virtual float getY();
};
float Adapter::getX() {
 return
Adaptee::getRadius()*cos(Adaptee::getAlpha());
}
float Adapter::getY() {
 return
Adaptee::getRadius()*sin(Adaptee::getAlpha());
}

The Client can’t access Adaptee methods
because Adapter has obtained them using private
inheritance

mercoledì 9 aprile 14

Credits

• These slides are (heavily) based on the
material of:

• Dr. Ian Richards, CSC2402, Univ. of Southern
Queensland

• Prof. Paolo Frasconi, IIN 167, Univ. di Firenze

• Scott Meyers, “Effective C++”, 3rd edition,
Addison-Wesley

• Stanley B. Lippman, “C++ Primer”, 5th
edition, Addison-Wesley

mercoledì 9 aprile 14

