
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

domenica 1 marzo 15

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

How the compiler
works

Programs and libraries

domenica 1 marzo 15

The compiler

"In C++, everytime someone writes ">> 3" instead of
"/ 8", I bet the compiler is like, "OH DAMN! I would

have never thought of that!"
- Jon Shiring (Call of Duty 4 / MW2)

domenica 1 marzo 15

What is a compiler ?

• A compiler is a computer program (or set of
programs) that translate source code from a
high-level programming language to a lower
level language (e.g., assembly language or
machine code).

• A compiler typically performs: lexical analysis
(tokenization), preprocessing, parsing, semantic
analysis, code generation, and code
optimization.

domenica 1 marzo 15

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program

From source code to a
running program

text editor Source file compiler

Object file

linker

Executableloader
Running
program

Libraries

domenica 1 marzo 15

From source to object file
• Lexical analysis: breaks the source code text into small pieces

called tokens. Each token is a single atomic unit of the language,
for instance a keyword, identifier or symbol name.

• Preprocessing: in C/C++ macro substitution and conditional
compilation

• Syntax analysis: token sequences are parsed to identify the
syntactic structure of the program.

• Semantic analysis: semantic checks such as type checking
(checking for type errors), or object binding (associating
variable and function references with their definitions), or
definite assignment (requiring all local variables to be initialized
before use), rejecting incorrect programs or issuing warnings

• Code generation: translation into the output language, usually
the native machine language of the system. This involves
resource and storage decisions (e.g. deciding which variables to
fit into registers and memory), and the selection and scheduling
of appropriate machine instructions and their associated
addressing modes. Debug data may also need to be generated
to facilitate debugging.

• Code optimization: transformation into functionally equivalent
but faster (or smaller) forms.

Lexical analyzersource file

Syntax analyzer

Semantic analyzer

Preprocessor

Code generator

Code optimizerobject file
A

nalysis
Synthesis

domenica 1 marzo 15

http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Debugging

How the compilation works

• Consider the following C++ program (e.g. stored
in hello.cpp):

#include <iostream>

#define ANSWER 42

using namespace std;
// this is a C++ comment
int main() {
	 cout << "The Answer to the Ultimate Question of Life,
the Universe, and Everything is " << ANSWER << endl;
	 return 0;
}

domenica 1 marzo 15

How the compilation works

• Consider the following C++ program (e.g. stored
in hello.cpp):

#include <iostream>

#define ANSWER 42

using namespace std;
// this is a C++ comment
int main() {
	 cout << "The Answer to the Ultimate Question of Life,
the Universe, and Everything is " << ANSWER << endl;
	 return 0;
}

Check the result of the preprocessor
using:
g++ -E hello.cpp

the iostream file is included at the
beginning of the output, then there’s the
code without comments and with
substituted define.

domenica 1 marzo 15

Assembly/object creation

• Check the assembly output of the program
with:
g++ -S hello.cpp

• The object file is created with:
g++ -c hello.cpp

domenica 1 marzo 15

Assembly/object creation

• Check the assembly output of the program
with:
g++ -S hello.cpp

• The object file is created with:
g++ -c hello.cpp

Performs all the compilation
steps (also preprocessing)

domenica 1 marzo 15

Linking

• Use a linker like ld to link the libraries to the
object file; on Ubuntu try:
ld -lstdc++ hello.o -o hello

• or use g++ linking (will add required standard
libraries):
 g++ hello.o -o hello

domenica 1 marzo 15

Linking

• Use a linker like ld to link the libraries to the
object file; on Ubuntu try:
ld -lstdc++ hello.o -o hello

• or use g++ linking (will add required standard
libraries):
 g++ hello.o -o hello

add -v to g++ linking to see
what’s going on with ld

domenica 1 marzo 15

Linking

• The linker will merge the object files of
various sources, e.g. if the program was split in
more than one translation unit

• You must tell where object files and libraries
are stored

• the linker will check some default
directories for libraries

domenica 1 marzo 15

Optimize and debug

• Add debug information to the output: it will
help when debugging a program:
when using g++ add the -g flag

• Request g++ optimization with the flags -Ox
(x=1...3) for fast execution or -Os for
optimized size

domenica 1 marzo 15

Optimize and debug

• Add debug information to the output: it will
help when debugging a program:
when using g++ add the -g flag

• Request g++ optimization with the flags -Ox
(x=1...3) for fast execution or -Os for
optimized size

Always use it when developing
and testing a program !

domenica 1 marzo 15

Optimize and debug

• Add debug information to the output: it will
help when debugging a program:
when using g++ add the -g flag

• Request g++ optimization with the flags -Ox
(x=1...3) for fast execution or -Os for
optimized size

Compilation becomes slower
and slower...
Typically optimization is set
when releasing a program

Always use it when developing
and testing a program !

domenica 1 marzo 15

Libraries

domenica 1 marzo 15

What is a library ?

• A software library is a set of software
functions used by an application program.

• Libraries contain code and data that provide
services to independent programs.

• This encourages the sharing and changing of
code and data in a modular fashion, and
eases the distribution of the code and data.

domenica 1 marzo 15

Using libraries in C/C++

• To use a library in C/C++ you need to:

1. Include the headers that provide the
prototypes of functions and classes that you
need in your code

2. Tell the linker where are the library files (and
which files - if the library is composed by
more than one) that are needed by your code

• In C++ some libraries are made only by header files... more information when

studying C++ templates.

domenica 1 marzo 15

The C++ Standard Library

• In C++, the C++ Standard Library is a
collection of classes and functions, which are
written in the core language and part of the
C++ ISO Standard itself.

• The C++ Standard Library provides

• several generic containers, functions to utilise and
manipulate these containers;

• generic strings and streams (including interactive
and file I/O);

• support for some language features, and math.
domenica 1 marzo 15

Types of libraries

• O.S.es like Linux, OS X and Windows support two
types of libraries, each with its own advantages and
disadvantages:

• The static library contains functionality that is bound
to a program statically at compile time.

• The dynamic/shared library is loaded when an
application is loaded and binding occurs at run time.

• In C/C++ you also have header files with the
prototypes of the functions/classes that are provided
by the library

domenica 1 marzo 15

Static vs. Dynamic linking

• To check if a program is statically or dynamically linked,
and see what dynamic libraries are linked use ldd (Linux)
or otool (OS X):

[ian@echidna ~]$ ldd /sbin/sln /sbin/ldconfig /bin/ln
/sbin/sln:
 not a dynamic executable
/sbin/ldconfig:
 not a dynamic executable
/bin/ln:
 linux-vdso.so.1 => (0x00007fff644af000)
 libc.so.6 => /lib64/libc.so.6 (0x00000037eb800000)
 /lib64/ld-linux-x86-64.so.2 (0x00000037eb400000)

domenica 1 marzo 15

Static vs. Dynamic linking

• To check if a program is statically or dynamically linked,
and see what dynamic libraries are linked use ldd (Linux)
or otool (OS X):

[ian@echidna ~]$ ldd /sbin/sln /sbin/ldconfig /bin/ln
/sbin/sln:
 not a dynamic executable
/sbin/ldconfig:
 not a dynamic executable
/bin/ln:
 linux-vdso.so.1 => (0x00007fff644af000)
 libc.so.6 => /lib64/libc.so.6 (0x00000037eb800000)
 /lib64/ld-linux-x86-64.so.2 (0x00000037eb400000)

Static linking

domenica 1 marzo 15

Static vs. Dynamic linking

• To check if a program is statically or dynamically linked,
and see what dynamic libraries are linked use ldd (Linux)
or otool (OS X):

[ian@echidna ~]$ ldd /sbin/sln /sbin/ldconfig /bin/ln
/sbin/sln:
 not a dynamic executable
/sbin/ldconfig:
 not a dynamic executable
/bin/ln:
 linux-vdso.so.1 => (0x00007fff644af000)
 libc.so.6 => /lib64/libc.so.6 (0x00000037eb800000)
 /lib64/ld-linux-x86-64.so.2 (0x00000037eb400000)

Static linking

Dynamic linking
Dynamic libraries

domenica 1 marzo 15

Static libraries

• Static libraries are simply a collection of ordinary
object files; this collection is created using an archiver
program (e.g. ar in *NIX systems).

• Conventionally, static libraries end with the “.a”
suffix (*NIX system) or “.lib” (Windows).

• Static libraries permit users to link to programs
without having to recompile its code, saving
recompilation time. There’s no need to install libraries
along with programs.

• With a static library, every running program has its
own copy of the library.

domenica 1 marzo 15

Static libraries

• Statically linked programs incorporate only
those parts of the library that they use (not
the whole library!).

• To create a static library, or to add additional
object files to an existing static library, use a
command like this:

• ar rcs my_library.a file1.o file2.o

• The library file is used by the linker to create
the final program file

domenica 1 marzo 15

Statically linked executables

• Statically linked executables contain all the
library functions that they need to execute:

• all library functions are linked into the
executable.

• They are complete programs that do not
depend on external libraries to run:

• there is no need to install prerequisites.

domenica 1 marzo 15

Dynamic/Shared libraries

• Dynamic/Shared libraries are libraries that are
loaded by programs when they start.

• They can be shared by multiple programs.

• Shared libraries can save memory, not just disk
space. The O.S. can keep a single copy of a
shared library in memory, sharing it among
multiple applications. That has a pretty
noticeable effect on performance.

domenica 1 marzo 15

Shared library versions
• Shared libraries use version numbers to allow for upgrades to

the libraries used by applications while preserving compatibility
for older applications.

• Shared objects have two different names: the soname and the real
name. The soname consists of the prefix “lib”, followed by the
name of the library, a “.so” followed by another dot, and a
number indicating the major version number (in OS X the dotted
numbers precede the “.dylib” extension). The real name adds to
the soname a period, a minor number, another period, and the
release number. The last period and release number are optional.

• There is also the linker name, which may be used to refer to the
soname without the version number information. Clients using
this library refer to it using the linker name.

domenica 1 marzo 15

Why using library versions ?

• The major/minor number and release number support
configuration control by letting you know exactly what version(s)
of the library are installed. With a statically linked executable,
there is some guarantee that nothing will change on you. With
dynamic linking, you don't have that guarantee.

• What happens if a new version of the library comes out?
Especially, what happens if the new version changes the calling
sequence for a given function?

• Version numbers to the rescue: when a program is linked against
a library, it has the version number it's designed for stored in it.
The dynamic linker can check for a matching version number. If
the library has changed, the version number won't match, and the
program won't be linked to the newer version of library.

domenica 1 marzo 15

Shared libraries paths

• Since linking is dynamic the library files should
be somewhere they can be found by the O.S.
dynamic linker

• e.g. /usr/lib or /usr/local/lib

• It’s possible to add other directories to the
standard library paths (e.g. using
LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH environment
variables)

domenica 1 marzo 15

Dynamically linked executables

• Dynamically linked executables are smaller programs
than statically linked executables:

• they are incomplete in the sense that they require
functions from external shared libraries in order to
run.

• Dynamic linking permits a package to specify
prerequisite libraries without needing to include the
libraries in the package.

• Dynamically linked executables can share one copy
of a library on disk and in memory (at running
time). Most programs today use dynamic linking.

domenica 1 marzo 15

Libraries and links

• Some technicalities about *NIX systems and
libraries:
generally, a linker name is a link to the soname.
And the soname is a link to the real name.

domenica 1 marzo 15

Libraries and links

• Some technicalities about *NIX systems and
libraries:
generally, a linker name is a link to the soname.
And the soname is a link to the real name.

Linker names

domenica 1 marzo 15

Libraries and links

• Some technicalities about *NIX systems and
libraries:
generally, a linker name is a link to the soname.
And the soname is a link to the real name.

Linker names

soname

domenica 1 marzo 15

Libraries and links

• Some technicalities about *NIX systems and
libraries:
generally, a linker name is a link to the soname.
And the soname is a link to the real name.

Linker names

soname

Real names

domenica 1 marzo 15

Use libraries in Eclipse

These options are equivalent to command line -l and -L

domenica 1 marzo 15

Use libraries in Eclipse

Provide list of libraries
(no trailing “lib”)

These options are equivalent to command line -l and -L

domenica 1 marzo 15

Use libraries in Eclipse

Provide list of libraries
(no trailing “lib”)

Provide list of paths to
libraries

These options are equivalent to command line -l and -L

domenica 1 marzo 15

Creating and using a
library

domenica 1 marzo 15

Writing a library
• There are basically two files that have to be

written for a usable library:

• The first is a header file, which declares all the
functions/classes/types exported by the library.

• It will be included by the client in the code.

• The second is the definition of the functions/
classes to be compiled and placed as the shared
object.

• the object file created through compilation will
be used by the linker, to create the library.

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Creating a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

• We need to tell the compiler where are the
header files of the library

• We need to include the files in our client code

• We need to tell the linker where is the library
file (“.a”) and the name of the library (remind
the convention used !)

• Eclipse will use this information to create the
required makefile

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Using a static library with
Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Creating a dynamic library
with Eclipse

domenica 1 marzo 15

Using a dynamic library with
Eclipse

• We need to tell the compiler where are the
header files of the library

• We need to include the files in our client code

• We need to tell the linker where is the library
file (“.so” / “.dylib”) and the name of the
library (remind the convention used !)

• Eclipse will use this information to create the
required makefile

domenica 1 marzo 15

Using a dynamic library with
Eclipse

domenica 1 marzo 15

Using a dynamic library with
Eclipse

domenica 1 marzo 15

Using a dynamic library with
Eclipse

domenica 1 marzo 15

Using a dynamic library with
Eclipse

domenica 1 marzo 15

Using a dynamic library with
Eclipse

domenica 1 marzo 15

Executing a dynamically
linked program

• Remind that dynamically linked programs need
to access the library (actually it is the dynamic
linker that needs this)

• Either copy the library to a path used by the
dynamic linker (check info of your O.S.) or
copy it in the same directory of the
executable-

domenica 1 marzo 15

References and sources

These slides are based on the following articles

domenica 1 marzo 15

Suggested reading: dynamic/
shared libraries

• Learn Linux, 101: Manage shared libraries:
http://www.ibm.com/developerworks/linux/
library/l-lpic1-v3-102-3/

• Anatomy of Linux dynamic libraries:
http://www.ibm.com/developerworks/linux/
library/l-dynamic-libraries/

• Dissecting shared libraries:
http://www.ibm.com/developerworks/linux/
library/l-shlibs/

domenica 1 marzo 15

http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/linux/library/l-shlibs/
http://www.ibm.com/developerworks/linux/library/l-shlibs/
http://www.ibm.com/developerworks/linux/library/l-shlibs/
http://www.ibm.com/developerworks/linux/library/l-shlibs/

Suggested reading: writing
dynamic/shared libraries

• Program Library HOWTO
http://www.linuxdoc.org/HOWTO/Program-Library-
HOWTO/

• Shared objects for the object disoriented!
http://www.ibm.com/developerworks/library/l-shobj/

• Writing DLLs for Linux apps
http://www.ibm.com/developerworks/linux/library/l-
dll/

domenica 1 marzo 15

http://www.linuxdoc.org/HOWTO/Program-Library-HOWTO/
http://www.linuxdoc.org/HOWTO/Program-Library-HOWTO/
http://www.linuxdoc.org/HOWTO/Program-Library-HOWTO/
http://www.linuxdoc.org/HOWTO/Program-Library-HOWTO/
http://www.ibm.com/developerworks/library/l-shobj/
http://www.ibm.com/developerworks/library/l-shobj/
http://www.ibm.com/developerworks/linux/library/l-dll/
http://www.ibm.com/developerworks/linux/library/l-dll/
http://www.ibm.com/developerworks/linux/library/l-dll/
http://www.ibm.com/developerworks/linux/library/l-dll/

