

1 C++ A Beginner’s Guide by Herbert Schildt

Module 1

C++ Fundamentals

Table of Contents
CRITICAL SKILL 1.1: A Brief History of C++ .. 2

CRITICAL SKILL 1.2: How C++ Relates to Java and C# .. 5

CRITICAL SKILL 1.3: Object-Oriented Programming .. 7

CRITICAL SKILL 1.4: A First Simple Program .. 10

CRITICAL SKILL 1.5: A Second Simple Program ... 15

CRITICAL SKILL 1.6: Using an Operator ... 17

CRITICAL SKILL 1.7: Reading Input from the Keyboard ... 19

Project 1-1 Converting Feet to Meters ... 24

CRITICAL SKILL 1.8: Two Control Statements .. 26

CRITICAL SKILL 1.9: Using Blocks of Code ... 30

Project 1-2 Generating a Table of Feet to Meter Conversions ... 33

CRITICAL SKILL 1.10: Introducing Functions .. 35

CRITICAL SKILL 1.11: The C++ Keywords ... 38

CRITICAL SKILL 1.12: Identifiers... 39

If there is one language that defines the essence of programming today, it is C++. It is the preeminent
language for the development of high-performance software. Its syntax has become the standard for
professional programming languages, and its design philosophy reverberates throughout computing.

2 C++ A Beginner’s Guide by Herbert Schildt

C++ is also the language from which both Java and C# are derived. Simply stated, to be a professional
programmer implies competency in C++. It is the gateway to all of modern programming.

The purpose of this module is to introduce C++, including its history, its design philosophy, and several
of its most important features. By far, the hardest thing about learning a programming language is the
fact that no element exists in isolation. Instead, the components of the language work together. This
interrelatedness makes it difficult to discuss one aspect of C++ without involving others. To help
overcome this problem, this module provides a brief overview of several C++ features, including the
general form of a C++ program, some basic control statements, and operators. It does not go into too
many details, but rather concentrates on the general concepts common to any C++ program.

CRITICAL SKILL 1.1: A Brief History of C++
The history of C++ begins with C. The reason for this is easy to understand: C++ is built upon the
foundation of C. Thus, C++ is a superset of C. C++ expanded and enhanced the C language to support
object-oriented programming (which is described later in this module). C++ also added several other
improvements to the C language, including an extended set of library routines. However, much of the
spirit and flavor of C++ is directly inherited from C. Therefore, to fully understand and appreciate C++,
you need to understand the “how and why” behind C.

C: The Beginning of the Modern Age of Programming
The invention of C defines the beginning of the modern age of programming. Its impact should not be
underestimated because it fundamentally changed the way programming was approached and thought
about. Its design philosophy and syntax have influenced every major language since. C was one of the
major, revolutionary forces in computing.

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 using the UNIX operating
system. C is the result of a development process that started with an older language called BCPL. BCPL
was developed by Martin Richards. BCPL influenced a language called B, which was invented by Ken
Thompson and which led to the development of C in the 1970s.

Prior to the invention of C, computer languages were generally designed either as academic exercises or
by bureaucratic committees. C was different. It was designed, implemented, and developed by real,
working programmers, reflecting the way they approached the job of programming. Its features were
honed, tested, thought about, and rethought by the people who actually used the language. As a result,
C attracted many proponents and quickly became the language of choice of programmers around the
world.

C grew out of the structured programming revolution of the 1960s. Prior to structured programming,
large programs were difficult to write because the program logic tended to degenerate into what is
known as “spaghetti code,” a tangled mass of jumps, calls, and returns that is difficult to follow.
Structured languages addressed this problem by adding well-defined control statements, subroutines

3 C++ A Beginner’s Guide by Herbert Schildt

with local variables, and other improvements. Using structured languages, it became possible to write
moderately large programs.

Although there were other structured languages at the time, such as Pascal, C was the first to
successfully combine power, elegance, and expressiveness. Its terse, yet easy-to-use syntax coupled
with its philosophy that the programmer (not the language) was in charge quickly won many converts. It
can be a bit hard to understand from today’s perspective, but C was a breath of fresh air that
programmers had long awaited. As a result, C became the most widely used structured programming
language of the 1980s.

The Need for C++
Given the preceding discussion, you might be wondering why C++ was invented. Since C was a successful
computer programming language, why was there a need for something else? The answer is complexity.
Throughout the history of programming, the increasing complexity of programs has driven the need for
better ways to manage that complexity. C++ is a response to that need. To better understand the
correlation between increasing program complexity and computer language development, consider the
following.

Approaches to programming have changed dramatically since the invention of the computer. For
example, when computers were first invented, programming was done by using the computer’s front
panel to toggle in the binary machine instructions. As long as programs were just a few hundred
instructions long, this approach worked. As programs grew, assembly language was invented so that
programmers could deal with larger, increasingly complex programs by using symbolic representations
of the machine instructions. As programs continued to grow, high-level languages were developed to
give programmers more tools with which to handle the complexity.

The first widely used computer language was, of course, FORTRAN. While FORTRAN was a very
impressive first step, it is hardly a language that encourages clear, easy-to-understand programs. The
1960s gave birth to structured programming, which is the method of programming encouraged by
languages such as C. With structured languages it was, for the first time, possible to write moderately
complex programs fairly easily. However, even with structured programming methods, once a project
reaches a certain size, its complexity exceeds what a programmer can manage. By the late 1970s, many
projects were near or at this point.

In response to this problem, a new way to program began to emerge: object-oriented programming
(OOP). Using OOP, a programmer could handle larger, more complex programs. The trouble was that C
did not support object-oriented programming. The desire for an object-oriented version of C ultimately
led to the creation of C++.

In the final analysis, although C is one of the most liked and widely used professional programming
languages in the world, there comes a time when its ability to handle complexity is exceeded. Once a
program reaches a certain size, it becomes so complex that it is difficult to grasp as a totality. The

4 C++ A Beginner’s Guide by Herbert Schildt

purpose of C++ is to allow this barrier to be broken and to help the programmer comprehend and
manage larger, more complex programs.

C++ Is Born
C++ was invented by Bjarne Stroustrup in 1979, at Bell Laboratories in Murray Hill, New Jersey. He
initially called the new language “C with Classes.” However, in 1983 the name was changed to C++.

Stroustrup built C++ on the foundation of C, including all of C’s features, attributes, and benefits. He also
adhered to C’s underlying philosophy that the programmer, not the language, is in charge. At this point,
it is critical to understand that Stroustrup did not create an entirely new programming language.
Instead, he enhanced an already highly successful language.

Most of the features that Stroustrup added to C were designed to support object-oriented
programming. In essence, C++ is the object-oriented version of C. By building upon the foundation of C,
Stroustrup provided a smooth migration path to OOP. Instead of having to learn an entirely new
language, a C programmer needed to learn only a few new features before reaping the benefits of the
object-oriented methodology.

When creating C++, Stroustrup knew that it was important to maintain the original spirit of C, including
its efficiency, flexibility, and philosophy, while at the same time adding support for object-oriented
programming. Happily, his goal was accomplished. C++ still provides the programmer with the freedom
and control of C, coupled with the power of objects.

Although C++ was initially designed to aid in the management of very large programs, it is in no way
limited to this use. In fact, the object-oriented attributes of C++ can be effectively applied to virtually
any programming task. It is not uncommon to see C++ used for projects such as editors, databases,
personal file systems, networking utilities, and communication programs. Because C++ shares C’s
efficiency, much high-performance systems software is constructed using C++. Also, C++ is frequently
the language of choice for Windows programming.

The Evolution of C++
Since C++ was first invented, it has undergone three major revisions, with each revision adding to and
altering the language. The first revision was in 1985 and the second in 1990. The third occurred during
the C++ standardization process. Several years ago, work began on a standard for C++. Toward that end,
a joint ANSI (American National Standards Institute) and ISO (International Standards Organization)
standardization committee was formed. The first draft of the proposed standard was created on January
25, 1994. In that draft, the ANSI/ISO C++ committee (of which I was a member) kept the features first
defined by Stroustrup and added some new ones. But, in general, this initial draft reflected the state of
C++ at the time.

Soon after the completion of the first draft of the C++ standard, an event occurred that caused the
standard to be greatly expanded: the creation of the Standard Template Library (STL) by Alexander
Stepanov. The STL is a set of generic routines that you can use to manipulate data. It is both powerful

5 C++ A Beginner’s Guide by Herbert Schildt

and elegant. But it is also quite large. Subsequent to the first draft, the committee voted to include the
STL in the specification for C++. The addition of the STL expanded the scope of C++ well beyond its
original definition. While important, the inclusion of the STL, among other things, slowed the
standardization of C++.

It is fair to say that the standardization of C++ took far longer than anyone had expected. In the process,
many new features were added to the language, and many small changes were made. In fact, the
version of C++ defined by the ANSI/ISO C++ committee is much larger and more complex than
Stroustrup’s original design. The final draft was passed out of committee on November 14, 1997, and an
ANSI/ISO standard for C++ became a reality in 1998. This is the specification for C++ that is usually
referred to as Standard C++.

The material in this book describes Standard C++. This is the version of C++ supported by all mainstream
C++ compilers, including Microsoft’s Visual C++. Thus, the code and information in this book are fully
portable.

CRITICAL SKILL 1.2: How C++ Relates to Java and C#
In addition to C++, there are two other important, modern programming languages: Java and C#. Java
was developed by Sun Microsystems, and C# was created by Microsoft. Because there is sometimes
confusion about how these two languages relate to C++, a brief discussion of their relationship is in
order.

C++ is the parent for both Java and C#. Although both Java and C# added, removed, and modified
various features, in total the syntax for these three languages is nearly identical. Furthermore, the
object model used by C++ is similar to the ones used by Java and C#. Finally, the overall “look and feel”
of these languages is very similar. This means that once you know C++, you can easily learn Java or C#.
The opposite is also true. If you know Java or C#, learning C++ is easy. This is one reason that Java and C#
share C++’s syntax and object model; it facilitated their rapid adoption by legions of experienced C++
programmers.

The main difference between C++, Java, and C# is the type of computing environment for which each is
designed. C++ was created to produce high-performance programs for a specific type of CPU and
operating system. For example, if you want to write a program that runs on an Intel Pentium under the
Windows operating system, then C++ is the best language to use.

Ask the Expert

Q: How do Java and C# create cross-platform, portable programs, and why can’t C++ do the same?

A: Java and C# can create cross-platform, portable programs and C++ can’t because of the type of

object code produced by the compiler. In the case of C++, the output from the compiler is machine code

6 C++ A Beginner’s Guide by Herbert Schildt

that is directly executed by the CPU. Thus, it is tied to a specific CPU and operating system. If you want
to run a C++ program on a different system, you need to recompile it into machine code specifically
targeted for that environment. To create a C++ program that would run in a variety of environments,
several different executable versions of the program are needed.

Java and C# achieve portability by compiling a program into a pseudocode, intermediate language. In
the case of Java, this intermediate language is called bytecode. For C#, it is called Microsoft Intermediate
Language (MSIL). In both cases, this pseudocode is executed by a runtime system. For Java, this runtime
system is called the Java Virtual Machine (JVM). For C#, it is the Common Language Runtime (CLR).
Therefore, a Java program can run in any environment for which a JVM is available, and a C# program
can run in any environment in which the CLR is implemented.

Since the Java and C# runtime systems stand between a program and the CPU, Java and C# programs
incur an overhead that is not present in the execution of a C++ program. This is why C++ programs
usually run faster than the equivalent programs written in Java or C#.

Java and C# were developed in response to the unique programming needs of the online environment of
the Internet. (C# was also designed to simplify the creation of software components.) The Internet is
connected to many different types of CPUs and operating systems. Thus, the ability to produce cross-
platform, portable programs became an overriding concern.

The first language to address this need was Java. Using Java, it is possible to write a program that runs in
a wide variety of environments. Thus, a Java program can move about freely on the Internet. However,
the price you pay for portability is efficiency, and Java programs execute more slowly than do C++
programs. The same is true for C#. In the final analysis, if you want to create high-performance software,
use C++. If you need to create highly portable software, use Java or C#.

One final point: Remember that C++, Java, and C# are designed to solve different sets of problems. It is
not an issue of which language is best in and of itself. Rather, it is a question of which language is right
for the job at hand.

1. From what language is C++ derived?

2. What was the main factor that drove the creation of C++?

3. C++ is the parent of Java and C#. True or False?

7 C++ A Beginner’s Guide by Herbert Schildt

Answer Key:

1. C++ is derived from C.

2. Increasing program complexity was the main factor that drove the creation of C++.

3. True.

CRITICAL SKILL 1.3: Object-Oriented Programming
Central to C++ is object-oriented programming (OOP). As just explained, OOP was the impetus for the
creation of C++. Because of this, it is useful to understand OOP’s basic principles before you write even a
simple C++ program.

Object-oriented programming took the best ideas of structured programming and combined them with
several new concepts. The result was a different and better way of organizing a program. In the most
general sense, a program can be organized in one of two ways: around its code (what is happening) or
around its data (who is being affected). Using only structured programming techniques, programs are
typically organized around code. This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around data, with the key
principle being “data controlling access to code.” In an object-oriented language, you define the data
and the routines that are permitted to act on that data. Thus, a data type defines precisely what sort of
operations can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including C++, have three
traits in common: encapsulation, polymorphism, and inheritance. Let’s examine each.

Encapsulation
Encapsulation is a programming mechanism that binds together code and the data it manipulates, and
that keeps both safe from outside interference and misuse. In an object-oriented language, code and
data can be bound together in such a way that a self-contained black box is created. Within the box are
all necessary data and code. When code and data are linked together in this fashion, an object is
created. In other words, an object is the device that supports encapsulation.

Ask the Expert

Q: I have heard the term method applied to a subroutine. Is a method the same as a function?

A: In general, the answer is yes. The term method was popularized by Java. What a C++ programmer

calls a function, a Java programmer calls a method. C# programmers also use the term method. Because
it is becoming so widely used, sometimes the term method is also used when referring to a C++

8 C++ A Beginner’s Guide by Herbert Schildt

function.

Within an object, code or data or both may be private to that object or public. Private code or data is
known to and accessible by only another part of the object. That is, private code or data cannot be
accessed by a piece of the program that exists outside the object. When code or data is public, other
parts of your program can access it even though it is defined within an object. Typically, the public parts
of an object are used to provide a controlled interface to the private elements of the object.

C++’s basic unit of encapsulation is the class. A class defines the form of an object. It specifies both the
data and the code that will operate on that data. C++ uses a class specification to construct objects.
Objects are instances of a class. Thus, a class is essentially a set of plans that specifies how to build an
object.

The code and data that constitute a class are called members of the class. Specifically, member
variables, also called instance variables, are the data defined by the class. Member functions are the
code that operates on that data. Function is C++’s term for a subroutine.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface to access a
general class of actions. A simple example of polymorphism is found in the steering wheel of an
automobile. The steering wheel (the interface) is the same no matter what type of actual steering
mechanism is used. That is, the steering wheel works the same whether your car has manual steering,
power steering, or rack-and-pinion steering. Thus, turning the steering wheel left causes the car to go
left no matter what type of steering is used. The benefit of the uniform interface is, of course, that once
you know how to operate the steering wheel, you can drive any type of car.

The same principle can also apply to programming. For example, consider a stack (which is a first-in, last-
out list). You might have a program that requires three different types of stacks. One stack is used for
integer values, one for floating-point values, and one for characters. In this case, the algorithm that
implements each stack is the same, even though the data being stored differs. In a non–object-oriented
language, you would be required to create three different sets of stack routines, with each set using
different names. However, because of polymorphism, in C++ you can create one general set of stack
routines that works for all three situations. This way, once you know how to use one stack, you can use
them all.

More generally, the concept of polymorphism is often expressed by the phrase “one interface, multiple
methods.” This means that it is possible to design a generic interface to a group of related activities.
Polymorphism helps reduce complexity by allowing the same interface to specify a general class of
action. It is the compiler’s job to select the specific action (that is, method) as it applies to each
situation. You, the programmer, don’t need to do this selection manually. You need only remember and
utilize the general interface.

9 C++ A Beginner’s Guide by Herbert Schildt

Inheritance
Inheritance is the process by which one object can acquire the properties of another object. This is
important because it supports the concept of hierarchical classification. If you think about it, most
knowledge is made manageable by hierarchical (that is, top-down) classifications. For example, a Red
Delicious apple is part of the classification apple, which in turn is part of the fruit class, which is under
the larger class food. That is, the food class possesses certain qualities (edible, nutritious, and so on)
which also, logically, apply to its subclass, fruit. In addition to these qualities, the fruit class has specific
characteristics (juicy, sweet, and so on) that distinguish it from other food. The apple class defines those
qualities specific to an apple (grows on trees, not tropical, and so on). A Red Delicious apple would, in
turn, inherit all the qualities of all preceding classes and would define only those qualities that make it
unique.

Without the use of hierarchies, each object would have to explicitly define all of its characteristics. Using
inheritance, an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it possible for
one object to be a specific instance of a more general case.

1. Name the principles of OOP.

2. What is the basic unit of encapsulation in C++?

3. What is the commonly used term for a subroutine in C++?

Answer Key:

1. Encapsulation, polymorphism, and inheritance are the principles of OOP.

2. The class is the basic unit of encapsulation in C++.

3. Function is the commonly used term for a subroutine in C++.

Ask the Expert

Q: You state that object-oriented programming (OOP) is an effective way to manage large programs.

However, it seems that OOP might add substantial overhead to relatively small ones. As it relates to C++,

10 C++ A Beginner’s Guide by Herbert Schildt

is this true?

A: No. A key point to understand about C++ is that it allows you to write object-oriented programs, but

does not require you to do so. This is one of the important differences between C++ and Java/C#, which
employ a strict object-model in which every program is, to at least a small extent, object oriented. C++
gives you the option. Furthermore, for the most part, the object-oriented features of C++ are
transparent at runtime, so little (if any) overhead is incurred.

CRITICAL SKILL 1.4: A First Simple Program
Now it is time to begin programming. Let’s start by compiling and running the short sample C++ program
shown here:

/*
This is a simple C++ program.
Call this file Sample.cpp.

*/

#include <iostream>
using namespace std;

// A C++ program begins at main().
int main()
{

cout << "C++ is power programming.";

return 0;
}

You will follow these three steps:

1. Enter the program.

2. Compile the program.

3. Run the program.

Before beginning, let’s review two terms: source code and object code. Source code is the human-
readable form of the program. It is stored in a text file. Object code is the executable form of the
program created by the compiler.

11 C++ A Beginner’s Guide by Herbert Schildt

Entering the Program
The programs shown in this book are available from Osborne’s web site: www.osborne.com. However, if
you want to enter the programs by hand, you are free to do so. Typing in the programs yourself often
helps you remember the key concepts. If you choose to enter a program by hand, you must use a text
editor, not a word processor. Word processors typically store format information along with text. This
format information will confuse the C++ compiler. If you are using a Windows platform, then you can
use WordPad, or any other programming editor that you like.

The name of the file that holds the source code for the program is technically arbitrary. However, C++
programs are normally contained in files that use the file extension .cpp. Thus, you can call a C++
program file by any name, but it should use the .cpp extension. For this first example, name the source
file Sample.cpp so that you can follow along. For most of the other programs in this book, simply use a
name of your own choosing.

Compiling the Program
How you will compile Sample.cpp depends upon your compiler and what options you are using.
Furthermore, many compilers, such as Microsoft’s Visual C++ Express Edition which you can download
for free, provide two different ways for compiling a program: the command-line compiler and the
Integrated Development Environment (IDE). Thus, it is not possible to give generalized instructions for
compiling a C++ program. You must consult your compiler’s instructions.

The preceding paragraph notwithstanding, if you are using Visual C++, then the easiest way to compile
and run the programs in this book is to use the command-line compilers offered by these environments.
For example, to compile Sample.cpp using Visual C++, you will use this command line:

C:\...>cl -GX Sample.cpp

The -GX option enhances compilation. To use the Visual C++ command-line compiler, you must first
execute the batch file VCVARS32.BAT, which is provided by Visual C++. (Visual Studio also provides a
ready-to-use command prompt environment that can be activated by selecting Visual Studio Command
Prompt from the list of tools shown under the Microsoft Visual Studio entry in the Start | Programs
menu of the taskbar.)

The output from a C++ compiler is executable object code. For a Windows environment, the executable
file will use the same name as the source file, but have the .exe extension. Thus, the executable version
of Sample.cpp will be in Sample.exe.

Run the Program
After a C++ program has been compiled, it is ready to be run. Since the output from a C++ compiler is
executable object code, to run the program, simply enter its name at the command prompt. For
example, to run Sample.exe, use this command line:

C:\...>Sample

12 C++ A Beginner’s Guide by Herbert Schildt

When run, the program displays the following output:

C++ is power programming.

If you are using an Integrated Development Environment, then you can run a program by selecting Run
from a menu. Consult the instructions for your specific compiler. For the programs in this book, it is
usually easier to compile and run from the command line.

One last point: The programs in this book are console based, not window based. That is, they run in a
Command Prompt session. C++ is completely at home with Windows programming. Indeed, it is the
most commonly used language for Windows development. However, none of the programs in this book
use the Windows Graphic User Interface (GUI). The reason for this is easy to understand: Windows
programs are, by their nature, large and complex. The overhead required to create even a minimal
Windows skeletal program is 50 to 70 lines of code. To write Windows programs that demonstrate the
features of C++ would require hundreds of lines of code each. In contrast, console-based programs are
much shorter and are the type of programs normally used to teach programming. Once you have
mastered C++, you will be able to apply your knowledge to Windows programming with no trouble.

The First Sample Program Line by Line
Although Sample.cpp is quite short, it includes several key features that are common to all C++
programs. Let’s closely examine each part of the program. The program begins with the lines

/*

This is a simple C++ program.

Call this file Sample.cpp.

*/

This is a comment. Like most other programming languages, C++ lets you enter a remark into a
program’s source code. The contents of a comment are ignored by the compiler. The purpose of a
comment is to describe or explain the operation of a program to anyone reading its source code. In the
case of this comment, it identifies the program. In more complex programs, you will use comments to
help explain what each feature of the program is for and how it goes about doing its work. In other
words, you can use comments to provide a “play-by-play” description of what your program does.

In C++, there are two types of comments. The one you’ve just seen is called a multiline comment. This
type of comment begins with a /* (a slash followed by an asterisk). It ends only when a */ is
encountered. Anything between these two comment symbols is completely ignored by the compiler.
Multiline comments may be one or more lines long. The second type of comment (single-line) is found a
little further on in the program and will be discussed shortly.

The next line of code looks like this:

#include <iostream>

13 C++ A Beginner’s Guide by Herbert Schildt

The C++ language defines several headers, which contain information that is either necessary or useful
to your program. This program requires the header iostream, which supports the C++ I/O system. This
header is provided with your compiler. A header is included in your program using the #include
directive. Later in this book, you will learn more about headers and why they are important.

The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a relatively recent addition to C++.
Although namespaces are discussed in detail later in this book, here is a brief description. A namespace
creates a declarative region in which various program elements can be placed. Elements declared in one
namespace are separate from elements declared in another. Namespaces help in the organization of
large programs. The using statement informs the compiler that you want to use the std namespace. This
is the namespace in which the entire Standard C++ library is declared. By using the std namespace, you
simplify access to the standard library. (Since namespaces are relatively new, an older compiler may not
support them. If you are using an older compiler, see Appendix B, which describes an easy work-
around.)

The next line in the program is

// A C++ program begins at main().

This line shows you the second type of comment available in C++: the single-line comment. Single-line
comments begin with // and stop at the end of the line. Typically, C++ programmers use multiline
comments when writing larger, more detailed commentaries, and single-line comments when short
remarks are needed. This is, of course, a matter of personal style.

The next line, as the preceding comment indicates, is where program execution begins.

int main()

All C++ programs are composed of one or more functions. As explained earlier, a function is a
subroutine. Every C++ function must have a name, and the only function that any C++ program must
include is the one shown here, called main(). The main() function is where program execution begins
and (most commonly) ends. (Technically speaking, a C++ program begins with a call to main() and, in
most cases, ends when main() returns.) The opening curly brace on the line that follows main() marks
the start of the main() function code. The int that precedes main() specifies the type of data returned
by main(). As you will learn, C++ supports several built-in data types, and int is one of them. It stands for
integer.

The next line in the program is

cout << "C++ is power programming.";

14 C++ A Beginner’s Guide by Herbert Schildt

This is a console output statement. It causes the message C++ is power programming. to be displayed on
the screen. It accomplishes this by using the output operator <<. The << operator causes whatever
expression is on its right side to be output to the device specified on its left side. cout is a predefined
identifier that stands for console output and generally refers to the computer’s screen. Thus, this
statement causes the message to be output to the screen. Notice that this statement ends with a
semicolon. In fact, all C++ statements end with a semicolon.

The message “C++ is power programming.” is a string. In C++, a string is a sequence of characters
enclosed between double quotes. Strings are used frequently in C++.

The next line in the program is

return 0;

This line terminates main() and causes it to return the value 0 to the calling process (which is typically
the operating system). For most operating systems, a return value of 0 signifies that the program is
terminating normally. Other values indicate that the program is terminating because of some error.
return is one of C++’s keywords, and it is used to return a value from a function. All of your programs
should return 0 when they terminate normally (that is, without error).

The closing curly brace at the end of the program formally concludes the program.

Handling Syntax Errors
If you have not yet done so, enter, compile, and run the preceding program. As you may know from
previous programming experience, it is quite easy to accidentally type something incorrectly when
entering code into your computer. Fortunately, if you enter something incorrectly into your program,
the compiler will report a syntax error message when it tries to compile it. Most C++ compilers attempt
to make sense out of your source code no matter what you have written. For this reason, the error that
is reported may not always reflect the actual cause of the problem. In the preceding program, for
example, an accidental omission of the opening curly brace after main() may cause the compiler to
report the cout statement as the source of a syntax error. When you receive syntax error messages, be
prepared to look at the last few lines of code in your program in order to find the error.

Ask the Expert

Q: In addition to error messages, my compiler offers several types of warning messages. How do

warnings differ from errors, and what type of reporting should I use?

A: In addition to reporting fatal syntax errors, most C++ compilers can also report several types of

warning messages. Error messages report things that are unequivocally wrong in your program, such as
forgetting a semicolon. Warnings point out suspicious but technically correct code. You, the

15 C++ A Beginner’s Guide by Herbert Schildt

programmer, then decide whether the suspicion is justified.

Warnings are also used to report such things as inefficient constructs or the use of obsolete features.
Generally, you can select the specific type of warnings that you want to see. The programs in this book
are in compliance with Standard C++, and when entered correctly, they will not generate any
troublesome warning messages.

For the examples in this book, you will want to use your compiler’s default (or “normal”) error reporting.
However, you should examine your compiler’s documentation to see what options you have at your
disposal. Many compilers have sophisticated features that can help you spot subtle errors before they
become big problems. Understanding your compiler’s error reporting system is worth your time and
effort.

1. Where does a C++ program begin execution?

2. What is cout?

3. What does #include <iostream> do?

Answer Key:

1. A C++ program begins execution with main().

2. cout is a predefined identifier that is linked to console output.

3. It includes the header <iostream>, which supports I/O.

CRITICAL SKILL 1.5: A Second Simple Program
Perhaps no other construct is as fundamental to programming as the variable. A variable is a named
memory location that can be assigned a value. Further, the value of a variable can be changed during
the execution of a program. That is, the content of a variable is changeable, not fixed.

The following program creates a variable called length, gives it the value 7, and then displays the
message “The length is 7” on the screen.

16 C++ A Beginner’s Guide by Herbert Schildt

As mentioned earlier, the names of C++ programs are arbitrary. Thus, when you enter this program,
select a filename to your liking. For example, you could give this program the name VarDemo.cpp.

This program introduces two new concepts. First, the statement

int length; // this declares a variable

declares a variable called length of type integer. In C++, all variables must be declared before they are
used. Further, the type of values that the variable can hold must also be specified. This is called the type
of the variable. In this case, length may hold integer values. These are whole number values whose
range will be at least –32,768 through 32,767. In C++, to declare a variable to be of type integer, precede
its name with the keyword int. Later, you will see that C++ supports a wide variety of built-in variable
types. (You can create your own data types, too.)

The second new feature is found in the next line of code:

length = 7; // this assigns 7 to length

As the comment suggests, this assigns the value 7 to length. In C++, the assignment operator is the
single equal sign. It copies the value on its right side into the variable on its left. After the assignment,
the variable length will contain the number 7.

The following statement displays the value of length:

cout << length; // This displays 7

In general, if you want to display the value of a variable, simply put it on the right side of << in a cout
statement. In this specific case, because length contains the number 7, it is this number that is displayed

17 C++ A Beginner’s Guide by Herbert Schildt

on the screen. Before moving on, you might want to try giving length other values and watching the
results.

CRITICAL SKILL 1.6: Using an Operator
Like most other computer languages, C+ supports a full range of arithmetic operators that enable you to
manipulate numeric values used in a program. They include those shown here:

These operators work in C++ just like they do in algebra.

The following program uses the * operator to compute the area of a rectangle given its length and the
width.

This program declares three variables: length, width, and area. It assigns the value 7 to length and the
value 5 to width. It then computes the product and assigns that value to area. The program outputs the
following:

The area is 35

18 C++ A Beginner’s Guide by Herbert Schildt

In this program, there is actually no need for the variable area. For example, the program can be
rewritten like this:

In this version, the area is computed in the cout statement by multiplying length by width. The result is
then output to the screen.

One more point before we move on: It is possible to declare two or more variables using the same
declaration statement. Just separate their names by commas. For example, length, width, and area
could have been declared like this:

int length, width, area; // all declared using one statement

Declaring two or more variables in a single statement is very common in professionally written C++
code.

1. Must a variable be declared before it is used?

2. Show how to assign the variable min the value 0.

3. Can more than one variable be declared in a single declaration statement?

19 C++ A Beginner’s Guide by Herbert Schildt

Answer Key:

1. Yes, in C++ variables must be declared before they are used.

2. min = 0;

3. Yes, two or more variables can be declared in a single declaration statement.

CRITICAL SKILL 1.7: Reading Input from the Keyboard
The preceding examples have operated on data explicitly specified in the program. For example, the
area program just shown computes the area of a rectangle that is 7 by 5, and these dimensions are part
of the program itself. Of course, the calculation of a rectangle’s area is the same no matter what its size,
so the program would be much more useful if it would prompt the user for the dimensions of the
rectangle, allowing the user to enter them using the keyboard.

To enable the user to enter data into a program from the keyboard, you will use the >> operator. This is
the C++ input operator. To read from the keyboard, use this general form

cin >> var;

Here, cin is another predefined identifier. It stands for console input and is automatically supplied by
C++. By default, cin is linked to the keyboard, although it can be redirected to other devices. The variable
that receives input is specified by var.

Here is the area program rewritten to allow the user to enter the dimensions of the rectangle:

20 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

Enter the length: 8
Enter the width: 3
The area is 24

Pay special attention to these lines:

cout << "Enter the length: ";
cin >> length; // input the length

The cout statement prompts the user. The cin statement reads the user’s response, storing the value in
length. Thus, the value entered by the user (which must be an integer in this case) is put into the
variable that is on the right side of the >> (in this case, length). Thus, after the cin statement executes,
length will contain the rectangle’s length. (If the user enters a nonnumeric response, length will be
zero.) The statements that prompt and read the width work in the same way.

Some Output Options
So far, we have been using the simplest types of cout statements. However, cout allows much more
sophisticated output statements. Here are two useful techniques. First, you can output more than one

21 C++ A Beginner’s Guide by Herbert Schildt

piece of information using a single cout statement. For example, in the area program, these two lines
are used to display the area:

cout << "The area is ";

cout << length * width;

These two statements can be more conveniently coded, as shown here:

cout << "The area is " << length * width;

This approach uses two output operators within the same cout statement. Specifically, it outputs the
string “The area is” followed by the area. In general, you can chain together as many output operations
as you like within one output statement. Just use a separate << for each item.

Second, up to this point, there has been no occasion to advance output to the next line— that is, to
execute a carriage return–linefeed sequence. However, the need for this will arise very soon. In C++, the
carriage return–linefeed sequence is generated using the newline character. To put a newline character
into a string, use this code: \n (a backslash followed by a lowercase n). To see the effect of the \n, try the
following program:

/*
This program demonstrates the \n code, which generates a new
line.

*/

#include <iostream>
using namespace std;
int main()

{
cout << "one\n";
cout << "two\n";
cout << "three";
cout << "four";

return 0;

}

This program produces the following output:

one
two
threefour

The newline character can be placed anywhere in the string, not just at the end. You might want to try
experimenting with the newline character now, just to make sure you understand exactly what it does.

22 C++ A Beginner’s Guide by Herbert Schildt

1. What is C++’s input operator?

2. To what device is cin linked by default?

3. What does \n stand for?

Answer Key:

1. The input operator is >>.

2. cin is linked to the keyboard by default.

3. The \n stands for the newline character.

Another Data Type
In the preceding programs, variables of type int were used. However, a variable of type int can hold only
whole numbers. Thus, it cannot be used when a fractional component is required. For example, an int
variable can hold the value 18, but not the value 18.3. Fortunately, int is only one of several data types
defined by C++. To allow numbers with fractional components, C++ defines two main flavors of floating-
point types: float and double, which represent single- and double-precision values, respectively. Of the
two, double is probably the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double result;

Here, result is the name of the variable, which is of type double. Because result has a floating-point type,
it can hold values such as 88.56, 0.034, or –107.03.

To better understand the difference between int and double, try the following program:

23 C++ A Beginner’s Guide by Herbert Schildt

The output from this program is shown here:

Original value of ivar: 100
Original value of dvar: 100

ivar after division: 33
dvar after division: 33.3333

Ask the Expert

Q: Why does C++ have different data types for integers and floating-point values? That is, why aren’t all

numeric values just the same type?

24 C++ A Beginner’s Guide by Herbert Schildt

A: C++ supplies different data types so that you can write efficient programs. For example, integer

arithmetic is faster than floating-point calculations. Thus, if you don’t need fractional values, then you
don’t need to incur the overhead associated with types float or double. Also, the amount of memory
required for one type of data might be less than that required for another. By supplying different types,
C++ enables you to make the best use of system resources. Finally, some algorithms require (or at least
benefit from) the use of a specific type of data. C++ supplies a number of built-in types to give you the
greatest flexibility.

As you can see, when ivar is divided by 3, a whole-number division is performed and the outcome is
33—the fractional component is lost. However, when dvar is divided by 3, the fractional component is
preserved.

There is one other new thing in the program. Notice this line:

cout << "\n"; // print a blank line

It outputs a newline. Use this statement whenever you want to add a blank line to your output.

Project 1-1 Converting Feet to Meters
Although the preceding sample programs illustrate several important features of the C++ language, they
are not very useful. You may not know much about C++ at this point, but you can still put what you have
learned to work to create a practical program. In this project, we will create a program that converts
feet to meters. The program prompts the user for the number of feet. It then displays that value
converted into meters.

A meter is equal to approximately 3.28 feet. Thus, we need to use floating-point data. To perform the
conversion, the program declares two double variables. One will hold the number of feet, and the
second will hold the conversion to meters.

Step by Step
1. Create a new C++ file called FtoM.cpp. (Remember, in C++ the name of the file is arbitrary, so you

can use another name if you like.)

2. Begin the program with these lines, which explain what the program does, include the iostream
header, and specify the std namespace.

/*
Project 1-1
This program converts feet to meters.
Call this program FtoM.cpp.

*/

25 C++ A Beginner’s Guide by Herbert Schildt

#include <iostream>
using namespace std;

3. Begin main() by declaring the variables f and m:

int main()
{
double f; // holds the length in feet
double m; // holds the conversion to meters

4. Add the code that inputs the number of feet:

cout << "Enter the length in feet: ";
cin >> f; // read the number of feet

5. Add the code that performs the conversion and displays the result:

m = f / 3.28; // convert to meters
cout << f << " feet is " << m << " meters.";

6. Conclude the program, as shown here:

return 0; }

7. Your finished program should look like this:

/*
Project 1-1
This program converts feet to meters.
Call this program FtoM.cpp.

*/

#include <iostream>
using namespace std;

int main()
{

double f; // holds the length in feet
double m; // holds the conversion to meters

cout << "Enter the length in feet: ";
cin >> f; // read the number of feet

m = f / 3.28; // convert to meters
cout << f << " feet is " << m << " meters.";

26 C++ A Beginner’s Guide by Herbert Schildt

return 0;
}

8. Compile and run the program. Here is a sample run:

Enter the length in feet: 5 5 feet is 1.52439 meters.

9. Try entering other values. Also, try changing the program so that it converts meters to feet.

1. What is C++’s keyword for the integer data type?

2. What is double?

3. How do you output a newline?

Answer Key:

1. The integer data type is int.

2. double is the keyword for the double floating-point data type.

3. To output a newline, use \n.

CRITICAL SKILL 1.8: Two Control Statements
Inside a function, execution proceeds from one statement to the next, top to bottom. It is possible,
however, to alter this flow through the use of the various program control statements supported by
C++. Although we will look closely at control statements later, two are briefly introduced here because
we will be using them to write sample programs.

The if Statement
You can selectively execute part of a program through the use of C++’s conditional statement: the if. The
if statement works in C++ much like the IF statement in any other language. For example, it is
syntactically identical to the if statements in C, Java, and C#. Its simplest form is shown here:

if(condition) statement;

where condition is an expression that is evaluated to be either true or false. In C++, true is nonzero and
false is zero. If the condition is true, then the statement will execute. If it is false, then the statement will

27 C++ A Beginner’s Guide by Herbert Schildt

not execute. For example, the following fragment displays the phrase 10 is less than 11 on the screen
because 10 is less than 11.

if(10 < 11) cout << "10 is less than 11";

However, consider the following:

if(10 > 11) cout << "this does not display";

In this case, 10 is not greater than 11, so the cout statement is not executed. Of course, the operands
inside an if statement need not be constants. They can also be variables.

C++ defines a full complement of relational operators that can be used in a conditional expression. They
are shown here:

Operator Meaning
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal to
!= Not equal

Notice that the test for equality is the double equal sign. Here is a program that illustrates the if
statement:

// Demonstrate the if.

#include <iostream>
using namespace std;

28 C++ A Beginner’s Guide by Herbert Schildt

The output generated by this program is shown here:

a is less than b

c contains -1
c is negative

c contains 1
c is non-negative

The for Loop
You can repeatedly execute a sequence of code by creating a loop. C++ supplies a powerful assortment
of loop constructs. The one we will look at here is the for loop. If you are familiar with C# or Java, then
you will be pleased to know that the for loop in C++ works the same way it does in those languages. The
simplest form of the for loop is shown here:

for(initialization; condition; increment) statement;

Here, initialization sets a loop control variable to an initial value. condition is an expression that is tested
each time the loop repeats. As long as condition is true (nonzero), the loop keeps running. The

29 C++ A Beginner’s Guide by Herbert Schildt

increment is an expression that determines how the loop control variable is incremented each time the
loop repeats.

The following program demonstrates the for. It prints the numbers 1 through 100 on the screen.

In the loop, count is initialized to 1. Each time the loop repeats, the condition

count <= 100

is tested. If it is true, the value is output and count is increased by one. When count reaches a value
greater than 100, the condition becomes false, and the loop stops running. In professionally written C++
code, you will almost never see a statement like

count=count+1

because C++ includes a special increment operator that performs this operation more efficiently. The
increment operator is ++ (two consecutive plus signs). The ++ operator increases its operand by 1. For
example, the preceding for statement will generally be written like this:

for(count=1; count <= 100; count++) cout << count << " ";

This is the form that will be used throughout the rest of this book.

C++ also provides a decrement operator, which is specified as – –. It decreases its operand by 1.

1. What does the if statement do?

30 C++ A Beginner’s Guide by Herbert Schildt

2. What does the for statement do?

3. What are C++’s relational operators?

Answer Key:

1. if is C++’s conditional statement.

2. The for is one of C++’s loop statements.

3. The relational operators are ==, !=, <, >, <=, and >=.

CRITICAL SKILL 1.9: Using Blocks of Code
Another key element of C++ is the code block. A code block is a grouping of two or more statements.
This is done by enclosing the statements between opening and closing curly braces. Once a block of
code has been created, it becomes a logical unit that can be used any place that a single statement can.
For example, a block can be a target of the if and for statements. Consider this if statement:

if(w < h) {
v = w * h;
w = 0;

}

Here, if w is less than h, then both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without the other
also executing. The key point here is that whenever you need to logically link two or more statements,
you do so by creating a block. Code blocks allow many algorithms to be implemented with greater clarity
and efficiency.

Here is a program that uses a block of code to prevent a division by zero:

31 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

Enter value: 10
Enter divisor: 2
d does not equal zero so division is OK
10 / 2 is 5

In this case, the target of the if statement is a block of code and not just a single statement. If the
condition controlling the if is true (as it is in the sample run), the three statements inside the block will
be executed. Try entering a zero for the divisor and observe the result. In this case, the code inside the
block is bypassed.

As you will see later in this book, blocks of code have additional properties and uses. However, the main
reason for their existence is to create logically inseparable units of code.

Ask the Expert

Q: Does the use of a code block introduce any runtime inefficiencies? In other words, do the { and }

consume any extra time during the execution of my program?

32 C++ A Beginner’s Guide by Herbert Schildt

A: No. Code blocks do not add any overhead whatsoever. In fact, because of their ability to simplify the

coding of certain algorithms, their use generally increases speed and efficiency.

Semicolons and Positioning
In C++, the semicolon signals the end of a statement. That is, each individual statement must end with a
semicolon. As you know, a block is a set of logically connected statements that is surrounded by opening
and closing braces. A block is not terminated with a semicolon. Since a block is a group of statements,
with a semicolon after each statement, it makes sense that a block is not terminated by a semicolon;
instead, the end of the block is indicated by the closing brace.

C++ does not recognize the end of the line as the end of a statement—only a semicolon terminates a
statement. For this reason, it does not matter where on a line you put a statement.

For example, to C++

x = y;
y = y + 1;
cout << x << " " << y;

is the same as

x = y; y = y + 1; cout << x << " " << y;

Furthermore, the individual elements of a statement can also be put on separate lines. For example, the
following is perfectly acceptable:

cout << "This is a long line. The sum is : " << a + b + c +

 d + e + f;

Breaking long lines in this fashion is often used to make programs more readable. It can also help
prevent excessively long lines from wrapping.

Indentation Practices
You may have noticed in the previous examples that certain statements were indented. C++ is a free-
form language, meaning that it does not matter where you place statements relative to each other on a
line. However, over the years, a common and accepted indentation style has developed that allows for
very readable programs. This book follows that style, and it is recommended that you do so as well.
Using this style, you indent one level after each opening brace and move back out one level after each
closing brace. There are certain statements that encourage some additional indenting; these will be
covered later.

33 C++ A Beginner’s Guide by Herbert Schildt

1. How is a block of code created? What does it do?

2. In C++, statements are terminated by a ____________.

3. All C++ statements must start and end on one line. True or false?

Answer Key:

1. A block is started by a {. It is ended by a }. A block creates a logical unit of code.

2. semicolon

3. False.

Project 1-2 Generating a Table of Feet to Meter Conversions
This project demonstrates the for loop, the if statement, and code blocks to create a program that
displays a table of feet-to-meters conversions. The table begins with 1 foot and ends at 100 feet. After
every 10 feet, a blank line is output. This is accomplished through the use of a variable called counter
that counts the number of lines that have been output. Pay special attention to its use.

Step by Step
1. Create a new file called FtoMTable.cpp.

2. Enter the following program into the file:

34 C++ A Beginner’s Guide by Herbert Schildt

3. Notice how counter is used to output a blank line after each ten lines. It is initially set to zero outside
the for loop. Inside the loop, it is incremented after each conversion. When counter equals 10, a
blank line is output, counter is reset to zero, and the process repeats.

4. Compile and run the program. Here is a portion of the output that you will see. Notice that results
that don’t produce an even result include a fractional component.

1 feet is 0.304878 meters.
2 feet is 0.609756 meters.
3 feet is 0.914634 meters.
4 feet is 1.21951 meters.
5 feet is 1.52439 meters.
6 feet is 1.82927 meters.
7 feet is 2.13415 meters.

35 C++ A Beginner’s Guide by Herbert Schildt

8 feet is 2.43902 meters.
9 feet is 2.7439 meters.
10 feet is 3.04878 meters.
11 feet is 3.35366 meters.
12 feet is 3.65854 meters.
13 feet is 3.96341 meters.
14 feet is 4.26829 meters.
15 feet is 4.57317 meters.
16 feet is 4.87805 meters.
17 feet is 5.18293 meters.
18 feet is 5.4878 meters.
19 feet is 5.79268 meters.
20 feet is 6.09756 meters.
21 feet is 6.40244 meters.
22 feet is 6.70732 meters.
23 feet is 7.0122 meters.
24 feet is 7.31707 meters.
25 feet is 7.62195 meters.
26 feet is 7.92683 meters.
27 feet is 8.23171 meters.
28 feet is 8.53659 meters.
29 feet is 8.84146 meters.
30 feet is 9.14634 meters.
31 feet is 9.45122 meters.
32 feet is 9.7561 meters.
33 feet is 10.061 meters.
34 feet is 10.3659 meters.
35 feet is 10.6707 meters.
36 feet is 10.9756 meters.
37 feet is 11.2805 meters.
38 feet is 11.5854 meters.
39 feet is 11.8902 meters.
40 feet is 12.1951 meters.

5. On your own, try changing this program so that it prints a blank line every 25 lines.

CRITICAL SKILL 1.10: Introducing Functions
A C++ program is constructed from building blocks called functions. Although we will look at the
function in detail in Module 5, a brief overview is useful now. Let’s begin by defining the term function: a
function is a subroutine that contains one or more C++ statements.

Each function has a name, and this name is used to call the function. To call a function, simply specify its
name in the source code of your program, followed by parentheses. For example, assume some function
named MyFunc. To call MyFunc, you would write

36 C++ A Beginner’s Guide by Herbert Schildt

MyFunc();

When a function is called, program control is transferred to that function, and the code contained within
the function is executed. When the function’s code ends, control is transferred back to the caller. Thus,
a function performs a task for other parts of a program.

Some functions require one or more arguments, which you pass when the function is called. Thus, an
argument is a value passed to a function. Arguments are specified between the opening and closing
parentheses when a function is called. For example, if MyFunc() requires an integer argument, then the
following calls MyFunc() with the value 2:

MyFunc(2);

When there are two or more arguments, they are separated by commas. In this book, the term
argument list will refer to comma-separated arguments. Remember, not all functions require
arguments. When no argument is needed, the parentheses are empty.

A function can return a value to the calling code. Not all functions return values, but many do. The value
returned by a function can be assigned to a variable in the calling code by placing the call to the function
on the right side of an assignment statement. For example, if MyFunc() returned a value, it could be
called as shown here:

x = MyFunc(2);

This statement works as follows. First, MyFunc() is called. When it returns, its return value is assigned to
x. You can also use a call to a function in an expression. For example,

x = MyFunc(2) + 10;

In this case, the return value from MyFunc() is added to 10, and the result is assigned to x. In general,
whenever a function’s name is encountered in a statement, it is automatically called so that its return
value can be obtained.

To review: an argument is a value passed into a function. A return value is data that is passed back to
the calling code.

Here is a short program that demonstrates how to call a function. It uses one of C++’s built-in functions,
called abs(), to display the absolute value of a number. The abs() function takes one argument,
converts it into its absolute value, and returns the result.

37 C++ A Beginner’s Guide by Herbert Schildt

Here, the value –10 is passed as an argument to abs(). The abs() function receives the argument with
which it is called and returns its absolute value, which is 10 in this case. This value is assigned to result.
Thus, the program displays “10” on the screen.

Notice one other thing about the preceding program: it includes the header cstdlib. This is the header
required by abs(). Whenever you use a built-in function, you must include its header.

In general, there are two types of functions that will be used by your programs. The first type is written
by you, and main() is an example of this type of function. Later, you will learn how to write other
functions of your own. As you will see, real-world C++ programs contain many user-written functions.

The second type of function is provided by the compiler. The abs() function used by the preceding
program is an example. Programs that you write will generally contain a mix of functions that you create
and those supplied by the compiler.

When denoting functions in text, this book has used and will continue to use a convention that has
become common when writing about C++. A function will have parentheses after its name. For example,
if a function’s name is getval, then it will be written getval() when its name is used in a sentence. This
notation will help you distinguish variable names from function names in this book.

The C++ Libraries
As just explained, abs() is provided with your C++ compiler. This function and many others are found in
the standard library. We will be making use of library functions in the example programs throughout this
book.

C++ defines a large set of functions that are contained in the standard function library. These functions
perform many commonly needed tasks, including I/O operations, mathematical computations, and

38 C++ A Beginner’s Guide by Herbert Schildt

string handling. When you use a library function, the C++ compiler automatically links the object code
for that function to the object code of your program.

Because the C++ standard library is so large, it already contains many of the functions that you will need
to use in your programs. The library functions act as building blocks that you simply assemble. You
should explore your compiler’s library documentation. You may be surprised at how varied the library
functions are. If you write a function that you will use again and again, it too can be stored in a library.

In addition to providing library functions, every C++ compiler also contains a class library, which is an
object-oriented library. However, you will need to wait until you learn about classes and objects before
you can make use of the class library.

1. What is a function?

2. A function is called by using its name. True or false?

3. What is the C++ standard function library?

Answer Key:

1. A function is a subroutine that contains one or more C++ statements.

2. True.

3. The C++ standard function library is a collection of functions supplied by all C++ compilers.

CRITICAL SKILL 1.11: The C++ Keywords
There are 63 keywords currently defined for Standard C++. These are shown in Table 1-1. Together with
the formal C++ syntax, they form the C++ programming language. Also, early versions of C++ defined the
overload keyword, but it is obsolete. Keep in mind that C++ is a case-sensitive language, and it requires
that all keywords be in lowercase.

39 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 1.12: Identifiers
In C++, an identifier is a name assigned to a function, variable, or any other user-defined item. Identifiers
can be from one to several characters long. Variable names can start with any letter of the alphabet or
an underscore. Next comes a letter, a digit, or an underscore. The underscore can be used to enhance
the readability of a variable name, as in line_count. Uppercase and lowercase are seen as different; that
is, to C++, myvar and MyVar are separate names. There is one important identifier restriction: you
cannot use any of the C++ keywords as identifier names. In addition, predefined identifiers such as cout
are also off limits.

Here are some examples of valid identifiers:

Remember, you cannot start an identifier with a digit. Thus, 98OK is invalid. Good programming practice
dictates that you use identifier names that reflect the meaning or usage of the items being named.

40 C++ A Beginner’s Guide by Herbert Schildt

1. Which is the keyword, for, For, or FOR?

2. A C++ identifier can contain what type of characters?

3. Are index21 and Index21 the same identifier?

Answer Key:

1. The keyword is for. In C++, all keywords are in lowercase.

2. A C++ identifier can contain letters, digits, and the underscore.

3. No, C++ is case sensitive.

1. It has been said that C++ sits at the center of the modern programming universe. Explain this
statement.

2. A C++ compiler produces object code that is directly executed by the computer. True or false?

3. What are the three main principles of object-oriented programming?

4. Where do C++ programs begin execution?

5. What is a header?

6. What is <iostream>? What does the following code do?

#include <iostream>

7. What is a namespace?

8. What is a variable?

9. Which of the following variable names is/are invalid?

41 C++ A Beginner’s Guide by Herbert Schildt

a. count

b. _count

c. count27

d. 67count

e. if

10. How do you create a single-line comment? How do you create a multiline comment?

11. Show the general form of the if statement. Show the general form of the for loop.

12. How do you create a block of code?

13. The moon’s gravity is about 17 percent that of Earth’s. Write a program that displays a table that
shows Earth pounds and their equivalent moon weight. Have the table run from 1 to 100 pounds.
Output a newline every 25 pounds.

14. A year on Jupiter (the time it takes for Jupiter to make one full circuit around the Sun) takes about
12 Earth years. Write a program that converts Jovian years to Earth years. Have the user specify the
number of Jovian years. Allow fractional years.

15. When a function is called, what happens to program control?

16. Write a program that averages the absolute value of five values entered by the user. Display the
result.

1 C++ A Beginner’s Guide by Herbert Schildt

Module 2

Introducing Data Types and
Operators

Table of Contents

CRITICAL SKILL 2.1: The C++ Data Types ... 2

Project 2-1 Talking to Mars ... 10

CRITICAL SKILL 2.2: Literals ... 12

CRITICAL SKILL 2.3: A Closer Look at Variables ... 15

CRITICAL SKILL 2.4: Arithmetic Operators ... 17

CRITICAL SKILL 2.5: Relational and Logical Operators .. 20

Project 2-2 Construct an XOR Logical Operation .. 22

CRITICAL SKILL 2.6: The Assignment Operator ... 25

CRITICAL SKILL 2.7: Compound Assignments .. 25

CRITICAL SKILL 2.8: Type Conversion in Assignments ... 26

CRITICAL SKILL 2.9: Type Conversion in Expressions .. 27

CRITICAL SKILL 2.10: Casts... 27

CRITICAL SKILL 2.11: Spacing and Parentheses ... 28

Project 2-3 Compute the Regular Payments on a Loan .. 29

At the core of a programming language are its data types and operators. These elements define the
limits of a language and determine the kind of tasks to which it can be applied. As you might expect, C++
supports a rich assortment of both data types and operators, making it suitable for a wide range of
programming. Data types and operators are a large subject. We will begin here with an examination of
C++’s foundational data types and its most commonly used operators. We will also take a closer look at
variables and examine the expression.

2 C++ A Beginner’s Guide by Herbert Schildt

Why Data Types Are Important
The data type of a variable is important because it determines the operations that are allowed and the
range of values that can be stored. C++ defines several types of data, and each type has unique
characteristics. Because data types differ, all variables must be declared prior to their use, and a variable
declaration always includes a type specifier. The compiler requires this information in order to generate
correct code. In C++ there is no concept of a “type-less” variable.

A second reason that data types are important to C++ programming is that several of the basic types are
closely tied to the building blocks upon which the computer operates: bytes and words. Thus, C++ lets
you operate on the same types of data as does the CPU itself. This is one of the ways that C++ enables
you to write very efficient, system-level code.

CRITICAL SKILL 2.1: The C++ Data Types
C++ provides built-in data types that correspond to integers, characters, floating-point values, and
Boolean values. These are the ways that data is commonly stored and manipulated by a program. As you
will see later in this book, C++ allows you to construct more sophisticated types, such as classes,
structures, and enumerations, but these too are ultimately composed of the built-in types.

At the core of the C++ type system are the seven basic data types shown here:

C++ allows certain of the basic types to have modifiers preceding them. A modifier alters the meaning of
the base type so that it more precisely fits the needs of various situations. The data type modifiers are
listed here:

signed
unsigned
long
short

The modifiers signed, unsigned, long, and short can be applied to int. The modifiers signed and unsigned
can be applied to the char type. The type double can be modified by long. Table 2-1 shows all valid

3 C++ A Beginner’s Guide by Herbert Schildt

combinations of the basic types and the type modifiers. The table also shows the guaranteed minimum
range for each type as specified by the ANSI/ISO C++ standard.

It is important to understand that minimum ranges shown in Table 2-1 are just that: minimum ranges. A
C++ compiler is free to exceed one or more of these minimums, and most compilers do. Thus, the ranges
of the C++ data types are implementation dependent. For example, on computers that use two’s
complement arithmetic (which is nearly all), an integer will have a range of at least −32,768 to 32,767. In
all cases, however, the range of a short int will be a subrange of an int, which will be a subrange of a
long int. The same applies to float, double, and long double. In this usage, the term subrange means a
range narrower than or equal to. Thus, an int and long int can have the same range, but an int cannot be
larger than a long int.

Since C++ specifies only the minimum range a data type must support, you should check your compiler’s
documentation for the actual ranges supported. For example, Table 2-2 shows typical bit widths and
ranges for the C++ data types in a 32-bit environment, such as that used by Windows XP.

Let’s now take a closer look at each data type.

4 C++ A Beginner’s Guide by Herbert Schildt

Integers
As you learned in Module 1, variables of type int hold integer quantities that do not require fractional
components. Variables of this type are often used for controlling loops and conditional statements, and
for counting. Because they don’t have fractional components, operations on int quantities are much
faster than they are on floating-point types.

Because integers are so important to programming, C++ defines several varieties. As shown in Table 2-1,
there are short, regular, and long integers. Furthermore, there are signed and unsigned versions of each.
A signed integer can hold both positive and negative values. By default, integers are signed. Thus, the
use of signed on integers is redundant (but allowed) because the default declaration assumes a signed
value. An unsigned integer can hold only positive values. To create an unsigned integer, use the
unsigned modifier.

The difference between signed and unsigned integers is in the way the high-order bit of the integer is
interpreted. If a signed integer is specified, then the C++ compiler will generate code that assumes that
the high-order bit of an integer is to be used as a sign flag. If the sign flag is 0, then the number is
positive; if it is 1, then the number is negative. Negative numbers are almost always represented using

5 C++ A Beginner’s Guide by Herbert Schildt

the two’s complement approach. In this method, all bits in the number (except the sign flag) are
reversed, and then 1 is added to this number. Finally, the sign flag is set to 1.

Signed integers are important for a great many algorithms, but they have only half the absolute
magnitude of their unsigned relatives. For example, assuming a 16-bit integer, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For a signed value, if the high-order bit were set to 1, the number would then be interpreted as –1
(assuming the two’s complement format). However, if you declared this to be an unsigned int, then
when the high-order bit was set to 1, the number would become 65,535.

To understand the difference between the way that signed and unsigned integers are interpreted by
C++, try this short program:

#include <iostream>

/* This program shows the difference between
 signed and unsigned integers. */

using namespace std;

int main()
{

short int i; // a signed short integer short unsigned
int j; // an unsigned short integer

The output from this program is shown here:

-5536 60000

These values are displayed because the bit pattern that represents 60,000 as a short unsigned integer is
interpreted as –5,536 as short signed integer (assuming 16-bit short integers).

C++ allows a shorthand notation for declaring unsigned, short, or long integers. You can simply use the
word unsigned, short,or long, without the int.The int is implied. For example, the following two
statements both declare unsigned integer variables:

unsigned x;
unsigned int y;

6 C++ A Beginner’s Guide by Herbert Schildt

Characters
Variables of type char hold 8-bit ASCII characters such as A, z, or G, or any other 8-bit quantity. To
specify a character, you must enclose it between single quotes. Thus, this assigns X to the variable ch:

char ch;
ch = 'X';

You can output a char value using a cout statement. For example, this line outputs the value in ch:

cout << "This is ch: " << ch;

This results in the following output:

This is ch: X

The char type can be modified with signed or unsigned. Technically, whether char is signed or unsigned
by default is implementation-defined. However, for most compilers char is signed. In these
environments, the use of signed on char is also redundant. For the rest of this book, it will be assumed
that chars are signed entities.

The type char can hold values other than just the ASCII character set. It can also be used as a “small”
integer with the range typically from –128 through 127 and can be substituted for an int when the
situation does not require larger numbers. For example, the following program uses a char variable to
control the loop that prints the alphabet on the screen:

The for loop works because the character A is represented inside the computer by the value 65, and the
values for the letters A to Z are in sequential, ascending order. Thus, letter is initially set to ‘A’. Each time
through the loop, letter is incremented. Thus, after the first iteration, letter is equal to ‘B’.

The type wchar_t holds characters that are part of large character sets. As you may know, many human
languages, such as Chinese, define a large number of characters, more than will fit within the 8 bits
provided by the char type. The wchar_t type was added to C++ to accommodate this situation. While we

7 C++ A Beginner’s Guide by Herbert Schildt

won’t be making use of wchar_t in this book, it is something that you will want to look into if you are
tailoring programs for the international market.

1. What are the seven basic types?

2. What is the difference between signed and unsigned integers?

3. Can a char variable be used like a little integer?

Answer Key:

1. The seven basic types are char, wchar_t, int, float, double, bool, and void.

2. A signed integer can hold both positive and negative values. An unsigned integer can hold only positive values.

3. Yes.

Ask the Expert

Q: Why does C++ specify only minimum ranges for its built-in types rather than stating these precisely?

A: By not specifying precise ranges, C++ allows each compiler to optimize the data types for the

execution environment. This is part of the reason that C++ can create high-performance software. The
ANSI/ISO C++ standard simply states that the built-in types must meet certain requirements. For
example, it states that an int will “have the natural size suggested by the architecture of the execution
environment.” Thus, in a 32-bit environment, an int will be 32 bits long. In a 16-bit environment, an int
will be 16 bits long. It would be an inefficient and unnecessary burden to force a 16-bit compiler to
implement int with a 32-bit range, for example. C++’s approach avoids this. Of course, the C++ standard
does specify a minimum range for the built-in types that will be available in all environments. Thus, if
you write your programs in such a way that these minimal ranges are not exceeded, then your program
will be portable to other environments. One last point: Each C++ compiler specifies the range of the
basic types in the header <climits>.

8 C++ A Beginner’s Guide by Herbert Schildt

Floating-Point Types
Variables of the types float and double are employed either when a fractional component is required or
when your application requires very large or small numbers. The difference between a float and a
double variable is the magnitude of the largest (and smallest) number that each one can hold. Typically,
a double can store a number approximately ten times larger than a float. Of the two, double is the most
commonly used. One reason for this is that many of the math functions in the C++ function library use
double values. For example, the sqrt() function returns a double value that is the square root of its
double argument. Here, sqrt() is used to compute the length of the hypotenuse given the lengths of the
two opposing sides.

The output from the program is shown here:

Hypotenuse is 6.40312

One other point about the preceding example: Because sqrt() is part of the C++ standard function
library, it requires the standard header <cmath>, which is included in the program.

The long double type lets you work with very large or small numbers. It is most useful in scientific
programs. For example, the long double type might be useful when analyzing astronomical data.

The bool Type
The bool type is a relatively recent addition to C++. It stores Boolean (that is, true/false) values. C++
defines two Boolean constants, true and false, which are the only two values that a bool value can have.
Before continuing, it is important to understand how true and false are defined by C++. One of the
fundamental concepts in C++ is that any nonzero value is interpreted as true and zero is false. This

9 C++ A Beginner’s Guide by Herbert Schildt

concept is fully compatible with the bool data type because when used in a Boolean expression, C++
automatically converts any nonzero value into true. It automatically converts zero into false. The reverse
is also true; when used in a non-Boolean expression, true is converted into 1, and false is converted into
zero. The convertibility of zero and nonzero values into their Boolean equivalents is especially important
when using control statements, as you will see in Module 3. Here is a program that demonstrates the
bool type:

// Demonstrate bool values.

#include <iostream>

The output generated by this program is shown here:

b is 0
b is 1
This is executed.
10 > 9 is 1

There are three interesting things to notice about this program. First, as you can see, when a bool value
is output using cout, 0 or 1 is displayed. As you will see later in this book, there is an output option that
causes the words “false” and “true” to be displayed.
Second, the value of a bool variable is sufficient, by itself, to control the if statement. There is no need to
write an if statement like this:

if(b == true) ...

10 C++ A Beginner’s Guide by Herbert Schildt

Third, the outcome of a relational operator, such as <, is a Boolean value. This is why the expression 10 >
9 displays the value 1. Further, the extra set of parentheses around 10 > 9 is necessary because the <<
operator has a higher precedence than the >.

void
The void type specifies a valueless expression. This probably seems strange now, but you will see how
void is used later in this book.

1. What is the primary difference between float and double?

2. What values can a bool variable have? To what Boolean value does zero convert?

3. What is void?

Answer Key:

1. The primary difference between float and double is in the magnitude of the values they can hold.

2. Variables of type bool can be either true or false. Zero converts to false.

3. void is a type that stands for valueless.

Project 2-1 Talking to Mars
At its closest point to Earth, Mars is approximately 34,000,000 miles away. Assuming there is someone
on Mars that you want to talk with, what is the delay between the time a radio signal leaves Earth and
the time it arrives on Mars? This project creates a program that answers this question. Recall that radio
signals travel at the speed of light, approximately 186,000 miles per second. Thus, to compute the delay,
you will need to divide the distance by the speed of light. Display the delay in terms of seconds and also
in minutes.

Step by Step
1. Create a new file called Mars.cpp.

2. To compute the delay, you will need to use floating-point values. Why? Because the time interval
will have a fractional component. Here are the variables used by the program:

double distance;

11 C++ A Beginner’s Guide by Herbert Schildt

double lightspeed;
double delay;
double delay_in_min;

3. Give distance and lightspeed initial values, as shown here:

distance = 34000000.0; // 34,000,000 miles
lightspeed = 186000.0; // 186,000 per second

4. To compute the delay, divide distance by lightspeed. This yields the delay in seconds. Assign this
value to delay and display the results. These steps are shown here:

delay = distance / lightspeed;
cout << "Time delay when talking to Mars: " << delay << " seconds.\n";

5. Divide the number of seconds in delay by 60 to obtain the delay in minutes; display that result using
these lines of code:

delay_in_min = delay / 60.0;

6. Here is the entire Mars.cpp program listing:

/*

Project 2-1
Talking to Mars
*/

#include <iostream>
using namespace std;

int main()
{

double distance;
double lightspeed;
double delay;
double delay_in_min;

distance = 34000000.0; // 34,000,000 miles
lightspeed = 186000.0; // 186,000 per second

delay = distance / lightspeed;

cout << "Time delay when talking to Mars: " << delay << " seconds.\n";

delay_in_min = delay / 60.0;

cout << "This is " << delay_in_min << " minutes.";

12 C++ A Beginner’s Guide by Herbert Schildt

return 0;

}

7. Compile and run the program. The following result is displayed:

Time delay when talking to Mars: 182.796 seconds.
This is 3.04659 minutes.

8. On your own, display the time delay that would occur in a bidirectional conversation with Mars.

CRITICAL SKILL 2.2: Literals
Literals refer to fixed, human-readable values that cannot be altered by the program. For example, the
value 101 is an integer literal. Literals are also commonly referred to as constants. For the most part,
literals and their usage are so intuitive that they have been used in one form or another by all the
preceding sample programs. Now the time has come to explain them formally.

C++ literals can be of any of the basic data types. The way each literal is represented depends upon its
type. As explained earlier, character literals are enclosed between single quotes. For example, ‘a’ and ‘%’
are both character literals.

Integer literals are specified as numbers without fractional components. For example, 10 and –100 are
integer constants. Floating-point literals require the use of the decimal point followed by the number’s
fractional component. For example, 11.123 is a floating-point constant. C++ also allows you to use
scientific notation for floating-point numbers.

All literal values have a data type, but this fact raises a question. As you know, there are several different
types of integers, such as int, short int, and unsigned long int. There are also three different
floating-point types: float, double, and long double. The question is: How does the compiler determine
the type of a literal? For example, is 123.23 a float or a double? The answer to this question has two
parts. First, the C++ compiler automatically makes certain assumptions about the type of a literal and,
second, you can explicitly specify the type of a literal, if you like.

By default, the C++ compiler fits an integer literal into the smallest compatible data type that will hold it,
beginning with int. Therefore, assuming 16-bit integers, 10 is int by default, but 103,000 is long. Even
though the value 10 could be fit into a char, the compiler will not do this because it means crossing type
boundaries.

By default, floating-point literals are assumed to be double. Thus, the value 123.23 is of type double.

For virtually all programs you will write as a beginner, the compiler defaults are perfectly adequate. In
cases where the default assumption that C++ makes about a numeric literal is not what you want, C++
allows you to specify the exact type of numeric literal by using a suffix. For floating-point types, if you
follow the number with an F, the number is treated as a float. If you follow it with an L, the number
becomes a long double. For integer types, the U suffix stands for unsigned and the L for long. (Both the
U and the L must be used to specify an unsigned long.) Some examples are shown here:

13 C++ A Beginner’s Guide by Herbert Schildt

Hexadecimal and Octal Literals
As you probably know, in programming it is sometimes easier to use a number system based on 8 or 16
instead of 10. The number system based on 8 is called octal, and it uses the digits 0 through 7. In octal,
the number 10 is the same as 8 in decimal. The base-16 number system is called hexadecimal and uses
the digits 0 through 9 plus the letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For
example, the hexadecimal number 10 is 16 in decimal. Because of the frequency with which these two
number systems are used, C++ allows you to specify integer literals in hexadecimal or octal instead of
decimal. A hexadecimal literal must begin with 0x (a zero followed by an x). An octal literal begins with a
zero. Here are some examples:

hex = 0xFF; // 255 in decimal
oct = 011; // 9 in decimal

String Literals
C++ supports one other type of literal in addition to those of the predefined data types: the string. A
string is a set of characters enclosed by double quotes. For example, “this is a test” is a string. You have
seen examples of strings in some of the cout statements in the preceding sample programs. Keep in
mind one important fact: although C++ allows you to define string constants, it does not have a built-in
string data type. Instead, as you will see a little later in this book, strings are supported in C++ as
character arrays. (C++ does, however, provide a string type in its class library.)

Ask the Expert

Q: You showed how to specify a char literal. Is a wchar_t literal specified in the same way?

A: No. A wide-character constant (that is, one that is of type wchar_t) is preceded with the character L.

For example:

wchar_t wc;
wc = L'A';

14 C++ A Beginner’s Guide by Herbert Schildt

Here, wc is assigned the wide-character constant equivalent of A. You will not use wide characters often
in your normal day-to-day programming, but they are something that might be of importance if you
need to internationalize your program.

Character Escape Sequences
Enclosing character constants in single quotes works for most printing characters, but a few characters,
such as the carriage return, pose a special problem when a text editor is used. In addition, certain other
characters, such as the single and double quotes, have special meaning in C++, so you cannot use them
directly. For these reasons, C++ provides the character escape sequences, sometimes referred to as
backslash character constants, shown in Table 2-3, so that you can enter them into a program. As you
can see, the \n that you have been using is one of the escape sequences.

Ask the Expert

Q: Is a string consisting of a single character the same as a character literal? For example, is “k” the

same as ‘k’?

A: No. You must not confuse strings with characters. A character literal represents a single letter of

type char. A string containing only one letter is still a string. Although strings consist of characters, they
are not the same type.

15 C++ A Beginner’s Guide by Herbert Schildt

The following sample program illustrates a few of the escape sequences:

Here, the first cout statement uses tabs to position the words “two” and “three”. The second cout
statement displays the characters 123. Next, two backspace characters are output, which deletes the 2
and 3. Finally, the characters 4 and 5 are displayed.

1. By default, what is the type of the literal 10? What is the type of the literal 10.0?

2. How do you specify 100 as a long int? How do you specify 100 as an unsigned int?

3. What is \b?

Answer Key:

1. 10 is an int and 10.0 is a double.

2. 100 as a long int is 100L. 100 as an unsigned int is 100U.

3. \b is the escape sequence that causes a backspace.

CRITICAL SKILL 2.3: A Closer Look at Variables
Variables were introduced in Module 1. Here we will take a closer look at them. As you learned,
variables are declared using this form of statement:

16 C++ A Beginner’s Guide by Herbert Schildt

type var-name;

where type is the data type of the variable and var-name is its name. You can declare a variable of any
valid type. When you create a variable, you are creating an instance of its type. Thus, the capabilities of
a variable are determined by its type. For example, a variable of type bool stores Boolean values. It
cannot be used to store floating-point values. Furthermore, the type of a variable cannot change during
its lifetime. An int variable cannot turn into a double variable, for example.

Initializing a Variable
You can assign a value to a variable at the same time that it is declared. To do this, follow the variable’s
name with an equal sign and the value being assigned. This is called a variable initialization. Its general
form is shown here:

type var = value;

Here, value is the value that is given to var when var is created.

Here are some examples:

int count = 10; // give count an initial value of 10
char ch = 'X'; // initialize ch with the letter X
float f = 1.2F; // f is initialized with 1.2

When declaring two or more variables of the same type using a comma separated list, you can give one
or more of those variables an initial value. For example,
int a, b = 8, c = 19, d; // b and c have initializations

In this case, only b and c are initialized.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, C++ allows variables to be
initialized dynamically, using any expression valid at the time the variable is declared. For example, here
is a short program that computes the volume of a cylinder given the radius of its base and its height:

17 C++ A Beginner’s Guide by Herbert Schildt

Here, three local variables—radius, height, and volume—are declared. The first two, radius and height,
are initialized by constants. However, volume is initialized dynamically to the volume of the cylinder. The
key point here is that the initialization expression can use any element valid at the time of the
initialization, including calls to functions, other variables, or literals.

Operators
C++ provides a rich operator environment. An operator is a symbol that tells the compiler to perform a
specific mathematical or logical manipulation. C++ has four general classes of operators: arithmetic,
bitwise, relational, and logical. C++ also has several additional operators that handle certain special
situations. This chapter will examine the arithmetic, relational, and logical operators. We will also
examine the assignment operator. The bitwise and other special operators are examined later.

CRITICAL SKILL 2.4: Arithmetic Operators
C++ defines the following arithmetic operators:

The operators +, –, *, and / all work the same way in C++ as they do in algebra. These can be applied to
any built-in numeric data type. They can also be applied to values of type char.

18 C++ A Beginner’s Guide by Herbert Schildt

The % (modulus) operator yields the remainder of an integer division. Recall that when / is applied to an
integer, any remainder will be truncated; for example, 10/3 will equal 3 in integer division. You can
obtain the remainder of this division by using the % operator. For example, 10 % 3 is 1. In C++, the % can
be applied only to integer operands; it cannot be applied to floating-point types.

The following program demonstrates the modulus operator:

// Demonstrate the modulus operator.

#include <iostream>
using namespace std;

int main()
{

int x, y;

x = 10;
y = 3;
cout << x << " / " << y << " is " << x / y <<
 " with a remainder of " << x % y << "\n";

x = 1;
y = 2;
cout << x << " / " << y << " is " << x / y << "\n" <<
 x << " % " << y << " is " << x % y;

return 0;

}

The output is shown here:
10 / 3 is 3 with a remainder of 1
1 / 2 is 0
1 % 2 is 1

Increment and Decrement
Introduced in Module 1, the ++ and the – – are the increment and decrement operators. They have
some special properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts 1. Therefore,

x = x + 1;

is the same as

x++;

19 C++ A Beginner’s Guide by Herbert Schildt

and

x = x - 1;

is the same as

--x;

Both the increment and decrement operators can either precede (prefix) or follow (postfix) the operand.
For example,

x = x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In this example, there is no difference whether the increment is applied as a prefix or a postfix.
However, when an increment or decrement is used as part of a larger expression, there is an important
difference. When an increment or decrement operator precedes its operand, C++ will perform the
operation prior to obtaining the operand’s value for use by the rest of the expression. If the operator
follows its operand, then C++ will obtain the operand’s value before incrementing or decrementing it.
Consider the following:

x = 10; y = ++x;

In this case, y will be set to 11. However, if the code is written as

x = 10; y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it happens. There are
significant advantages in being able to control when the increment or decrement operation takes place.

The precedence of the arithmetic operators is shown here:

Operators on the same precedence level are evaluated by the compiler from left to right. Of course,
parentheses may be used to alter the order of evaluation. Parentheses are treated by C++ in the same
way that they are by virtually all other computer languages: they force an operation, or a set of
operations, to have a higher precedence level.

20 C++ A Beginner’s Guide by Herbert Schildt

Ask the Expert

Q: Does the increment operator ++ have anything to do with the name C++?

A: Yes! As you know, C++ is built upon the C language. C++ adds to C several enhancements, most of

which support object-oriented programming. Thus, C++ represents an incremental improvement to C,
and the addition of the ++ (which is, of course, the increment operator) to the name C is a fitting way to
describe C++.

Stroustrup initially named C++ “C with Classes,” but at the suggestion of Rick Mascitti, he later changed
the name to C++. While the new language was already destined for success, the adoption of the name
C++ virtually guaranteed its place in history because it was a name that every C programmer would
instantly recognize!

CRITICAL SKILL 2.5: Relational and Logical Operators
In the terms relational operator and logical operator, relational refers to the relationships that values
can have with one another, and logical refers to the ways in which true and false values can be
connected together. Since the relational operators produce true or false results, they often work with
the logical operators. For this reason, they will be discussed together here.

The relational and logical operators are shown in Table 2-4. Notice that in C++, not equal to is
represented by != and equal to is represented by the double equal sign, ==. In C++, the outcome of a
relational or logical expression produces a bool result. That is, the outcome of a relational or logical
expression is either true or false.

NOTE: For older compilers, the outcome of a relational or logical expression will be an integer value of
either 0 or 1. This difference is mostly academic, though, because C++ automatically converts true into 1
and false into 0, and vice versa as explained earlier.

The operands for a relational operator can be of nearly any type as long as they can be meaningfully
compared. The operands to the logical operators must produce a true or false result. Since any nonzero
value is true and zero is false, this means that the logical operators can be used with any expression that
evaluates to a zero or nonzero result. Thus, any expression other than one that has a void result can be
used.

21 C++ A Beginner’s Guide by Herbert Schildt

The logical operators are used to support the basic logical operations AND, OR, and NOT, according to
the following truth table:

Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.

#include <iostream>
using namespace std;

int main()
{

int i, j;
bool b1, b2;

i = 10;
j = 11;
if(i < j) cout << "i < j\n";
if(i <= j) cout << "i <= j\n";

22 C++ A Beginner’s Guide by Herbert Schildt

if(i != j) cout << "i != j\n";
if(i == j) cout << "this won't execute\n";
if(i >= j) cout << "this won't execute\n";
if(i > j) cout << "this won't execute\n";

b1 = true;
b2 = false;
if(b1 && b2) cout << "this won't execute\n";
if(!(b1 && b2)) cout << "!(b1 && b2) is true\n";
if(b1 || b2) cout << "b1 || b2 is true\n";

return 0;

}

The output from the program is shown here:
i < j
i <= j
i != j
!(b1 && b2) is true
b1 || b2 is true

Both the relational and logical operators are lower in precedence than the arithmetic operators. This
means that an expression like 10 > 1+12 is evaluated as if it were written 10 > (1+12). The result is, of
course, false.
You can link any number of relational operations together using logical operators. For example, this
expression joins three relational operations:

var > 15 || !(10 < count) && 3 <= item

The following table shows the relative precedence of the relational and logical operators:

Project 2-2 Construct an XOR Logical Operation
C++ does not define a logical operator that performs an exclusive-OR operation,usually referred to as
XOR. The XOR is a binary operation that yields true when one and only one operand is true. It has this
truth table:

23 C++ A Beginner’s Guide by Herbert Schildt

Some programmers have called the omission of the XOR a flaw. Others argue that the absence of the
XOR logical operator is simply part of C++’s streamlined design, which avoids redundant features. They
point out that it is easy to create an XOR logical operation using the three logical operators that C++
does provide.

In this project, you will construct an XOR operation using the &&, ||, and ! operators. You can decide for
yourself if the omission of an XOR logical operator is a design flaw or an elegant feature!

Step by Step
1. Create a new file called XOR.cpp.

2. Assuming two Boolean values, p and q, a logical XOR is constructed like this:

(p || q) && !(p && q)

Let’s go through this carefully. First, p is ORed with q. If this result is true, then at least one of the
operands is true. Next, p is ANDed with q. This result is true if both operands are true. This result is
then inverted using the NOT operator. Thus, the outcome of !(p && q) will be true when either p, q,
or both are false. Finally, this result is ANDed with the result of (p || q). Thus, the entire expression
will be true when one but not both operands is true.

3. Here is the entire XOR.cpp program listing. It demonstrates the XOR operation for all four possible
combinations of true/false values.

/*
Project 2-2
Create an XOR using the C++ logical operators.

*/

#include <iostream>
#include <cmath>

using namespace std;

int main()
{

bool p, q;

p = true;

24 C++ A Beginner’s Guide by Herbert Schildt

q = true;

cout << p << " XOR " << q << " is " <<
 ((p || q) && !(p && q)) << "\n";

p = false;
q = true;

cout << p << " XOR " << q << " is " <<
 ((p || q) && !(p && q)) << "\n";

p = true;
q = false;

cout << p << " XOR " << q << " is " <<
 ((p || q) && !(p && q)) << "\n";

p = false;
q = false;

cout << p << " XOR " << q << " is " <<
 ((p || q) && !(p && q)) << "\n";

return 0;

}

4. Compile and run the program. The following output is produced:

1 XOR 1 is 0
0 XOR 1 is 1
1 XOR 0 is 1
0 XOR 0 is 0

5. Notice the outer parentheses surrounding the XOR operation inside the cout statements. They are
necessary because of the precedence of C++’s operators. The << operator is higher in precedence
than the logical operators. To prove this, try removing the outer parentheses, and then attempt to
compile the program. As you will see, an error will be reported.

1. What does the % operator do? To what types can it be applied?

25 C++ A Beginner’s Guide by Herbert Schildt

2. How do you declare an int variable called index with an initial value of 10?

3. Of what type is the outcome of a relational or logical expression?

Answer Key:

1. The % is the modulus operator, which returns the remainder of an integer division. It can be applied to integer types.

2. int index = 10;

3. The result of a relational or logical expression is of type bool.

CRITICAL SKILL 2.6: The Assignment Operator
You have been using the assignment operator since Module 1. Now it is time to take a formal look at it.
The assignment operator is the single equal sign, =. The assignment operator works in C++ much as it
does in any other computer language. It has this general form:

var = expression;

Here, the value of the expression is given to var. The assignment operator does have one interesting
attribute: it allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;
x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y,and z to 100 using a single statement. This works because the = is an
operator that yields the value of the right-hand expression. Thus, the value of z = 100 is 100, which is
then assigned to y, which in turn is assigned to x. Using a “chain of assignment” is an easy way to set a
group of variables to a common value.

CRITICAL SKILL 2.7: Compound Assignments
C++ provides special compound assignment operators that simplify the coding of certain assignment
statements. Let’s begin with an example. The assignment statement shown here:

x = x + 10;

can be written using a compound assignment as

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10. Here is another example. The
statement

x = x - 100;

26 C++ A Beginner’s Guide by Herbert Schildt

is the same as

x -= 100;

Both statements assign to x the value of x minus 100. There are compound assignment operators for
most of the binary operators (that is, those that require two operands). Thus, statements of the form

var = var op expression;

can be converted into this compound form:

var op = expression;

Because the compound assignment statements are shorter than their noncompound equivalents, the
compound assignment operators are also sometimes called the shorthand assignment operators.

The compound assignment operators provide two benefits. First, they are more compact than their
“longhand” equivalents. Second, they can result in more efficient executable code (because the operand
is evaluated only once). For these reasons, you will often see the compound assignment operators used
in professionally written C++ programs.

CRITICAL SKILL 2.8: Type Conversion in Assignments
When variables of one type are mixed with variables of another type, a type conversion will occur. In an
assignment statement, the type conversion rule is easy: The value of the right side (expression side) of
the assignment is converted to the type of the left side (target variable), as illustrated here:

int x;
char ch;
float f;

ch = x; /* line 1 */
x = f; /* line 2 */
f = ch; /* line 3 */
f = x; /* line 4 */

In line 1, the high-order bits of the integer variable x are lopped off, leaving ch with the lower 8 bits. If x
were between –128 and 127, ch and x would have identical values. Otherwise, the value of ch would
reflect only the lower-order bits of x. In line 2, x will receive the nonfractional part of f. In line 3, f will
convert the 8-bit integer value stored in ch to the same value in the floating-point format. This also
happens in line 4, except that f will convert an integer value into floating-point format.

When converting from integers to characters and long integers to integers, the appropriate number of
high-order bits will be removed. In many 32-bit environments, this means that 24 bits will be lost when
going from an integer to a character, and 16 bits will be lost when going from an integer to a short
integer. When converting from a floating-point type to an integer, the fractional part will be lost. If the
target type is not large enough to store the result, then a garbage value will result.

27 C++ A Beginner’s Guide by Herbert Schildt

A word of caution: Although C++ automatically converts any built-in type into another, the results won’t
always be what you want. Be careful when mixing types in an expression.

Expressions
Operators, variables, and literals are constituents of expressions. You might already know the general
form of an expression from other programming experience or from algebra. However, a few aspects of
expressions will be discussed now.

CRITICAL SKILL 2.9: Type Conversion in Expressions
When constants and variables of different types are mixed in an expression, they are converted to the
same type. First, all char and short int values are automatically elevated to int. This process is called
integral promotion. Next, all operands are converted “up” to the type of the largest operand, which is
called type promotion. The promotion is done on an operation-byoperation basis. For example, if one
operand is an int and the other a long int, then the int is promoted to long int. Or, if either operand is a
double, the other operand is promoted to double. This means that conversions such as that from a char
to a double are perfectly valid. Once a conversion has been applied, each pair of operands will be of the
same type, and the result of each operation will be the same as the type of both operands.

Converting to and from bool
As mentioned earlier, values of type bool are automatically converted into the integers 0 or 1 when used
in an integer expression. When an integer result is converted to type bool, 0 becomes false and nonzero
becomes true. Although bool is a fairly recent addition to C++, the automatic conversions to and from
integers mean that it has virtually no impact on older code. Furthermore, the automatic conversions
allow C++ to maintain its original definition of true and false as zero and nonzero.

CRITICAL SKILL 2.10: Casts

It is possible to force an expression to be of a specific type by using a construct called a cast. A cast is an
explicit type conversion. C++ defines five types of casts. Four allow detailed and sophisticated control
over casting and are described later in this book after objects have been explained. However, there is
one type of cast that you can use now. It is C++’s most general cast because it can transform any type
into any other type. It was also the only type of cast that early versions of C++ supported. The general
form of this cast is

(type) expression

where type is the target type into which you want to convert the expression. For example, if you wish to
make sure the expression x/2 is evaluated to type float, you can write

(float) x / 2

Casts are considered operators. As an operator, a cast is unary and has the same precedence as any
other unary operator.

28 C++ A Beginner’s Guide by Herbert Schildt

There are times when a cast can be very useful. For example, you may wish to use an integer for loop
control, but also perform computation on it that requires a fractional part, as in the program shown
here:

Here is the output from this program:

1/ 2 is: 0.5
2/ 2 is: 1
3/ 2 is: 1.5
4/ 2 is: 2
5/ 2 is: 2.5
6/ 2 is: 3
7/ 2 is: 3.5
8/ 2 is: 4
9/ 2 is: 4.5
10/ 2 is: 5

Without the cast (float) in this example, only an integer division would be performed. The cast ensures
that the fractional part of the answer will be displayed.

CRITICAL SKILL 2.11: Spacing and Parentheses
An expression in C++ can have tabs and spaces in it to make it more readable. For example, the following
two expressions are the same, but the second is easier to read:

x=10/y*(127/x);
x = 10 / y * (127/x);
Parentheses increase the precedence of the operations contained within them, just like in algebra. Use
of redundant or additional parentheses will not cause errors or slow down the execution of the
expression. You are encouraged to use parentheses to make clear the exact order of evaluation, both for
yourself and for others who may have to figure out your program later. For example, which of the
following two expressions is easier to read?

29 C++ A Beginner’s Guide by Herbert Schildt

x = y/3-34*temp+127;
x = (y/3) - (34*temp) + 127;

Project 2-3 Compute the Regular Payments on a Loan
In this project, you will create a program that computes the regular payments on a loan, such as a car
loan. Given the principal, the length of time, number of payments per year, and the interest rate, the
program will compute the payment. Since this is a financial calculation, you will need to use
floating-point data types for the computations. Since double is the most commonly used floating-point
type, we will use it in this project. This project also demonstrates another C++ library function: pow().

To compute the payments, you will use the following formula:

where IntRate specifies the interest rate, Principal contains the starting balance, PayPerYear specifies
the number of payments per year, and NumYears specifies the length of the loan in years.

Notice that in the denominator of the formula, you must raise one value to the power of another. To do
this, you will use pow(). Here is how you will call it:

result = pow(base, exp);

pow() returns the value of base raised to the exp power. The arguments to pow() are double values,
and pow() returns a value of type double.

Step by Step
1. Create a new file called RegPay.cpp.

2. Here are the variables that will be used by the program:

double Principal; // original principal
double IntRate; // interest rate, such as 0.075
double PayPerYear; // number of payments per year
double NumYears; // number of years
double Payment; // the regular payment
double numer, denom; // temporary work variables
double b, e; // base and exponent for call to pow()

Notice how each variable declaration is followed by a comment that describes its use. This helps
anyone reading your program understand the purpose of each variable. Although we won’t include

30 C++ A Beginner’s Guide by Herbert Schildt

such detailed comments for most of the short programs in this book, it is a good practice to follow
as your programs become longer and more complicated.

3. Add the following lines of code, which input the loan information:

cout << "Enter principal: ";
cin >> Principal;

cout << "Enter interest rate (i.e., 0.075): ";
cin >> IntRate;

cout << "Enter number of payments per year: ";
cin >> PayPerYear;

cout << "Enter number of years: ";
cin >> NumYears;

4. Add the lines that perform the financial calculation:
numer = IntRate * Principal / PayPerYear;

e = -(PayPerYear * NumYears);
b = (IntRate / PayPerYear) + 1;

denom = 1 - pow(b, e);

Payment = numer / denom;

5. Finish the program by outputting the regular payment, as shown here:
cout << "Payment is " << Payment;

6. Here is the entire RegPay.cpp program listing:

/*
Project 2-3
Compute the regular payments for a loan.
Call this file RegPay.cpp

*/

#include <iostream>
#include <cmath>
using namespace std;

int main() {

double Principal; // original principal
double IntRate; // interest rate, such as 0.075
double PayPerYear; // number of payments per year
double NumYears; // number of years

31 C++ A Beginner’s Guide by Herbert Schildt

double Payment; // the regular payment
double numer, denom; // temporary work variables
double b, e; // base and exponent for call to pow()

cout << "Enter principal: ";
cin >> Principal;

cout << "Enter interest rate (i.e., 0.075): ";
cin >> IntRate;

cout << "Enter number of payments per year: ";
cin >> PayPerYear;

cout << "Enter number of years: ";
cin >> NumYears;

numer = IntRate * Principal / PayPerYear;

e = -(PayPerYear * NumYears);
b = (IntRate / PayPerYear) + 1;

denom = 1 - pow(b, e);

Payment = numer / denom;

cout << "Payment is " << Payment;

return 0;

}
Here is a sample run:

Enter principal: 10000
Enter interest rate (i.e., 0.075): 0.075
Enter number of payments per year: 12
Enter number of years: 5
Payment is 200.379

7. On your own, have the program display the total amount of interest paid over the life of the loan.

1. What type of integers are supported by C++?

2. By default, what type is 12.2?

32 C++ A Beginner’s Guide by Herbert Schildt

3. What values can a bool variable have?

4. What is the long integer data type?

5. What escape sequence produces a tab? What escape sequence rings the bell?

6. A string is surrounded by double quotes. True or false?

7. What are the hexadecimal digits?

8. Show the general form for initializing a variable when it is declared.

9. What does the % do? Can it be used on floating-point values?

10. Explain the difference between the prefix and postfix forms of the increment operator.

11. Which of the following are logical operators in C++?

a. &&

b. ##

c. ||

d. $$

e. !

12. How can

x = x + 12;

be rewritten?

13. What is a cast?

14. Write a program that finds all of the prime numbers between 1 and 100.

1 C++ A Beginner’s Guide by Herbert Schildt

Module3

Program Control
Statements

Table of Contents

CRITICAL SKILL 3.1: The if Statement .. 2

CRITICAL SKILL 3.2: The switch Statement .. 7

CRITICAL SKILL 3.3: The for Loop... 13

CRITICAL SKILL 3.4: The while Loop .. 19

CRITICAL SKILL 3.5: The do-while Loop ... 21

CRITICAL SKILL 3.6: Using break to Exit a Loop ... 27

CRITICAL SKILL 3.7: Using continue ... 29

CRITICAL SKILL 3.8: Nested Loops ... 34

CRITICAL SKILL 3.9: Using the goto Statement ... 35

This module discusses the statements that control a program’s flow of execution. There are three
categories of : selection statements, which include the if and the switch; iteration statements, which
include the for, while, and do-while loops; and jump statements, which include break, continue, return,
and goto. Except for return, which is discussed later in this book, the remaining control statements,
including the if and for statements to which you have already had a brief introduction, are examined
here.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 3.1: The if Statement
Module 1 introduced the if statement. Now it is time to examine it in detail. The complete form of the if
statement is

where the targets of the if and else are single statements. The else clause is optional. The targets of both
the if and else can also be blocks of statements. The general form of the if using blocks of statements is

if(expression) {
statement sequence

}
else {

statement sequence
}

If the conditional expression is true, the target of the if will be executed; otherwise, the target of the
else, if it exists, will be executed. At no time will both be executed. The conditional expression
controlling the if may be any type of valid C++ expression that produces a true or false result.

The following program demonstrates the if by playing a simple version of the “guess the magic number”
game. The program generates a random number, prompts for your guess, and prints the message **
Right ** if you guess the magic number. This program also introduces another C++ library function,
called rand(), which returns a randomly selected integer value. It requires the <cstdlib> header.

3 C++ A Beginner’s Guide by Herbert Schildt

This program uses the ‘if’ statement to determine whether the user’s guess matches the magic number.
If it does, the message is printed on the screen. Taking the Magic Number program further, the next
version uses the else to print a message when the wrong number is picked:

The Conditional Expression
Sometimes newcomers to C++ are confused by the fact that any valid C++ expression can be used to
control the if. That is, the conditional expression need not be restricted to only those involving the
relational and logical operators, or to operands of type bool. All that is required is that the controlling
expression evaluate to either a true or false result. As you should recall from the previous module, a
value of 0 is automatically converted into false, and all non-zero values are converted to true. Thus, any
expression that results in a 0 or non-zero value can be used to control the if. For example, this program
reads two integers from the keyboard and displays the quotient. To avoid a divide-by-zero error, an if
statement, controlled by the second.

4 C++ A Beginner’s Guide by Herbert Schildt

Notice that b (the divisor) is tested for zero using if(b). This approach works because when b is zero, the
condition controlling the if is false and the else executes. Otherwise, the condition is true (non-zero) and
the division takes place. It is not necessary (and would be considered bad style by many C++
programmers) to write this if as shown here:

if(b == 0) cout << a/Artifact << '\n';

This form of the statement is redundant and potentially inefficient.

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very common in
programming. The main thing to remember about nested ifs in C++ is that an else statement always
refers to the nearest if statement that is within the same block as the else and not already associated
with an else. Here is an example:

As the comments indicate, the final else is not associated with if(j) (even though it is the closest if
without an else), because it is not in the same block. Rather, the final else is associated with if(i). The
inner else is associated with if(k) because that is the nearest if.
You can use a nested if to add a further improvement to the Magic Number program. This addition
provides the player with feedback about a wrong guess.

5 C++ A Beginner’s Guide by Herbert Schildt

The if-else-if Ladder

A common programming construct that is based upon nested ifs is the if-else-if ladder, also referred to
as the if-else-if staircase. It looks like this:

The conditional expressions are evaluated from the top downward. As soon as a true condition is found,
the statement associated with it is executed, and the rest of the ladder is bypassed. If none of the
conditions is true, then the final else statement will be executed. The final else often acts as a default
condition; that is, if all other conditional tests fail, then the last else statement is performed. If there is
no final else and all other conditions are false, then no action will take place.

The following program demonstrates the if-else-if ladder:

6 C++ A Beginner’s Guide by Herbert Schildt

As you can see, the default else is executed only if none of the preceding if statements succeeds.

1. The condition controlling the if must use a relational operator. True or false?
2. To what if does an else always associate?
3. What is an if-else-if ladder?

Answer Key:

1. The condition controlling the if must use a relational operator. True or false?
2. To what if does an else always associate?
3. What is an if-else-if ladder?

7 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 3.2: The switch Statement
The second of C++’s selection statements is the switch. The switch provides for a multiway branch. Thus,
it enables a program to select among several alternatives. Although a series of nested if statements can
perform multiway tests, for many situations the switch is a more efficient approach. It works like this:
the value of an expression is successively tested against a list of constants. When a match is found, the
statement sequence associated with that match is executed. The general form of the switch statement
is

The switch expression must evaluate to either a character or an integer value. (Floatingpoint
expressions, for example, are not allowed.) Frequently, the expression controlling the switch is simply a
variable. The case constants must be integer or character literals.

The default statement sequence is performed if no matches are found. The default is optional; if it is not
present, no action takes place if all matches fail. When a match is found, the statements associated with
that case are executed until the break is encountered or, in a concluding case or default statement, until
the end of the switch is reached.

There are four important things to know about the switch statement:

The switch differs from the if in that switch can test only for equality (that is, for matches between the
switch expression and the case constants), whereas the if conditional expression can be of any type.

No two case constants in the same switch can have identical values. Of course, a switch statement
enclosed by an outer switch may have case constants that are the same.

A switch statement is usually more efficient than nested ifs.

8 C++ A Beginner’s Guide by Herbert Schildt

The statement sequences associated with each case are not blocks. However, the entire switch
statement does define a block. The importance of this will become apparent as you learn more about
C++.

The following program demonstrates the switch. It asks for a number between 1 and 3, inclusive. It then
displays a proverb linked to that number. Any other number causes an error message to be displayed.

Here are two sample runs:

Technically, the break statement is optional, although most applications of the switch will use it. When
encountered within the statement sequence of a case, the break statement causes program flow to exit
from the entire switch statement and resume at the next statement outside the switch. However, if a

9 C++ A Beginner’s Guide by Herbert Schildt

break statement does not end the statement sequence associated with a case, then all the statements
at and below the matching case will be executed until a break (or the end of the switch) is encountered.
For example, study the following program carefully. Can you figure out what it will display on the
screen?

10 C++ A Beginner’s Guide by Herbert Schildt

As this program illustrates, execution will continue into the next case if no break statement is present.
You can have empty cases, as shown in this example:

In this fragment, if i has the value 1, 2, or 3, then the message

i is less than 4

is displayed. If it is 4, then

i is 4

is displayed. The “stacking” of cases, as shown in this example, is very common when several cases share
common code.

Nested switch Statements

It is possible to have a switch as part of the statement sequence of an outer switch. Even if the case

constants of the inner and outer switch contain common values, no conflicts will arise. For example, the
following code fragment is perfectly acceptable:

11 C++ A Beginner’s Guide by Herbert Schildt

1. The expression controlling the switch must be of what type?

2. When the switch expression matches a case constant, what happens?

3. When a case sequence is not terminated by a break, what happens?

Answer Key:

Q: Under what conditions should I use an if-else-if ladder rather than a switch when coding a

multiway branch?

A: In general, use an if-else-if ladder when the conditions controlling the selection process do not

rely upon a single value. For example, consider the following if-else-if sequence:

if(x < 10) // ... else if(y > 0) // ... else if(!done) // ...

This sequence cannot be recoded into a switch because all three conditions involve different

variables—and differing types. What variable would control the switch? Also, you will need to use an

if-else-if ladder when testing floating-point values or other objects that are not of types valid for use in a

switch expression.

This project builds a simple help system that displays the syntax for the C++ control

Help.cpp

statements. The program displays a menu containing the control statements and then waits for you to
choose one. After one is chosen, the syntax of the statement is displayed. In this first version of the
program, help is available for only the if and switch statements. The other control statements are added
by subsequent projects.

Step by Step

1. Create a file called Help.cpp.

2. The program begins by displaying the following menu:

Help on:

1. if

2. switch Choose one:

To accomplish this, you will use the statement sequence shown here:

12 C++ A Beginner’s Guide by Herbert Schildt

cout << "Help on:\n"; cout << " 1. if\n"; cout << " 2. switch\n"; cout << "Choose
one: ";

3. Next, the program obtains the user’s selection, as shown here:

cin >> choice;

4. Once the selection has been obtained, the program uses this switch statement to display the syntax
for the selected statement:

Notice how the default clause catches invalid choices. For example, if the user enters 3, no case
constants will match, causing the default sequence to execute.

5. Here is the entire Help.cpp program listing:

13 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

CRITICAL SKILL 3.3: The for Loop
You have been using a simple form of the for loop since Module 1. You might be surprised at just how
powerful and flexible the for loop is. Let’s begin by reviewing the basics, starting with the most
traditional forms of the for.

The general form of the for loop for repeating a single statement is

for(initialization; expression; increment) statement;

For repeating a block, the general form is

for(initialization; expression; increment) {
statement sequence

}

14 C++ A Beginner’s Guide by Herbert Schildt

The initialization is usually an assignment statement that sets the initial value of the loop control
variable, which acts as the counter that controls the loop. The expression is a conditional expression that
determines whether the loop will repeat. The increment defines the amount by which the loop control
variable will change each time the loop is repeated. Notice that these three major sections of the loop
must be separated by semicolons. The for loop will continue to execute as long as the conditional
expression tests true. Once the condition becomes false, the loop will exit, and program execution will
resume on the statement following the for block.

The following program uses a for loop to print the square roots of the numbers between 1 and 99.
Notice that in this example, the loop control variable is called num.

This program uses the standard function sqrt(). As explained in Module 2, the sqrt() function returns
the square root of its argument. The argument must be of type double, and the function returns a value
of type double. The header <cmath> is required.

The for loop can proceed in a positive or negative fashion, and it can increment the loop control variable
by any amount. For example, the following program prints the numbers 50 to –50, in decrements of 10:

15 C++ A Beginner’s Guide by Herbert Schildt

Here is the output from the program:

50 40 30 20 10 0 -10 -20 -30 -40 -50

An important point about for loops is that the conditional expression is always tested at the top of the
loop. This means that the code inside the loop may not be executed at all if the condition is false to
begin with. Here is an example:

for(count=10; count < 5; count++)
cout << count; // this statement will not execute

This loop will never execute, because its control variable, count, is greater than 5 when the loop is first
entered. This makes the conditional expression, count<5, false from the outset; thus, not even one
iteration of the loop will occur.

Some Variations on the for Loop

The for is one of the most versatile statements in the C++ language because it allows a wide range of
variations. For example, multiple loop control variables can be used. Consider the following fragment of
code:

for(x=0, y=10; x <= y; ++x, --y) Multiple loop control variables

cout << x << ' ' << y << '\n';
Here, commas separate the two initialization statements and the two increment expressions. This is
necessary in order for the compiler to understand that there are two initialization and two increment
statements. In C++, the comma is an operator that essentially means “do this and this.” Its most
common use is in the for loop. You can have any number of initialization and increment statements, but
in practice, more than two or three make the for loop unwieldy.

Ask the Expert
Q: Does C++ support mathematical functions other than sqrt()?

A: Yes! In addition to sqrt(), C++ supports an extensive set of mathematical library functions. For

example, sin(), cos(), tan(), log(), pow(), ceil(), and floor() are just a few. If mathematical
programming is your interest, you will want to explore the C++ math functions. All C++ compilers
support these functions, and their descriptions will be found in your compiler’s documentation. They all
require the header <cmath>.

The condition controlling the loop may be any valid C++ expression. It does not need to involve the loop
control variable. In the next example, the loop continues to execute until the rand() function produces a
value greater than 20,000.

16 C++ A Beginner’s Guide by Herbert Schildt

Each time through the loop, a new random number is obtained by calling rand(). When a value greater
than 20,000 is generated, the loop condition becomes false, terminating the loop.

Missing Pieces
Another aspect of the for loop that is different in C++ than in many computer languages is that pieces of
the loop definition need not be there. For example, if you want to write a loop that runs until the
number 123 is typed in at the keyboard, it could look like this:

17 C++ A Beginner’s Guide by Herbert Schildt

Here, the increment portion of the for definition is blank. This means that each time the loop repeats, x
is tested to see whether it equals 123, but no further action takes place. If, however, you type 123 at the
keyboard, the loop condition becomes false and the loop exits. The for loop will not modify the loop
control variable if no increment portion of the loop is present.

Another variation on the for is to move the initialization section outside of the loop, as shown in this
fragment:

Here, the initialization section has been left blank, and x is initialized before the loop is entered. Placing
the initialization outside of the loop is generally done only when the initial value is derived through a
complex process that does not lend itself to containment inside the for statement. Notice that in this
example, the increment portion of the for is located inside the body of the loop.

The Infinite for Loop

You can create an infinite loop (a loop that never terminates) using this for construct:

for(;;) {
//... }

This loop will run forever. Although there are some programming tasks, such as operating system
command processors, that require an infinite loop, most “infinite loops” are really just loops with special
termination requirements. Near the end of this module, you will see how to halt a loop of this type.
(Hint: It’s done using the break statement.)

Loops with No Body

In C++, the body associated with a for loop can be empty. This is because the null statement is
syntactically valid. Bodiless loops are often useful. For example, the following program uses one to sum
the numbers from 1 to 10:

18 C++ A Beginner’s Guide by Herbert Schildt

Notice that the summation process is handled entirely within the for statement and no body is needed.
Pay special attention to the increment expression:

sum += i++

Don’t be intimidated by statements like this. They are common in professionally written C++ programs
and are easy to understand if you break them down into their parts. In words, this statement says, “add
to sum the value of sum plus i, then increment i.” Thus, it is the same as this sequence of statements:

sum = sum + i; i++;

Declaring Loop Control Variables Inside the for Loop

Often, the variable that controls a for loop is needed only for the purposes of the loop and is not used
elsewhere. When this is the case, it is possible to declare the variable inside the initialization portion of
the for. For example, the following program computes both the summation and the factorial of the
numbers 1 through 5. It declares its loop control variable i inside the for:

19 C++ A Beginner’s Guide by Herbert Schildt

When you declare a variable inside a for loop, there is one important point to remember: the variable is
known only within the for statement. Thus, in the language of programming, the scope of the variable is
limited to the for loop. Outside the for loop, the variable will cease to exist. Therefore, in the preceding
example, i is not accessible outside the for loop. If you need to use the loop control variable elsewhere
in your program, you will not be able to declare it inside the for loop.

NOTE

Whether a variable declared within the initialization portion of a for loop is restricted to that loop or not has
changed over time. Originally, the variable was available after the for, but this was changed during the C++
standardization process. Today, the ANSI/ISO Standard C++ restricts the variable to the scope of the for loop. Some
compilers, however, do not. You will need to check this feature in the environment you are using.

Before moving on, you might want to experiment with your own variations on the for loop. As you will
find, it is a fascinating loop.

CRITICAL SKILL 3.4: The while Loop
Another loop is the while. The general form of the while loop is while(expression) statement; where
statement may be a single statement or a block of statements. The expression defines the condition that
controls the loop, and it can be any valid expression. The statement is performed while the condition is
true. When the condition becomes false, program control passes to the line immediately following the
loop.

20 C++ A Beginner’s Guide by Herbert Schildt

The next program illustrates the while in a short but sometimes fascinating program. Virtually all
computers support an extended character set beyond that defined by ASCII. The extended characters, if
they exist, often include special characters such as foreign language symbols and scientific notations.
The ASCII characters use values that are less than 128. The extended character set begins at 128 and
continues to 255. This program prints all characters between 32 (which is a space) and 255. When you
run this program, you will most likely see some very interesting characters.

Examine the loop expression in the preceding program. You might be wondering why only ch is used to
control the while. Since ch is an unsigned character, it can only hold the values 0 through 255. When it
holds the value 255 and is then incremented, its value will “wrap around” to zero. Therefore, the test for
ch being zero serves as a convenient stopping condition.

As with the for loop, the while checks the conditional expression at the top of the loop, which means
that the loop code may not execute at all. This eliminates the need to perform a separate test before
the loop. The following program illustrates this characteristic of the while loop. It displays a line of
periods. The number of periods displayed is equal to the value entered by the user. The program does
not allow lines longer than 80 characters. The test for a permissible number of periods is performed
inside the loop’s conditional expression, not outside of it.

21 C++ A Beginner’s Guide by Herbert Schildt

If len is out of range, then the while loop will not execute even once. Otherwise, the loop executes until
len reaches zero. There need not be any statements at all in the body of the while loop. Here is an
example:

while(rand() != 100) ;

This loop iterates until the random number generated by rand() equals 100.

CRITICAL SKILL 3.5: The do-while Loop
The last of C++’s loops is the do-while. Unlike the for and the while loops, in which the condition is
tested at the top of the loop, the do-while loop checks its condition at the bottom of the loop. This
means that a do-while loop will always execute at least once. The general form of the do-while loop is

do { statements; } while(condition);

Although the braces are not necessary when only one statement is present, they are often used to
improve readability of the do-while construct, thus preventing confusion with the while. The do-while
loop executes as long as the conditional expression is true.

The following program loops until the number 100 is entered:

22 C++ A Beginner’s Guide by Herbert Schildt

Using a do-while loop, we can further improve the Magic Number program. This time, the program
loops until you guess the number.

23 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

One last point: Like the for and while, the body of the do-while loop can be empty, but this is seldom the
case in practice.

Ask the Expert
Q: Given the flexibility inherent in all of C++’s loops, what criteria should I use when selecting a
loop? That is, how do I choose the right loop for a specific job?

A: Use a for loop when performing a known number of iterations. Use the do-while when you need

a loop that will always perform at least one iteration. The while is best used when the loop will repeat
an unknown number of times.

 The while checks its condition at the top of the loop. The do-while checks its condition at the bottom of the loop. Thus, a
do-while will always execute at least once.

 Yes, the body of a while loop (or any other C++ loop) can be empty.

This project expands on the C++ help system that was created in Project 3-1. Thisversion adds the syntax
for the for, while, and do-while loops. It also checks the user’s menu selection, looping until a valid
response is entered. To do this, it uses a do-while loop. In general, using a do-while loop to handle menu
selection is common because you will always want the loop to execute at least once.

Step by Step

1. Copy Help.cpp to a new file called Help2.cpp.

24 C++ A Beginner’s Guide by Herbert Schildt

2. Change the portion of the program that displays the choices so that it uses the do-while loop shown
here:

After making this change, the program will loop, displaying the menu until the user enters a response
that is between 1 and 5. You can see how useful the do-while loop is in this context.

3. Expand the switch statement to include the for, while, and do-while loops, as shown here:

25 C++ A Beginner’s Guide by Herbert Schildt

Notice that no default statement is present in this version of the switch. Since the menu loop ensures
that a valid response will be entered, it is no longer necessary to include a default statement to handle
an invalid choice.

4. Here is the entire Help2.cpp program listing:

26 C++ A Beginner’s Guide by Herbert Schildt

Ask the Expert

Q: Earlier you showed how a variable could be declared in the initialization portion of the for loop.

Can variables be declared inside any other C++ control statement?

27 C++ A Beginner’s Guide by Herbert Schildt

A: Yes. In C++, it is possible to declare a variable within the conditional expression of an if or

switch, within the conditional expression of a while loop, or within the initialization portion of a for loop.
A variable declared in one of these places has its scope limited to the block of code controlled by that
statement.

You have already seen an example of declaring a variable within a for loop. Here is an example that
declares a variable within an if:

if(int x = 20) { x = x - y; if(x > 10) y = 0;

}

The if declares x and assigns it the value 20. Since this is a true value, the target of the if executes.
Because variables declared within a conditional statement have their scope limited to the block of code
controlled by that statement, x is not known outside the if.

As mentioned in the discussion of the for loop, whether a variable declared within a control statement is
known only to that statement or is available after that statement may vary between compilers. You
should check the compiler that you are using before assuming a specific behavior in this regard. Of
course, the ANSI/ISO C++ standard stipulates that the variable is known only within the statement in
which it is declared.

Most programmers do not declare variables inside any control statement other than the for. In fact, the
declaration of variables within the other statements is controversial, with some programmers
suggesting that to do so is bad practice.

CRITICAL SKILL 3.6: Using break to Exit a Loop
It is possible to force an immediate exit from a loop, bypassing the loop’s conditional test, by using the
break statement. When the break statement is encountered inside a loop, the loop is immediately
terminated, and program control resumes at the next statement following the loop. Here is a simple
example:

28 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

0 1 2 3 4 5 6 7 8 9

As the output illustrates, this program prints only the numbers 0 through 9 on the screen before ending.
It will not go to 100, because the break statement will cause it to terminate early.

When loops are nested (that is, when one loop encloses another), a break will cause an exit from only
the innermost loop. Here is an example:

Here is the output produced by this program:

29 C++ A Beginner’s Guide by Herbert Schildt

As you can see, this program prints the numbers 1 through 9 on the screen ten times. Each time the
break is encountered in the inner for loop, control is passed back to the outer for loop. Notice that the
inner for is an infinite loop that uses the break statement to terminate.

The break statement can be used with any loop statement. It is most appropriate when a

special condition can cause immediate termination. One common use is to terminate infinite

loops, as the foregoing example illustrates.

One other point: A break used in a switch statement will affect only that switch, and not any loop the
switch happens to be in.

CRITICAL SKILL 3.7: Using continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure. This is
accomplished using continue. The continue statement forces the next iteration of the loop to take place,
skipping any code between itself and the conditional expression that controls the loop. For example, the
following program prints the even numbers between 0 and 100:

Only even numbers are printed, because an odd number will cause the continue statement to execute,
resulting in early iteration of the loop, bypassing the cout statement. Remember that the % operator

30 C++ A Beginner’s Guide by Herbert Schildt

produces the remainder of an integer division. Thus, when x is odd, the remainder is 1, which is true.
When x is even, the remainder is 0, which is false.

In while and do-while loops, a continue statement will cause control to go directly to the conditional
expression and then continue the looping process. In the case of the for, the increment part of the loop
is performed, then the conditional expression is executed, and then the loop continues.

This project puts the finishing touches on the C++ help system that was created by the previous projects.
This version adds the syntax for break, continue, and goto. It also allows the user to request the syntax
for more than one statement. It does this by adding an outer loop that runs until the user enters a q as a
menu selection.

Step by Step

1. Copy Help2.cpp to a new file called Help3.cpp.

2. Surround all of the program code with an infinite for loop. Break out of this loop, using break, when a
q is entered. Since this loop surrounds all of the program code, breaking out of this loop causes the
program to terminate.

3. Change the menu loop, as shown here:

31 C++ A Beginner’s Guide by Herbert Schildt

Notice that this loop now includes the break, continue, and goto statements. It also accepts a q as a
valid choice.

4. Expand the switch statement to include the break, continue, and goto statements, as shown here:

5. Here is the entire Help3.cpp program listing:

32 C++ A Beginner’s Guide by Herbert Schildt

33 C++ A Beginner’s Guide by Herbert Schildt

6. Here is a sample run:

Help on:
1. if
2. switch
3. for
4. while
5. do-while
6. break
7. continue
8. goto

Choose one (q to quit): 1

The if:

if(condition) statement;
else statement;

Help on:

1. if
2. switch
3. for
4. while
5. do-while
6. break
7. continue
8. goto

 Choose one (q to quit): 6

34 C++ A Beginner’s Guide by Herbert Schildt

The break:
break;

Help on:

1. if
2. switch
3. for
4. while
5. do-while
6. break
7. continue
8. goto

Choose one (q to quit): q

CRITICAL SKILL 3.8: Nested Loops
As you have seen in some of the preceding examples, one loop can be nested inside of another. Nested
loops are used to solve a wide variety of problems and are an essential part of programming. So, before
leaving the topic of C++’s loop statements, let’s look at one more nested loop example. The following
program uses a nested for loop to find the factors of the numbers from 2 to 100:

Here is a portion of the output produced by the program:

Factors of 2:
Factors of 3:
Factors of 4: 2
Factors of 5:

35 C++ A Beginner’s Guide by Herbert Schildt

Factors of 6: 2 3
Factors of 7:
Factors of 8: 2 4
Factors of 9: 3
Factors of 10: 2 5
Factors of 11:
Factors of 12: 2 3 4 6
Factors of 13:
Factors of 14: 2 7
Factors of 15: 3 5
Factors of 16: 2 4 8
Factors of 17:
Factors of 18: 2 3 6 9
Factors of 19:
Factors of 20: 2 4 5 10

In the program, the outer loop runs i from 2 through 100. The inner loop successively tests all numbers
from 2 up to i, printing those that evenly divide i.

CRITICAL SKILL 3.9: Using the goto Statement
The goto is C++’s unconditional jump statement. Thus, when encountered, program flow jumps to the
location specified by the goto. The statement fell out of favor with programmers many years ago
because it encouraged the creation of “spaghetti code.” However, the goto is still occasionally—and
sometimes effectively—used. This book will not make a judgment regarding its validity as a form of
program control. It should be stated, however, that there are no programming situations that require
the use of the goto statement; it is not needed to make the language complete. Rather, it is a
convenience which, if used wisely, can be of benefit in certain programming situations. As such, the goto
is not used in this book outside of this section. The chief concern most programmers have about the
goto is its tendency to clutter a program and render it nearly unreadable. However, there are times
when the use of the goto can clarify program flow rather than confuse it.

The goto requires a label for operation. A label is a valid C++ identifier followed by a colon. Furthermore,
the label must be in the same function as the goto that uses it. For example, a loop from 1 to 100 could
be written using a goto and a label, as shown here:

One good use for the goto is to exit from a deeply nested routine. For example, consider the following
code fragment:

36 C++ A Beginner’s Guide by Herbert Schildt

Eliminating the goto would force a number of additional tests to be performed. A simple break
statement would not work here, because it would only cause the program to exit from the innermost
loop.

Module 3 Mastery Check

1. Write a program that reads characters from the keyboard until a $ is typed. Have the program count

the number of periods. Report the total at the end of the program.

2. In the switch, can the code sequence from one case run into the next? Explain.

3. Show the general form of the if-else-if ladder.

4. Given

to what if does the last else associate?

5. Show the for statement for a loop that counts from 1000 to 0 by –2.

6. Is the following fragment valid?

7. Explain what break does.

8. In the following fragment, after the break statement executes, what is displayed?

37 C++ A Beginner’s Guide by Herbert Schildt

9. What does the following fragment print?

10. The increment expression in a for loop need not always alter the loop control variable by a fixed
amount. Instead, the loop control variable can change in any arbitrary way. Using this concept, write
a program that uses a for loop to generate and display the progression 1, 2, 4, 8, 16, 32, and so on.

11. The ASCII lowercase letters are separated from the uppercase letters by 32. Thus, to convert a

lowercase letter to uppercase, subtract 32 from it. Use this information to write a program that
reads characters from the keyboard. Have it convert all lowercase letters to uppercase, and all
uppercase letters to lowercase, displaying the result. Make no changes to any other character. Have
the program stop when the user enters a period. At the end, have the program display the number
of case changes that have taken place.

12. What is C++’s unconditional jump statement?

1 C++ A Beginner’s Guide by Herbert Schildt

Module 4
Arrays, Strings, and Pointers

Table of Contents

CRITICAL SKILL 4.1: Use one-dimensional arrays .. 2

CRITICAL SKILL 4.2: Two-Dimensional Arrays.. 6

CRITICAL SKILL 4.3: Multidimensional Arrays ... 8

CRITICAL SKILL 4.4: Strings .. 11

CRITICAL SKILL 4.5: Some String Library Functions ... 13

CRITICAL SKILL 4.6: Array Initialization ... 17

CRITICAL SKILL 4.7: Arrays of Strings... 21

CRITICAL SKILL 4.8: Pointers .. 23

CRITICAL SKILL 4.9: The Pointer Operators ... 24

CRITICAL SKILL 4.10: Pointer Expressions ... 27

CRITICAL SKILL 4.11: Pointers and Arrays ... 29

CRITICAL SKILL 4.12: Multiple Indirection ... 40

This module discusses arrays, strings, and pointers. Although these may seem to be three disconnected
topics, they aren’t. In C++ they are intertwined, and an understanding of one aids in the understanding
of the others.

An array is a collection of variables of the same type that are referred to by a common name. Arrays
may have from one to several dimensions, although the one-dimensional array is the most common.
Arrays offer a convenient means of creating lists of related variables.

The array that you will probably use most often is the character array, because it is used to hold a
character string. The C++ language does not define a built-in string data type. Instead, strings are
implemented as arrays of characters. This approach to strings allows greater power and flexibility than
are available in languages that use a distinct string type.

A pointer is an object that contains a memory address. Typically, a pointer is used to access the value of
another object. Often this other object is an array. In fact, pointers and arrays are related to each other
more than you might expect.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 4.1: Use one-dimensional arrays
A one-dimensional array is a list of related variables. Such lists are common in programming. For
example, you might use a one-dimensional array to store the account numbers of the active users on a
network. Another array might store the current batting averages for a baseball team. When computing
the average of a list of values, you will often use an array to hold the values. Arrays are fundamental to
modern programming.

The general form of a one-dimensional array declaration is

type name[size];

Here, type declares the base type of the array. The base type determines the data type of each element
that makes up the array. The number of elements the array can hold is specified by size. For example,
the following declares an integer array named sample that is ten elements long:

int sample[10];

An individual element within an array is accessed through an index. An index describes the position of
an element within an array. In C++, all arrays have zero as the index of their first element. Because
sample has ten elements, it has index values of 0 through 9. You access an array element by indexing the
array using the number of the element. To index an array, specify the number of the element you want,
surrounded by square brackets. Thus, the first element in sample is sample[0], and the last element is
sample[9]. For example, the following program loads sample with the numbers 0 through 9:

The output from this example is shown here:

This is sample[0]: 0

3 C++ A Beginner’s Guide by Herbert Schildt

This is sample[1]: 1
This is sample[2]: 2
This is sample[3]: 3
This is sample[4]: 4
This is sample[5]: 5
This is sample[6]: 6
This is sample[7]: 7
This is sample[8]: 8
This is sample[9]: 9

In C++, all arrays consist of contiguous memory locations. (That is, all array elements reside next to each
other in memory.) The lowest address corresponds to the first element, and the highest address
corresponds to the last element. For example, after this fragment is run:

nums looks like this:

Arrays are common in programming because they let you deal easily with sets of related
variables. Here is an example. The following program creates an array of ten elements and
assigns each element a value. It then computes the average of those values and finds the
minimum and the maximum value.

4 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

Average is 34
Minimum value: -19

5 C++ A Beginner’s Guide by Herbert Schildt

Maximum value: 100

Notice how the program cycles through the elements in the nums array. Storing the values in an array
makes this process easy. As the program illustrates, the loop control variable of a for loop is used as an
index. Loops such as this are very common when working with arrays.

There is an array restriction that you must be aware of. In C++, you cannot assign one array to another.
For example, the following is illegal:

To transfer the contents of one array into another, you must assign each value individually, like this:

for(i=0; i < 10; i++) a[i] = b[i];

No Bounds Checking

C++ performs no bounds checking on arrays. This means that there is nothing that stops you from
overrunning the end of an array. In other words, you can index an array of size N beyond N without
generating any compile-time or runtime error messages, even though doing so will often cause
catastrophic program failure. For example, the compiler will compile and run the following code without
issuing any error messages even though the array crash is being overrun:

int crash[10], i;

for(i=0; i<100; i++) crash[i]=i;

In this case, the loop will iterate 100 times, even though crash is only ten elements long! This causes
memory that is not part of crash to be overwritten.

Ask the Expert

Q: Since overrunning an array can lead to catastrophic failures, why doesn’t C++ provide bounds

checking on array operations?

A: C++ was designed to allow professional programmers to create the fastest, most efficient code

possible. Toward this end, very little runtime error checking is included, because it slows (often
dramatically) the execution of a program. Instead, C++ expects you, the programmer, to be responsible
enough to prevent array overruns in the first place, and to add appropriate error checking on your own

6 C++ A Beginner’s Guide by Herbert Schildt

as needed. Also, it is possible for you to define array types of your own that perform bounds checking if
your program actually requires this feature.

If an array overrun occurs during an assignment operation, memory that is being used for other
purposes, such as holding other variables, might be overwritten. If an array overrun occurs when data is
being read, then invalid data will corrupt the program. Either way, as the programmer, it is your job both
to ensure that all arrays are large enough to hold what the program will put in them, and to provide
bounds checking whenever necessary.

CRITICAL SKILL 4.2: Two-Dimensional Arrays
C++ allows multidimensional arrays. The simplest form of the multidimensional array is the
two-dimensional array. A two-dimensional array is, in essence, a list of one-dimensional arrays. To
declare a two-dimensional integer array twoD of size 10,20, you would write

int twoD[10][20];

Pay careful attention to the declaration. Unlike some other computer languages, which use commas to
separate the array dimensions, C++ places each dimension in its own set of brackets. Similarly, to access
an element, specify the indices within their own set of brackets. For example, for point 3,5 of array
twoD, you would use twoD[3][5].

In the next example, a two-dimensional array is loaded with the numbers 1 through 12.

7 C++ A Beginner’s Guide by Herbert Schildt

In this example, nums[0][0] will have the value 1, nums[0][1] the value 2, nums[0][2] the value 3, and so
on. The value of nums[2][3] will be 12. Conceptually, the array will look like that shown here:

Two-dimensional arrays are stored in a row-column matrix, where the first index indicates the row and
the second indicates the column. This means that when array elements are accessed in the order in
which they are actually stored in memory, the right index changes faster than the left.

You should remember that storage for all array elements is determined at compile time. Also, the
memory used to hold an array is required the entire time that the array is in existence. In the case of a
two-dimensional array, you can use this formula to determine the number of bytes of memory that are
needed:

bytes = number of rows × number of columns × number of bytes in type

Therefore, assuming four-byte integers, an integer array with dimensions 10,5 would have 10×5×4 (or
200) bytes allocated.

8 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 4.3: Multidimensional Arrays
C++ allows arrays with more than two dimensions. Here is the general form of a multidimensional array
declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a 4×10×3–integer array:

int multidim[4][10][3];

Arrays of more than three dimensions are not often used, due to the amount of memory required to
hold them. Remember, storage for all array elements is allocated during the entire lifetime of an array.
When multidimensional arrays are used, large amounts of memory can be consumed. For example, a
four-dimensional character array with dimensions 10,6,9,4 would require 10×6×9×4 (or 2,160) bytes. If
each array dimension is increased by a factor of 10 each (that is, 100×60×90×40), then the memory
required for the array increases to 21,600,000 bytes! As you can see, large multidimensional arrays may
cause a shortage of memory for other parts of your program. Thus, a program with arrays of more than
two or three dimensions may find itself quickly out of memory!

Because a one-dimensional array organizes data into an indexable linear list, it isthe perfect data
structure for sorting. In this project, you will learn a simple way to sort an array. As you may know, there
are a number of different sorting algorithms. The quick sort, the shaker sort, and the shell sort are just
three. However, the best known, simplest, and easiest to understand sorting algorithm is called the
bubble sort. While the bubble sort is not very efficient—in fact, its performance is unacceptable for
sorting large arrays—it may be used effectively for sorting small ones.

Step by Step

1. Create a file called Bubble.cpp.

9 C++ A Beginner’s Guide by Herbert Schildt

2. The bubble sort gets its name from the way it performs the sorting operation. It uses repeated
comparison and, if necessary, exchange of adjacent elements in the array. In this process, small
values move toward one end, and large ones toward the other end. The process is conceptually
similar to bubbles finding their own level in a tank of water. The bubble sort operates by making
several passes through the array, exchanging out-of-place elements when necessary. The
number of passes required to ensure that the array is sorted is equal to one less than the
number of elements in the array.

Here is the code that forms the core of the bubble sort. The array being sorted is called nums.

Notice that the sort relies on two for loops. The inner loop checks adjacent elements in the
array, looking for out-of-order elements. When an out-of-order element pair is found, the two
elements are exchanged. With each pass, the smallest element of those remaining moves into
its proper location. The outer loop causes this process to repeat until the entire array has been
sorted.

3. Here is the entire Bubble.cpp program:

10 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:
Original array is: 41 18467 6334 26500 19169 15724 11478 29358 26962 24464
Sorted array is: 41 6334 11478 15724 18467 19169 24464 26500 26962 29358

4. Although the bubble sort is good for small arrays, it is not efficient when used on larger ones.
The best general-purpose sorting algorithm is the Quicksort. The Quicksort, however, relies on
features of C++ that you have not yet learned. Also, the C++ standard library contains a function

11 C++ A Beginner’s Guide by Herbert Schildt

called qsort() that implements a version of the Quicksort, but to use it, you will also need to
know more about C++.

CRITICAL SKILL 4.4: Strings
By far the most common use for one-dimensional arrays is to create character strings. C++ supports two
types of strings. The first, and most commonly used, is the null-terminated string, which is a
null-terminated character array. (A null is zero.) Thus, a null-terminated string contains the characters
that make up the string followed by a null. Null-terminated strings are widely used because they offer a
high level of efficiency and give the programmer detailed control over string operations. When a C++
programmer uses the term string, he or she is usually referring to a null-terminated string. The second
type of string defined by C++ is the string class, which is part of the C++ class library. Thus, string is not a
built-in type. It provides an object-oriented approach to string handling but is not as widely used as the
null-terminated string. Here, null-terminated strings are examined.

String Fundamentals

When declaring a character array that will hold a null-terminated string, you need to declare it one
character longer than the largest string that it will hold. For example, if you want to declare an array str
that could hold a 10-character string, here is what you would write:

char str[11];

Specifying the size as 11 makes room for the null at the end of the string. As you learned earlier in this
book, C++ allows you to define string constants. A string constant is a list of characters enclosed in
double quotes. Here are some examples:

“hello there” “I like C++” “Mars” ““

It is not necessary to manually add the null terminator onto the end of string constants; the C++
compiler does this for you automatically. Therefore, the string “Mars” will appear in memory like this:

The last string shown is "". This is called a null string. It contains only the null terminator and no other
characters. Null strings are useful because they represent the empty string.

Reading a String from the Keyboard

The easiest way to read a string entered from the keyboard is to use a char array in a cin statement. For
example, the following program reads a string entered by the user:

12 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

Enter a string: testing
Here is your string: testing

Although this program is technically correct, it will not always work the way that you expect. To see why,
run the program and try entering the string “This is a test”. Here is what you will see:

Enter a string: This is a test
Here is your string: This
When the program redisplays your string, it shows only the word “This”, not the entire sentence. The
reason for this is that the C++ I/O system stops reading a string when the first whitespace character is
encountered. Whitespace characters include spaces, tabs, and newlines.

One way to solve the whitespace problem is to use another of C++’s library functions, gets(). The
general form of a call to gets() is

gets(array-name);

To read a string, call gets() with the name of the array, without any index, as its argument. Upon return
from gets(), the array will hold the string input from the keyboard. The gets() function will continue to
read characters, including whitespace, until you enter a carriage return. The header used by gets() is
<cstdio>.

This version of the preceding program uses gets() to allow the entry of strings containing spaces:

13 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

Enter a string: This is a test
Here is your string: This is a test

Now, spaces are read and included in the string. One other point: Notice that in a cout statement, str
can be used directly. In general, the name of a character array that holds a string can be used any place
that a string constant can be used.

Keep in mind that neither cin nor gets() performs any bounds checking on the array that receives input.
Therefore, if the user enters a string longer than the size of the array, the array will be overwritten.
Later, you will learn an alternative to gets() that avoids this problem.

CRITICAL SKILL 4.5: Some String Library Functions
C++ supports a wide range of string manipulation functions. The most common are

strcpy()
strcat()
strcmp()
strlen()

14 C++ A Beginner’s Guide by Herbert Schildt

The string functions all use the same header, <cstring>. Let’s take a look at these functions now.

strcpy

A call to strcpy() takes this general form:

strcpy(to, from);

The strcpy() function copies the contents of the string from into to. Remember, the array that forms to
must be large enough to hold the string contained in from. If it isn’t, the to array will be overrun, which
will probably crash your program.

strcat

A call to strcat() takes this form: strcat(s1, s2); The strcat() function appends s2 to the end of s1; s2 is
unchanged. You must ensure that s1 is

large enough to hold its original contents and those of s2.

strcmp

A call to strcmp() takes this general form:

strcmp(s1, s2);

The strcmp() function compares two strings and returns 0 if they are equal. If s1 is greater than s2
lexicographically (that is, according to dictionary order), then a positive number is returned; if it is less
than s2, a negative number is returned.

The key to using strcmp() is to remember that it returns false when the strings match.

Therefore, you will need to use the ! operator if you want something to occur when the strings

are equal. For example, the condition controlling the following if statement is true when str is

equal to “C++”:

if(!strcmp(str, "C++") cout << "str is C++";

strlen

The general form of a call to strlen() is

strlen(s);

where s is a string. The strlen() function returns the length of the string pointed to by s.

15 C++ A Beginner’s Guide by Herbert Schildt

A String Function Example

The following program illustrates the use of all four string functions:

// Demonstrate the string functions.
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{

char s1[80], s2[80];
strcpy(s1, "C++");
strcpy(s2, " is power programming.");
cout << "lengths: " << strlen(s1);
cout << ' ' << strlen(s2) << '\n';
if(!strcmp(s1, s2))

cout << "The strings are equal\n";
else cout << "not equal\n";

strcat(s1, s2);
cout << s1 << '\n';
strcpy(s2, s1);
cout << s1 << " and " << s2 << "\n";
if(!strcmp(s1, s2))

cout << "s1 and s2 are now the same.\n";
return 0;

}

Here is the output:

lengths: 3 22
not equal
C++ is power programming.
C++ is power programming. and C++ is power programming.
s1 and s2 are now the same.

Using the Null Terminator

The fact that strings are null-terminated can often be used to simplify various operations. For example,
the following program converts a string to uppercase:

16 C++ A Beginner’s Guide by Herbert Schildt

The output from this program is shown here:

THIS IS A TEST

This program uses the library function toupper(), which returns the uppercase equivalent of its
character argument, to convert each character in the string. The toupper() function uses the header
<cctype>.

Notice that the test condition of the for loop is simply the array indexed by the control variable. The
reason this works is that a true value is any non-zero value. Remember, all character values are
non-zero, but the null terminating the string is zero. Therefore, the loop runs until it encounters the null
terminator, which causes str[i] to become zero. Because the null terminator marks the end of the string,
the loop stops precisely where it is supposed to. You will see many examples that use the null
terminator in a similar fashion in professionally written C++ code.

Ask the Expert
Q: Besides toupper(), does C++ support other character-manipulation functions?

A: Yes. The C++ standard library contains several other character-manipulation functions.
For example, the complement to toupper() is tolower(), which returns the lowercase
equivalent of its character argument. You can determine the case of a letter by using
isupper(), which returns true if the letter is uppercase, and islower(), which returns
true if the letter is lowercase. Other character functions include isalpha(), isdigit(),
isspace(), and ispunct(). These functions each take a character argument and

17 C++ A Beginner’s Guide by Herbert Schildt

determine the category of that argument. For example, isalpha() returns true if its
argument is a letter of the alphabet.

CRITICAL SKILL 4.6: Array Initialization
C++ allows arrays to be initialized. The general form of array initialization is similar to that of other
variables, as shown here:

type-specifier array_name[size] = {value-list};

The value-list is a comma-separated list of values that are type compatible with the base type of the
array. The first value will be placed in the first position of the array, the second value in the second
position, and so on. Notice that a semicolon follows the }.

In the following example, a ten-element integer array is initialized with the numbers 1 through 10.

int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[0] will have the value 1, and i[9] will have the value 10. Character arrays that will hold
strings allow a shorthand initialization that takes this form:

char array_name[size] = “string”;

For example, the following code fragment initializes str to the string “C++”:

char str[4] = "C++";

This is the same as writing

char str[4] = {'C', '+', '+', '\0'};

Because strings in C++ must end with a null, you must make sure that the array you declare is long
enough to include it. This is why str is four characters long in these examples, even though “C++” is only
three. When a string constant is used, the compiler automatically supplies the null terminator.

Multidimensional arrays are initialized in the same way as one-dimensional arrays. For example, the
following program initializes an array called sqrs with the numbers 1 through 10 and their squares:

18 C++ A Beginner’s Guide by Herbert Schildt

int sqrs[10][2] = {
1, 1,
2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7, 49,
8, 64,
9, 81,
10, 100 };

Examine Figure 4-1 to see how the sqrs array appears in memory.

19 C++ A Beginner’s Guide by Herbert Schildt

When initializing a multidimensional array, you may add braces around the initializers for each
dimension. This is called subaggregate grouping. For example, here is another way to write the
preceding declaration:

int sqrs[10][2] = {

{1, 1},

{2, 4},

{3, 9},

{4, 16},

{5, 25},

{6, 36},

{7, 49},

{8, 64},

{9, 81},

{10, 100} };

When using subaggregate grouping, if you don’t supply enough initializers for a given group, the
remaining members will automatically be set to zero.

The following program uses the sqrs array to find the square of a number entered by the user. It first
looks up the number in the array and then prints the corresponding square.

#include <iostream> using namespace std;

int main() { int i, j;

int sqrs[10][2] = {

{1, 1},

{2, 4},

{3, 9},

{4, 16},

{5, 25},

{6, 36},

{7, 49},

{8, 64},

20 C++ A Beginner’s Guide by Herbert Schildt

{9, 81},

{10, 100} };

cout << "Enter a number between 1 and 10: "; cin >> i;

// look up i for(j=0; j<10; j++)

if(sqrs[j][0]==i) break; cout << "The square of " << i << " is ";

cout << sqrs[j][1];

return 0; }

Here is a sample run:

Enter a number between 1 and 10: 4 The square of 4 is 16

Unsized Array Initializations

When declaring an initialized array, it is possible to let C++ automatically determine the array’s
dimension. To do this, do not specify a size for the array. Instead, the compiler determines the size by
counting the number of initializers and creating an array large enough to hold them. For example,

int nums[] = { 1, 2, 3, 4 };

creates an array called nums that is four elements long that contains the values 1, 2, 3, and 4.

Because no explicit size is specified, an array such as nums is called an unsized array. Unsized arrays are
quite useful. For example, imagine that you are using array initialization

to build a table of Internet addresses, as shown here:

char e1[16] = "www.osborne.com"; char e2[16] = "www.weather.com"; char e3[15] = "www.amazon.com";

As you might guess, it is very tedious to manually count the characters in each address to determine the
correct array dimension. It is also error-prone because it is possible to miscount and incorrectly size the
array. It is better to let the compiler size the arrays, as shown here:

char e1[] = "www.osborne.com"; char e2[] = "www.weather.com"; char e3[] = "www.amazon.com";

Besides being less tedious, the unsized array initialization method allows you to change any of the
strings without fear of accidentally forgetting to resize the array.

Unsized array initializations are not restricted to one-dimensional arrays. For a multidimensional array,
the leftmost dimension can be empty. (The other dimensions must be specified, however, so that the
array can be properly indexed.) Using unsized array initializations, you can build tables of varying
lengths, with the compiler automatically allocating enough storage for them. For example, here sqrs is
declared as an unsized array:

21 C++ A Beginner’s Guide by Herbert Schildt

int sqrs[][2] = { 1, 1, 2, 4, 3, 9, 4, 16, 5, 25, 6, 36, 7, 49, 8, 64, 9, 81, 10, 100

};

The advantage to this declaration over the sized version is that the table may be lengthened or
shortened without changing the array dimensions.

CRITICAL SKILL 4.7: Arrays of Strings
A special form of a two-dimensional array is an array of strings. It is not uncommon in programming to
use an array of strings. The input processor to a database, for instance, may verify user commands
against a string array of valid commands. To create an array of strings, a two-dimensional character
array is used, with the size of the left index determining the number of strings and the size of the right
index specifying the maximum length of each string, including the null terminator. For example, the
following declares an array of 30 strings, each having a maximum length of 79 characters plus the null
terminator.

char str_array[30][80];

Accessing an individual string is quite easy: you simply specify only the left index. For example, the
following statement calls gets() with the third string in str_array:

gets(str_array[2]);

To access an individual character within the third string, you will use a statement like this:

cout << str_array[2][3];

This displays the fourth character of the third string.

The following program demonstrates a string array by implementing a very simple computerized
telephone directory. The two-dimensional array numbers holds pairs of names and numbers. To find a
number, you enter the name. The number is displayed.

22 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

Enter name: Jon

Number is 555-1037

Notice how the for loop increments its loop control variable, i, by 2 each time through the loop. This is
necessary because names and numbers alternate in the array.

23 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 4.8: Pointers
The pointer is one of C++’s most powerful features. It is also one of its most troublesome. Despite their
potential for misuse, pointers are a crucial part of C++ programming. For example, they allow C++ to
support such things as linked lists and dynamic memory allocation. They also provide one means by
which a function can alter the contents of an argument. However, these and other uses of pointers will
be discussed in subsequent modules. In this module, you will learn the basics about pointers and see
how to manipulate them.

In a few places in the following discussions, it is necessary to refer to the size of several of C++’s basic
data types. For the sake of discussion, assume that characters are one byte in length, integers are four
bytes long, floats are four bytes long, and doubles have a length of eight bytes. Thus, we will be
assuming a typical 32-bit environment.

What Are Pointers?
A pointer is an object that contains a memory address. Very often this address is the location of another
object, such as a variable. For example, if x contains the address of y, then x is said to “point to” y.

Pointer variables must be declared as such. The general form of a pointer variable declaration is

type *var-name;

Here, type is the pointer’s base type. The base type determines what type of data the pointer will be
pointing to. var-name is the name of the pointer variable. For example, to declare ip to be a pointer to
an int, use this declaration:

int *ip;

Since the base type of ip is int, it can be used to point to int values. Here, a float pointer is declared:

float *fp;

In this case, the base type of fp is float, which means that it can be used to point to a float value.

24 C++ A Beginner’s Guide by Herbert Schildt

In general, in a declaration statement, preceding a variable name with an * causes that variable to
become a pointer.

CRITICAL SKILL 4.9: The Pointer Operators
There are two special operators that are used with pointers: * and &. The & is a unary operator that
returns the memory address of its operand. (Recall that a unary operator requires only one operand.)
For example,

ptr = &total;

puts into ptr the memory address of the variable total. This address is the location of total in the
computer’s internal memory. It has nothing to do with the value of total. The operation of & can be
remembered as returning “the address of” the variable it precedes. Therefore, the preceding
assignment statement could be verbalized as “ptr receives the address of total.” To better understand
this assignment, assume that the variable total is located at address 100. Then, after the assignment
takes place, ptr has the value 100.

The second operator is *, and it is the complement of &. It is a unary operator that returns the value of
the variable located at the address specified by its operand. Continuing with the same example, if ptr
contains the memory address of the variable total, then

val = *ptr;

will place the value of total into val. For example, if total originally had the value 3,200, then val will
have the value 3,200, because that is the value stored at location 100, the memory address that was
assigned to ptr. The operation of * can be remembered as “at address.” In this case, then, the statement
could be read as “val receives the value at address ptr.”

The following program executes the sequence of the operations just described:

#include <iostream> using namespace std;
int main()
{
int total;
int *ptr;
int val;
total = 3200; // assign 3,200 to total
ptr = &total; // get address of total
val = *ptr; // get value at that address
cout << "Total is: " << val << '\n';
return 0;
}

25 C++ A Beginner’s Guide by Herbert Schildt

It is unfortunate that the multiplication symbol and the “at address” symbol are the same. This fact
sometimes confuses newcomers to the C++ language. These operators have no relationship to each
other. Keep in mind that both & and * have a higher precedence than any of the arithmetic operators
except the unary minus, with which they have equal precedence.

The act of using a pointer is often called indirection because you are accessing one variable indirectly
through another variable.

The Base Type of a Pointer Is Important

In the preceding discussion, you saw that it was possible to assign val the value of total indirectly
through a pointer. At this point, you may have thought of this important question: How does C++ know
how many bytes to copy into val from the address pointed to by ptr? Or, more generally, how does the
compiler transfer the proper number of bytes for any assignment involving a pointer? The answer is that
the base type of the pointer determines the type of data upon which the pointer operates. In this case,
because ptr is an int pointer, four bytes of information are copied into val (assuming a 32-bit int) from
the address pointed to by ptr. However, if ptr had been a double pointer, for example, then eight bytes
would have been copied.

It is important to ensure that pointer variables always point to the correct type of data. For

example, when you declare a pointer to be of type int, the compiler assumes that anything it

points to will be an integer variable. If it doesn’t point to an integer variable, then trouble is

usually not far behind! For example, the following fragment is incorrect:

int *p; double f; // ... p = &f; // ERROR

This fragment is invalid because you cannot assign a double pointer to an integer pointer. That is, &f
generates a pointer to a double, but p is a pointer to an int. These two types are not compatible. (In fact,
the compiler would flag an error at this point and not compile your program.)

Although two pointers must have compatible types in order for one to be assigned to

another, you can override this restriction (at your own risk) using a cast. For example, the

following fragment is now technically correct:

26 C++ A Beginner’s Guide by Herbert Schildt

int *p ; double f; // ... p = (int *) &f; // Now technically OK

The cast to int * causes the double pointer to be converted to an integer pointer. However, to use a cast
for this purpose is questionable practice. The reason is that the base type of a pointer determines how
the compiler treats the data it points to. In this case, even though p is actually pointing to a
floating-point value, the compiler still “thinks” that p is pointing to an int (because p is an int pointer).

To better understand why using a cast to assign one type of pointer to another is not usually a good
idea, consider the following short program:

Here is the output produced by the program. (You might see a different value.)

1.37439e+009

This value is clearly not 123.23! Here is why. In the program, p (which is an integer pointer) has been
assigned the address of x (which is a double). Thus, when y is assigned the value pointed to by p, y
receives only four bytes of data (and not the eight required for a double value), because p is an integer
pointer. Therefore, the cout statement displays not 123.23, but a garbage value instead.

Assigning Values through a Pointer You can use a pointer on the left-hand

side of an assignment statement to assign a value to the location pointed to by the pointer. Assuming
that p is an int pointer, this assigns the value 101 to the location pointed to by p.

*p = 101;

You can verbalize this assignment like this: “At the location pointed to by p, assign the value 101.” To
increment or decrement the value at the location pointed to by a pointer, you can use a statement like
this:

27 C++ A Beginner’s Guide by Herbert Schildt

(*p)++;

The parentheses are necessary because the * operator has lower precedence than does the ++ operator.

The following program demonstrates an assignment through a pointer:

The output from the program is shown here:

100 101 100

CRITICAL SKILL 4.10: Pointer Expressions
Pointers can be used in most C++ expressions. However, some special rules apply. Remember also that
you may need to surround some parts of a pointer expression with parentheses in order to ensure that
the outcome is what you desire.

Pointer Arithmetic

There are only four arithmetic operators that can be used on pointers: ++, – –, +, and –. To understand
what occurs in pointer arithmetic, let p1 be an int pointer with a current value of 2,000 (that is, it
contains the address 2,000). Assuming 32-bit integers, after the expression

p1++;

the contents of p1 will be 2,004, not 2,001! The reason for this is that each time p1 is incremented, it
will point to the next int. The same is true of decrements. For example, again assuming that p1 has the
value 2000, the expression

28 C++ A Beginner’s Guide by Herbert Schildt

p1--;

causes p1 to have the value 1996.

Generalizing from the preceding example, the following rules apply to pointer arithmetic. Each time that
a pointer is incremented, it will point to the memory location of the next element of its base type. Each
time it is decremented, it will point to the location of the previous element of its base type. In the case
of character pointers, an increment or decrement will appear as “normal” arithmetic because characters
are one byte long. However, every other type of pointer will increase or decrease by the length of its
base type.

You are not limited to only increment and decrement operations. You can also add or subtract integers
to or from pointers. The expression

p1 = p1 + 9;

makes p1 point to the ninth element of p1’s base type, beyond the one to which it is currently pointing.

Although you cannot add pointers, you can subtract one pointer from another (provided they are both
of the same base type). The remainder will be the number of elements of the base type that separate
the two pointers.

Other than addition and subtraction of a pointer and an integer, or the subtraction of two pointers, no
other arithmetic operations can be performed on pointers. For example, you cannot add or subtract
float or double values to or from pointers.

To graphically see the effects of pointer arithmetic, execute the next short program. It creates an int
pointer (i) and a double pointer (f). It then adds the values 0 through 9 to these pointers and displays the
results. Observe how each address changes, relative to its base type, each time the loop is repeated.
(For most 32-bit compilers, i will increase by 4s and f will increase by 8s.) Notice that when using a
pointer in a cout statement, its address is automatically displayed in the addressing format applicable to
the CPU and environment.

29 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run. (The precise values you see may differ from these.)

0012FE5C 09012FE84
0012FE60 0012FE8C
0012FE64 0012FE94
0012FE68 0012FE9C
0012FE6C 0012FEA4
0012FE70 0012FEAC
0012FE74 0012FEB4
0012FE78 0012FEBC
0012FE7C 0012FEC4
0012FE80 0012FECC

Pointer Comparisons
Pointers may be compared using the relational operators, such as ==, <, and >. In general, for the
outcome of a pointer comparison to be meaningful, the two pointers must have some relationship to
each other. For example, both may point to elements within the same array. (You will see an example of
this in Project 4-2.) There is, however, one other type of pointer comparison: any pointer can be
compared to the null pointer, which is zero.

CRITICAL SKILL 4.11: Pointers and Arrays
In C++, there is a close relationship between pointers and arrays. In fact, frequently a pointer and an
array are interchangeable. Consider this fragment:

char str[80]; char *p1;

p1 = str;

Here, str is an array of 80 characters and p1 is a character pointer. However, it is the third line that is of
interest. In this line, p1 is assigned the address of the first element in the str array. (That is, after the
assignment, p1 will point to str[0].) Here’s why: In C++, using the name of an array without an index
generates a pointer to the first element in the array. Thus, the assignment

30 C++ A Beginner’s Guide by Herbert Schildt

p1 = str;

assigns the address of str[0] to p1. This is a crucial point to understand: When an unindexed

array name is used in an expression, it yields a pointer to the first element in the array. Since, after the
assignment, p1 points to the beginning of str, you can use p1 to access

elements in the array. For example, if you want to access the fifth element in str, you can use

str[4]

or

*(p1+4)

Both statements obtain the fifth element. Remember, array indices start at zero, so when str is indexed,
a 4 is used to access the fifth element. A 4 is also added to the pointer p1 to get the fifth element,
because p1 currently points to the first element of str.

The parentheses surrounding p1+4 are necessary because the * operation has a higher priority than the
+ operation. Without them, the expression would first find the value pointed to by p1 (the first location
in the array) and then add 4 to it. In effect, C++ allows two methods of accessing array elements: pointer
arithmetic and array indexing. This is important because pointer arithmetic can sometimes be faster
than array indexing—especially when you are accessing an array in strictly sequential order. Since speed
is often a consideration in programming, the use of pointers to access array elements is very common in
C++ programs. Also, you can sometimes write tighter code by using pointers instead of array indexing.

Here is an example that demonstrates the difference between using array indexing and pointer
arithmetic to access the elements of an array. We will create two versions of a program that reverse the
case of letters within a string. The first version uses array indexing. The second uses pointer arithmetic.
The first version is shown here:

// Reverse case using array indexing. #include <iostream> #include <cctype> using namespace std;

int main()

{

int i;
char str[80] = "This Is A Test";
cout << "Original string: " << str << "\n";
for(i = 0; str[i]; i++) {

if(isupper(str[i]))
str[i] = tolower(str[i]);

else if(islower(str[i]))
str[i] = toupper(str[i]);

}
cout << "Inverted-case string: " << str;
return 0;

31 C++ A Beginner’s Guide by Herbert Schildt

}

The output from the program is shown here:

Original string: This Is A Test Inverted-case string: tHIS iS a tEST

Notice that the program uses the isupper() and islower() library functions to determine the case of a
letter. The isupper() function returns true when its argument is an uppercase letter; islower() returns
true when its argument is a lowercase letter. Inside the for loop, str is indexed, and the case of each
letter is checked and changed. The loop iterates until the null terminating str is indexed. Since a null is
zero (false), the loop stops.

Here is the same program rewritten to use pointer arithmetic:

In this version, p is set to the start of str. Then, inside the while loop, the letter at p is checked and
changed, and then p is incremented. The loop stops when p points to the null terminator that ends str.
Because of the way some C++ compilers generate code, these two programs may not be equivalent in
performance. Generally, it takes more machine instructions to index an array than it does to perform
arithmetic on a pointer. Consequently, in professionally written C++ code, it is common to see the
pointer version used more frequently. However, as a beginning C++ programmer, feel free to use array
indexing until you are comfortable with pointers.

32 C++ A Beginner’s Guide by Herbert Schildt

Indexing a Pointer
As you have just seen, it is possible to access an array using pointer arithmetic. What you might find
surprising is that the reverse is also true. In C++, it is possible to index a pointer as if it were an array.
Here is an example. It is a third version of the case-changing program.

The program creates a char pointer called p and then assigns to that pointer the address of the first
element in str. Inside the for loop, p is indexed using the normal array indexing syntax. This is perfectly
valid because in C++, the statement p[i] is functionally identical to *(p+i). This further illustrates the
close relationship between pointers and arrays.

33 C++ A Beginner’s Guide by Herbert Schildt

Ask the Expert

Q: Are pointers and arrays interchangeable?

A: As the preceding few pages have shown, pointers and arrays are strongly related and are

interchangeable in many cases. For example, a pointer that points to the beginning of an array can
access that array using either pointer arithmetic or array-style indexing. However, pointers and arrays
are not completely interchangeable. For example, consider this fragment:

int nums[10]; int i;

for(i=0; i<10; i++) { *nums = i; // this is OK nums++; // ERROR -- cannot modify nums

}

Here, nums is an array of integers. As the comments describe, while it is perfectly acceptable to apply
the * operator to nums (which is a pointer operation), it is illegal to modify nums’ value. The reason for
this is that nums is a constant that points to the beginning of an array. Thus, you cannot increment it.
More generally, while an array name without an index does generate a pointer to the beginning of an
array, it cannot be changed.

Although an array name generates a pointer constant, it can still take part in pointer-style expressions,
as long as it is not modified. For example, the following is a valid statement that assigns nums[3] the
value 100:

*(nums+3) = 100; // This is OK because nums is not changed

String Constants

34 C++ A Beginner’s Guide by Herbert Schildt

You might be wondering how string constants, like the one in the fragment shown here, are handled by
C++:

cout << strlen("Xanadu");

The answer is that when the compiler encounters a string constant, it stores it in the program’s string
table and generates a pointer to the string. Thus, “Xanadu” yields a pointer to its entry in the string
table. Therefore, the following program is perfectly valid and prints the phrase Pointers add power to
C++.:

In this program, the characters that make up a string constant are stored in the string table, and ptr is
assigned a pointer to the string in that table.

Since a pointer into your program’s string table is generated automatically whenever a string constant is
used, you might be tempted to use this fact to modify the contents of the string table. However, this is
usually not a good idea because many C++ compilers create optimized tables in which one string
constant may be used at two or more different places in your program. Thus, changing a string may
cause undesired side effects.

Earlier it was mentioned that comparing one pointer to another is meaningful only if the two pointers
point to a common object, such as an array. Now that you understand how pointers and arrays relate,
you can apply pointer comparisons to streamline some types of algorithms. In this project, you will see
an example. The program developed here reverses the contents of a string, in place. Thus, instead of
copying the string back-to-front into another array, it reverses the contents of the string inside the array
that holds it. The program uses two pointer variables to accomplish this. One initially points to the
beginning of a string, and the other initially points to the last character in the string. A loop is set up that
continues to run as long as the start pointer is less than the end pointer. Each time through the loop, the
characters pointed to by the pointers are swapped and the pointers are advanced. When the start
pointer is greater than or equal to the end pointer, the string has been reversed.

35 C++ A Beginner’s Guide by Herbert Schildt

Step by Step

1. Create a file called StrRev.cpp.
2. Begin by adding these lines to the file:

The string to be reversed is contained in str. The pointers start and end will be used to access the string.

3. Add these lines, which display the original string, obtain the string’s length, and set the initial values
for the start and end pointers:

cout << "Original: " << str << "\n";

len = strlen(str);

start = str; end = &str[len-1];

Notice that end points to the last character in the string, not the null terminator.

4. Add the code that reverses the string:

36 C++ A Beginner’s Guide by Herbert Schildt

The process works like this. As long as the start pointer points to a memory location that is less than the
end pointer, the loop iterates. Inside the loop, the characters being pointed to by start and end are
swapped. Then start is incremented and end is decremented. When end is greater than or equal to start,
all of the characters in the string have been reversed. Since both start and end point into the same
array, their comparison is meaningful.

5. Here is the complete StrRev.cpp program:

37 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

Original: this is a test
Reversed: tset a si siht

Arrays of Pointers
Pointers can be arrayed like any other data type. For example, the declaration for an int pointer array of
size 10 is

int *pi[10];

38 C++ A Beginner’s Guide by Herbert Schildt

Here, pi is an array of ten integer pointers. To assign the address of an int variable called var to the third
element of the pointer array, you would write

int var;

pi[2] = &var;

Remember, pi is an array of int pointers. The only thing that the array elements can hold are the
addresses of integer values—not the values themselves. To find the value of var, you would write

*pi[2]

Like other arrays, arrays of pointers can be initialized. A common use for initialized pointer arrays is to
hold pointers to strings. Here is an example that uses a two-dimensional array of character pointers to
implement a small dictionary:

39 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run:

Enter word: network

An interconnected group of computers.

When the array dictionary is created, it is initialized with a set of words and their meanings. Recall, C++
stores all string constants in the string table associated with your program, so the array need only store
pointers to the strings. The program works by testing the word entered by the user against the strings
stored in the dictionary. If a match is found, the meaning is displayed. If no match is found, an error
message is printed.

Notice that dictionary ends with two null strings. These mark the end of the array. Recall that a null
string contains only the terminating null character. The for loop runs until the first character in a string is
null. This condition is tested with this expression:

*dictionary[i][0]

The array indices specify a pointer to a string. The * obtains the character at that location. If this
character is null, then the expression is false and the loop terminates. Otherwise, the expression is true
and the loop continues.

The Null Pointer Convention
After a pointer is declared, but before it has been assigned, it will contain an arbitrary value. Should you
try to use the pointer prior to giving it a value, you will probably crash your program. While there is no
sure way to avoid using an uninitialized pointer, C++ programmers have adopted a procedure that helps
prevent some errors. By convention, if a pointer contains the null (zero) value, it is assumed to point to
nothing. Thus, if all unused pointers are given the null value and you avoid the use of a null pointer, you
can avoid the accidental misuse of an uninitialized pointer. This is a good practice to follow.

40 C++ A Beginner’s Guide by Herbert Schildt

Any type of pointer can be initialized to null when it is declared. For example, the following initializes p
to null:

float *p = 0; // p is now a null pointer

To check for a null pointer, use an if statement, like one of these:

if(p) // succeeds if p is not null

if(!p) // succeeds if p is null

CRITICAL SKILL 4.12: Multiple Indirection
A pointer to a pointer is a form of multiple indirection, or a chain of pointers. Consider Figure 4-2. As you
can see, in the case of a normal pointer, the value of the pointer is the address of a value. In the case of
a pointer to a pointer, the first pointer contains the address of the second pointer, which points to the
location that contains the desired value.

Multiple indirection can be carried on to whatever extent desired, but there are few cases where more
than a pointer to a pointer is needed, or, indeed, even wise to use. Excessive indirection is difficult to
follow and prone to conceptual errors.

41 C++ A Beginner’s Guide by Herbert Schildt

A variable that is a pointer to a pointer must be declared as such. This is done by placing an additional
asterisk in front of its name. For example, this declaration tells the compiler that balance is a pointer to
a pointer of type int:

int **balance;

It is important to understand that balance is not a pointer to an integer, but rather a pointer to an int
pointer. When a target value is indirectly pointed to by a pointer to a pointer, accessing that value
requires that the asterisk operator be applied twice, as is shown in this short example:

Ask the Expert

Q: Given the power of pointers, I can see that their misuse could easily cause extensive damage to

a program. Do you have any tips on avoiding pointer errors?

A: First, make sure that pointer variables are initialized before using them. That is, make sure that a

pointer actually points to something before you attempt to use it! Second, make sure that the type of
the object to which a pointer points is the same as the base type of pointer. Third, don’t perform
operations through null pointers. Recall that a null pointer indicates that the pointer points nowhere.
Finally, don’t cast pointers “just to make your code compile.” Usually, pointer mismatch errors indicate
that you are thinking about something incorrectly. Casting one type of pointer into another is usually
needed only in unusual circumstances.

Here, p is declared as a pointer to an integer, and q as a pointer to a pointer to an integer. The cout
statement will print the number 10 on the screen.

42 C++ A Beginner’s Guide by Herbert Schildt

Module 4 Mastery Check
1. Show how to declare a short int array called hightemps that is 31 elements long.

2. In C++, all arrays begin indexing at ________.

3. Write a program that searches an array of ten integers for duplicate values. Have the program display
each duplicate found.

4. What is a null-terminated string?

5. Write a program that prompts the user for two strings and then compares the strings for equality, but
ignores case differences. Thus, “ok” and “OK” will compare as equal.

6. When using strcat(), how large must the recipient array be?

7. In a multidimensional array, how is each index specified?

8. Show how to initialize an int array called nums with the values 5, 66, and 88.

9. What is the principal advantage of an unsized array declaration?

10. What is a pointer? What are the two pointer operators?

11. Can a pointer be indexed like an array? Can an array be accessed through a pointer?

12. Write a program that counts the uppercase letters in a string. Have it display the result.

13. What is it called when one pointer points to another pointer?

14. Of what significance is a null pointer in C++?

1 C++ A Beginner’s Guide by Herbert Schildt

Module 5
Introducing Functions

Table of Contents

CRITICAL SKILL 5.1: Know the general form of a function .. 2

CRITICAL SKILL 5.2: Creating a Function.. 2

CRITICAL SKILL 5.3: Using Arguments ... 3

CRITICAL SKILL 5.4: Using return ... 5

CRITICAL SKILL 5.5: Using Functions in Expressions .. 9

CRITICAL SKILL 5.6: Local Scope .. 11

CRITICAL SKILL 5.7: Global Scope .. 16

CRITICAL SKILL 5.8: Passing Pointers and Arrays to Functions ... 18

CRITICAL SKILL 5.9: Returning Pointers ... 24

CRITICAL SKILL 5.10: Pass Command-Line Arguments to main() ... 26

CRITICAL SKILL 5.11: Function Prototypes .. 29

CRITICAL SKILL 5.12: Recursion ... 32

This module begins an in-depth discussion of the function. Functions are the building blocks of C++, and
a firm understanding of them is fundamental to becoming a successful C++ programmer. Here, you will
learn how to create a function. You will also learn about passing arguments, returning values, local and
global variables, function prototypes, and recursion.

Function Fundamentals

A function is a subroutine that contains one or more C++ statements and performs a specific task. Every
program that you have written so far has used one function: main(). They are called the building blocks
of C++ because a program is a collection of functions. All of the “action” statements of a program are
found within functions. Thus, a function contains the statements that you typically think of as being the
executable part of a program. Although very simple programs, such as many of those shown in this
book, will have only a main() function, most programs will contain several functions. In fact, a large,
commercial program will define hundreds of functions.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 5.1: Know the general form of a function
All C++ functions share a common form, which is shown here:

return-type name(parameter-list) { // body of function }

Here, return-type specifies the type of data returned by the function. This can be any valid type, except
an array. If the function does not return a value, its return type must be void. The name of the function
is specified by name. This can be any legal identifier that is not already in use. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially variables that
receive the value of the arguments passed to the function when it is called. If the function has no
parameters, then the parameter list will be empty.

Braces surround the body of the function. The function body is composed of the C++ statements that
define what the function does. The function terminates and returns to the calling code when the closing
curly brace is reached.

CRITICAL SKILL 5.2: Creating a Function
It is easy to create a function. Since all functions share the same general form, they are all similar in
structure to the main() functions that you have been using. Let’s begin with a simple example that
contains two functions: main() and myfunc(). Before running this program (or reading the description
that follows), examine it closely and try to figure out exactly what it displays on the screen.

3 C++ A Beginner’s Guide by Herbert Schildt

The program works like this. First, main() begins, and it executes the first cout statement. Next, main()
calls myfunc(). Notice how this is achieved: the function’s name is followed by parentheses. In this case,
the function call is a statement and, therefore, must end with a semicolon. Next, myfunc() executes its
cout statement and then returns to main() when the closing } is encountered. In main(), execution
resumes at the line of code immediately following the call to myfunc(). Finally, main() executes its
second cout statement and then terminates. The output is shown here:

In main()
Inside myfunc()
Back in main()

The way myfunc() is called and the way that it returns represent a specific instance of a process that
applies to all functions. In general, to call a function, specify its name followed by parentheses. When a
function is called, execution jumps to the function. Execution continues inside the function until its
closing curly brace is encountered. When the function ends, program execution returns to the caller at
the statement immediately following the function call.

Notice this statement in the preceding program:

void myfunc(); // myfunc's prototype

As the comment states, this is the prototype for myfunc(). Although we will discuss prototypes in detail
later, a few words are necessary now. A function prototype declares the function prior to its definition.
The prototype allows the compiler to know the function’s return type, as well as the number and type of
any parameters that the function may have. The compiler needs to know this information prior to the
first time the function is called. This is why the prototype occurs before main(). The only function that
does not require a prototype is main(), since it is predefined by C++.

The keyword void, which precedes both the prototype for myfunc() and its definition, formally states
that myfunc() does not return a value. In C++, functions that don’t return values are declared as void.

CRITICAL SKILL 5.3: Using Arguments
It is possible to pass one or more values to a function that you create. A value passed to a function is
called an argument. Thus, arguments are a way to get information into a function.

When you create a function that takes one or more arguments, variables that will receive those
arguments must also be declared. These variables are called the parameters of the function. Here is an
example that defines a function called box() that computes the volume of a box and displays the result.
It has three parameters.

void box(int length, int width, int height)

{ cout << "volume of box is " << length * width * height << "\n";

}

4 C++ A Beginner’s Guide by Herbert Schildt

In general, each time box() is called, it will compute the volume by multiplying the values passed to its
parameters: length, width, and height. Notice how the parameters are declared. Each parameter’s
declaration is separated from the next by a comma, and the parameters are contained within the
parentheses that follow the function’s name. This same basic approach applies to all functions that use
parameters.

To call box(), you must specify three arguments. For example:

box(7, 20, 4); box(50, 3, 2); box(8, 6, 9);

The values specified between the parentheses are arguments passed to box(), and the value of each
argument is copied into its matching parameter. Therefore, in the first call to box(), 7 is copied into
length, 20 is copied into width, and 4 is copied into height. In the second call, 50 is copied into length, 3
into width, and 2 into height. In the third call, 8 is copied into length, 6 into width, and 9 into height.

The following program demonstrates box():

The output from the program is shown here:

volume of box is 560
volume of box is 300
volume of box is 432
Remember the term argument refers to the value that is used to call a function. The variable that receives the
value of an argument is called a parameter. In fact, functions that take arguments are called parameterized
functions.

5 C++ A Beginner’s Guide by Herbert Schildt

1. When a function is called, what happens to program execution?
2. What is the difference between an argument and a parameter?
3. If a function requires a parameter, where is it declared?

CRITICAL SKILL 5.4: Using return
In the preceding examples, the function returned to its caller when its closing curly brace was
encountered. While this is acceptable for many functions, it won’t work for all. Often, you will want to
control precisely how and when a function returns. To do this, you will use the return statement.

The return statement has two forms: one that returns a value, and one that does not. We will begin with
the version of return that does not return a value. If a function has a void return type (that is, if the
function does not return a value), then it can use this form of return:

return;

When return is encountered, execution returns immediately to the caller. Any code remaining in the
function is ignored. For example, consider this program:

The output from the program is shown here:

6 C++ A Beginner’s Guide by Herbert Schildt

Introducing Functions

Before call
Inside f()
After call

As the output shows, f() returns to main() as soon as the return statement is encountered. The second
cout statement is never executed.

Here is a more practical example of return. The power() function shown in the next program displays
the outcome of an integer raised to a positive integer power. If the exponent is negative, the return
statement causes the function to terminate before any attempt is made to compute the result.

The output from the program is shown here:

The answer is: 100

When exp is negative (as it is in the second call), power() returns, bypassing the rest of the function.

A function may contain several return statements. As soon as one is encountered, the function returns.
For example, this fragment is perfectly valid:

7 C++ A Beginner’s Guide by Herbert Schildt

Be aware, however, that having too many returns can destructure a function and confuse its meaning. It
is best to use multiple returns only when they help clarify a function.

Returning Values

A function can return a value to its caller. Thus, a return value is a way to get information out of a
function. To return a value, use the second form of the return statement, shown here:

return value;

Here, value is the value being returned. This form of the return statement can be used only with
functions that do not return void.

A function that returns a value must specify the type of that value. The return type must be compatible
with the type of data used in the return statement. If it isn’t, a compile-time error will result. A function
can be declared to return any valid C++ data type, except that a function cannot return an array.

To illustrate the process of functions returning values, the box() function can be rewritten as shown
here. In this version, box() returns the volume. Notice that the placement of the function on the right
side of an assignment statement assigns the return value to a variable.

8 C++ A Beginner’s Guide by Herbert Schildt

Here is the output:

The volume is 330

In this example, box() returns the value of length * width * height using the return statement. This value
is then assigned to answer. That is, the value returned by the return statement becomes box()’s value in
the calling routine.

Since box() now returns a value, it is not preceded by the keyword void. (Remember, void is only used
when a function does not return a value.) Instead, box() is declared as returning a value of type int.
Notice that the return type of a function precedes its name in both its prototype and its definition.

Of course, int is not the only type of data a function can return. As stated earlier, a function can return
any type of data except an array. For example, the following program reworks box() so that it takes
double parameters and returns a double value:

9 C++ A Beginner’s Guide by Herbert Schildt

Here is the output:

The volume is 373.296

One more point: If a non-void function returns because its closing curly brace is encountered, an
undefined (that is, unknown) value is returned. Because of a quirk in the formal C++ syntax, a non-void
function need not actually execute a return statement. This can happen if the end of the function is
reached prior to a return statement being encountered. However, because the function is declared as
returning a value, a value will still be returned—even though it is just a garbage value. Of course, good
practice dictates that any non-void function that you create should return a value via an explicit return
statement.

CRITICAL SKILL 5.5: Using Functions in Expressions
In the preceding example, the value returned by box() was assigned to a variable, and then the value of
this variable was displayed via a cout statement. While not incorrect, these programs could be written
more efficiently by using the return value directly in the cout statement. For example, the main()
function in the preceding program can be written more efficiently like this:

10 C++ A Beginner’s Guide by Herbert Schildt

When the cout statement executes, box() is automatically called so that its return value can be
obtained. This value is then output. There is no reason to first assign it to some variable.

In general, a non-void function can be used in any type of expression. When the expression is evaluated,
the function is automatically called so that its return value can be obtained. For example, the following
program sums the volume of three boxes and then displays the average volume:

The output of this program is shown here:

The sum of the volumes is 812.806 The average volume is 270.935

11 C++ A Beginner’s Guide by Herbert Schildt

1. Show the two forms of the return statement.

2. Can a void function return a value?

3. Can a function call be part of an expression?

Scope Rules
Up to this point, we have been using variables without formally discussing where they can be declared,
how long they remain in existence, and what parts of a program have access to them. These attributes
are determined by the scope rules defined by C++.

In general, the scope rules of a language govern the visibility and lifetime of an object.

Although C++ defines a finely grained system of scopes, there are two basic ones: local and global. In
both of these scopes, you can declare variables. In this section, you will see how variables declared in a
local scope differ from variables declared in the global scope, and how each relates to the function.

CRITICAL SKILL 5.6: Local Scope
A local scope is created by a block. (Recall that a block begins with an opening curly brace and ends with
a closing curly brace.) Thus, each time you start a new block, you are creating a new scope. A variable
can be declared within any block. A variable that is declared inside a block is called a local variable.

A local variable can be used only by statements located within the block in which it is declared. Stated
another way, local variables are not known outside their own code blocks.

Thus, statements defined outside a block cannot access an object defined within it. In essence, when
you declare a local variable, you are localizing that variable and protecting it from unauthorized access
and/or modification. Indeed, the scope rules provide the foundation for encapsulation.

One of the most important things to understand about local variables is that they exist only while the
block of code in which they are declared is executing. A local variable is created when its declaration
statement is encountered within its block, and destroyed when the block is left. Because a local variable
is destroyed upon exit from its block, its value is lost. The most common code block in which variables
are declared is the function. Each function defines a block of code that begins with the function’s
opening curly brace and ends with its closing curly brace. A function’s code and data are private to that
function and cannot be accessed by any statement in any other function except through a call to that
function. (It is not possible, for instance, to use a goto statement to jump into the middle of another
function.)

12 C++ A Beginner’s Guide by Herbert Schildt

The body of a function is hidden from the rest of the program, and it can neither affect nor be affected
by other parts of the program. Thus, the contents of one function are completely separate from the
contents of another. Stated another way, the code and data that are defined within one function cannot
interact with the code or data defined in another function, because the two functions have a different
scope. Because each function defines its own scope, the variables declared within one function have no
effect on those declared in another—even if those variables share the same name.

For example, consider the following program:

Here is the output:

val in main(): 10 val in f1(): 88 val in main(): 10

An integer called val is declared twice, once in main() and once in f1(). The val in main() has no bearing
on, or relationship to, the one in f1(). The reason for this is that each val is known only to the function in
which it is declared. As the output shows, even though the val declared in f1() is set to 88, the content
of val in main() remains 10.

Because a local variable is created and destroyed with each entry and exit from the block in which it is
declared, a local variable will not hold its value between activations of its block. This is especially
important to remember in terms of a function call. When a function is called, its local variables are
created. Upon its return, they are destroyed. This means that local variables cannot retain their values
between calls.

13 C++ A Beginner’s Guide by Herbert Schildt

If a local variable declaration includes an initializer, then the variable is initialized each time the block is
entered. For example:

The output shown here confirms that num is initialized each time f() is called:

99 99 99

A local variable that is not initialized will have an unknown value until it is assigned one.

Local Variables Can Be Declared Within Any Block

It is common practice to declare all variables needed within a function at the beginning of that
function’s code block. This is done mainly so that anyone reading the code can easily determine what
variables are used. However, the beginning of the function’s block is not the only place where local
variables can be declared. A local variable can be declared anywhere, within any block of code. A
variable declared within a block is local to that block. This means that the variable does not exist until
the block is entered and is destroyed when the block is exited. Furthermore, no code outside that
block—including other code in the function— can access that variable. To understand this, try the
following program:

14 C++ A Beginner’s Guide by Herbert Schildt

The variable x is declared at the start of main()’s scope and is accessible to all subsequent code within
main(). Within the if block, y is declared. Since a block defines a scope, y is visible only to other code
within its block. This is why outside of its block, the line

y = 100;

is commented out. If you remove the leading comment symbol, a compile-time error will occur, because
y is not visible outside of its block. Within the if block, x can be used because code within a block has
access to variables declared by an enclosing block.

Although local variables are typically declared at the beginning of their block, they need not be. A local
variable can be declared anywhere within a block as long as it is declared before it is used. For example,
this is a perfectly valid program:

15 C++ A Beginner’s Guide by Herbert Schildt

In this example, a and b are not declared until just before they are needed. Frankly, most programmers
declare local variables at the beginning of the function that uses them, but this is a stylistic issue.

Name Hiding

When a local variable declared in an inner block has the same name as a variable declared in an outer
block, the variable declared in the inner block hides the one in the outer block. For example:

The output from this program is shown here:

16 C++ A Beginner’s Guide by Herbert Schildt

inner i: 50

outer i: 10

The i declared within the if block hides the outer i. Changes that take place on the inner i have no effect
on the outer i. Furthermore, outside of the if block, the inner i is unknown and the outer i comes back
into view.

Function Parameters

The parameters to a function are within the scope of the function. Thus, they are local to the function.
Except for receiving the values of the arguments, parameters behave like any other local variables.

Ask the Expert

Q: What does the keyword auto do? I have heard that it is used to declare local variables. Is this

right?

A: The C++ language contains the keyword auto, which can be used to declare local variables.

However, since all local variables are, by default, assumed to be auto, it is virtually never used. Thus, you
will not see it used in any of the examples in this book. However, if you choose to use it, place it
immediately before the variable’s type, as shown here:

auto char ch;

Again, auto is optional and not used elsewhere in this book.

CRITICAL SKILL 5.7: Global Scope
Since local variables are known only within the function in which they are declared, a question may have
occurred to you: How do you create a variable that can be shared by more than one function? The
answer is to declare the variable in the global scope. The global scope is the declarative region that is
outside of all functions. Declaring a variable in the global scope creates a global variable.

Global variables are known throughout the entire program. They can be used by any piece of code, and
they maintain their values during the entire execution of the program. Therefore, their scope extends to
the entire program. You can create global variables by declaring them outside of any function. Because
they are global, they can be accessed by any expression, regardless of which function contains the
expression.

The following program demonstrates the use of a global variable. The variable count has been declared
outside of all functions. Its declaration is before the main() function. However, it could have been
placed anywhere, as long as it was not in a function. Remember, though, that since you must declare a
variable before you use it, it is best to declare global variables at the top of the program.

17 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

count: 0
...count: 2
...count: 4
...count: 6
...count: 8
...count: 10
...count: 12
...count: 14
...count: 16
...count: 18
...

18 C++ A Beginner’s Guide by Herbert Schildt

Looking closely at this program, it should be clear that both main() and func1() use the global variable
count. In func2(), however, a local variable called count is declared. When func2() uses count, it is
referring to its local variable, not the global one. It is important to understand that if a global variable
and a local variable have the same name, all references to that variable name inside the function in
which the local variable is declared will refer to the local variable and have no effect on the global
variable. Thus, a local variable hides a global variable of the same name.

Global variables are initialized at program startup. If a global variable declaration includes an initializer,
then the variable is initialized to that value. If a global variable does not include an initializer, then its
value is set to zero.

Storage for global variables is in a fixed region of memory set aside for this purpose by your program.
Global variables are helpful when the same data is used by several functions in your program, or when a
variable must hold its value throughout the duration of the program. You should avoid using
unnecessary global variables, however, for three reasons:

They take up memory the entire time your program is executing, not just when they are needed.

Using a global variable where a local variable will do makes a function less general, because it relies on
something that must be defined outside itself.

Using a large number of global variables can lead to program errors because of unknown, and
unwanted, side effects. A major problem in developing large programs is the accidental modification of
a variable’s value due to its use elsewhere in a program. This can happen in C++ if you use too many
global variables in your programs.

1. What are the main differences between local and global variables?

2. Can a local variable be declared anywhere within a block?

3. Does a local variable hold its value between calls to the function in which it is declared?

CRITICAL SKILL 5.8: Passing Pointers and Arrays to Functions
The preceding examples have used simple values, such as int or double, as arguments. However, there
will be times when you will want to use pointers and arrays as arguments. While passing these types of
arguments is straightforward, some special issues need to be addressed.

Passing a Pointer

19 C++ A Beginner’s Guide by Herbert Schildt

To pass a pointer as an argument, you must declare the parameter as a pointer type. Here is an
example:

Study this program carefully. As you can see, f() takes one parameter: an int pointer. Inside main(), p
(an int pointer) is assigned the address of i. Next, f() is called with p as an argument. When the pointer
parameter j receives p, it then also points to i within main(). Thus, the assignment

*j = 100;

causes i to be given the value 100. For the general case, f() assigns 100 to whatever address it is called
with.

In the preceding example, it is not actually necessary to use the pointer variable p. Instead, you can
simply precede i with an & when f() is called. This causes the address of i to be passed to f(). The
revised program is shown here:

20 C++ A Beginner’s Guide by Herbert Schildt

It is crucial that you understand one thing about passing pointers to functions: when you perform an
operation within the function that uses the pointer, you are operating on the variable that is pointed to
by that pointer. Thus, the function will be able to change the value of the object pointed to by the
parameter.

Passing an Array

When an array is an argument to a function, the address of the first element of the array is passed, not a
copy of the entire array. (Recall that an array name without any index is a pointer to the first element in
the array.) This means that the parameter declaration must be of a compatible type. There are three
ways to declare a parameter that is to receive an array pointer. First, it can be declared as an array of
the same type and size as that used to call the function, as shown here:

21 C++ A Beginner’s Guide by Herbert Schildt

Even though the parameter num is declared to be an integer array of ten elements, the C++ compiler
will automatically convert it to an int pointer. This is necessary because no parameter can actually
receive an entire array. Since only a pointer to the array will be passed, a pointer parameter must be
there to receive it.

A second way to declare an array parameter is to specify it as an unsized array, as shown here:

Here, num is declared to be an integer array of unknown size. Since C++ provides no array boundary
checks, the actual size of the array is irrelevant to the parameter (but not to the program, of course).
This method of declaration is also automatically transformed into an int pointer by the compiler.

The final way that num can be declared is as a pointer. This is the method most commonly used in
professionally written C++ programs. Here is an example:

22 C++ A Beginner’s Guide by Herbert Schildt

The reason
it is possible
to declare
num as a
pointer is
that any
pointer can
be indexed
using [], as if it were an array. Recognize that all three methods of declaring an array parameter yield
the same result: a pointer.

It is important to remember that when an array is used as a function argument, its address is passed to a
function. This means that the code inside the function will be operating on, and potentially altering, the
actual contents of the array used to call the function. For example, in the following program examine
the function cube(), which converts the value of each element in an array into its cube. To call cube(),
pass the address of the array as the first argument and the size of the array as the second.

Here is the output produced by this program:

void cube(int *n, int num)

{
 while(num) {

 *n = *n * *n * *n; This changes the value of the array
 num--; element pointed to by n.

 n++;
 }

}

23 C++ A Beginner’s Guide by Herbert Schildt

Original contents: 1 2 3 4 5 6 7 8 9 10

Altered contents: 1 8 27 64 125 216 343 512 729 1000

As you can see, after the call to cube(), the contents of array nums in main() will be cubes of its original
values. That is, the values of the elements of nums have been modified by the statements within cube(),
because n points to nums.

Passing Strings

Because a string is simply a character array that is null-terminated, when you pass a string to a function,
only a pointer to the beginning of the string is actually passed. This is a pointer of type char *. For
example, consider the following program. It defines the function strInvertCase(), which inverts the case
of the letters within a string.

24 C++ A Beginner’s Guide by Herbert Schildt

Here is the output:

tHIS iS a tEST

1. Show how to declare a void function called count that has one long int pointer parameter called ptr.

2. When a pointer is passed to a function, can the function alter the contents of the object pointed to

by the pointer?

3. Can an array be passed to a function? Explain.

CRITICAL SKILL 5.9: Returning Pointers
Functions can return pointers. Pointers are returned like any other data type and pose no special
problem. However, because the pointer is one of C++’s more confusing features, a short discussion of
pointer return types is warranted.

To return a pointer, a function must declare its return type to be a pointer. For example, here the return
type of f() is declared to be an int pointer:

int *f();

If a function’s return type is a pointer, then the value used in its return statement must also be a
pointer. (As with all functions, the return value must be compatible with the return type.)

The following program demonstrates the use of a pointer return type. The function get_substr()
searches a string for a substring. It returns a pointer to the first matching substring. If no match is found,

25 C++ A Beginner’s Guide by Herbert Schildt

a null pointer is returned. For example, if the string is “I like C++” and the search string is “like”, then the
function returns a pointer to the l in “like”.

Here is the output produced by the program:

substring found: three four

26 C++ A Beginner’s Guide by Herbert Schildt

The main() Function
As you know, the main() function is special because it is the first function called when your program
executes. It signifies the beginning of your program. Unlike some programming languages that always
begin execution at the “top” of the program, C++ begins every program with a call to the main()
function, no matter where that function is located in the program. (However, it is common for main() to
be the first function in your program so that it can be easily found.)

There can be only one main() in a program. If you try to include more than one, your program will not
know where to begin execution. Actually, most compilers will catch this type of error and report it. As
mentioned earlier, since main() is predefined by C++, it does not require a prototype.

CRITICAL SKILL 5.10: Pass Command-Line Arguments to main()
Sometimes you will want to pass information into a program when you run it. This is generally
accomplished by passing command-line arguments to main(). A command-line argument is the
information that follows the program’s name on the command line of the operating system. (In
Windows, the Run command also uses a command line.) For example, you might compile C++ programs
from the command line by typing something like this:

cl prog-name

where prog-name is the program you want compiled. The name of the program is passed into the C++
compiler as a command-line argument.

C++ defines two built-in, but optional, parameters to main(). They are argc and argv, and they receive
the command-line arguments. These are the only parameters defined by C++ for main(). However,
other arguments may be supported in your specific operating environment, so you will want to check
your compiler’s documentation. Let’s now look at argc and argv more closely.

NOTE : Technically, the names of the command-line parameters are arbitrary—you can use any names you

like. However, argc and argv have been used by convention for several years, and it is best that you use these
names so that anyone reading your program can quickly identify them as the command-line parameters.

The argc parameter is an integer that holds the number of arguments on the command line. It will
always be at least 1, because the name of the program qualifies as the first argument.

The argv parameter is a pointer to an array of character pointers. Each pointer in the argv array points to
a string containing a command-line argument. The program’s name is pointed to by argv[0]; argv[1] will
point to the first argument, argv[2] to the second argument, and so on. All command-line arguments are
passed to the program as strings, so numeric arguments will have to be converted by your program into
their proper internal format.

It is important that you declare argv properly. The most common method is

27 C++ A Beginner’s Guide by Herbert Schildt

char *argv[];

You can access the individual arguments by indexing argv. The following program demonstrates how to
access the command-line arguments. It displays all of the command-line arguments that are present
when it is executed.

// Display command-line arguments.

Introducing Functions

For example, if the program is called ComLine, then executing it like this:

C>ComLine one two three

causes the following output:

ComLine
one
two
three

C++ does not stipulate the exact nature of a command-line argument, because host environments
(operating systems) vary considerably on this point. However, the most common convention is as
follows: each command-line argument must be separated by spaces or tabs. Often commas, semicolons,
and the like are not valid argument separators. For example,

one, two, and three

is made up of four strings, while

one,two,and three

has two strings—the comma is not a legal separator.

28 C++ A Beginner’s Guide by Herbert Schildt

If you need to pass a command-line argument that does, in fact, contain spaces, then you must place it
between quotes. For example, this will be treated as a single command-line argument:

"this is one argument"

Keep in mind that the examples provided here apply to a wide variety of environments, but not
necessarily to yours.

Usually, you will use argc and argv to get initial options or values (such as a filename) into your program.
In C++, you can have as many command-line arguments as the operating system will allow. Using
command-line arguments will give your program a professional appearance and facilitate the program’s
use in batch files.

Passing Numeric Command-Line Arguments

When you pass numeric data as a command-line argument to a program, that data will be received in
string form. Your program will need to convert it into the binary, internal format using one of the
standard library functions supported by C++. Three of the most commonly used functions for this
purpose are shown here:

Each is called with a string containing a numeric value as an argument. Each uses the header <cstdlib>.

The following program demonstrates the conversion of a numeric command-line argument into its
binary equivalent. It computes the sum of the two numbers that follow its name on the command line.
The program uses the atof() function to convert its numeric argument into its internal representation.

29 C++ A Beginner’s Guide by Herbert Schildt

To add two numbers, use this type of command line (assuming the program is called add):

C>add 100.2 231

1. What are the two parameters to main() usually called? Explain what each contains.

2. What is always the first command-line argument?

3. A numeric command-line argument is passed as string. True or false?

CRITICAL SKILL 5.11: Function Prototypes
Function prototypes were discussed briefly at the beginning of this module. Now it is time to explain
them more fully. In C++, all functions must be declared before they are used. Typically, this is
accomplished by use of a function prototype. Prototypes specify three things about a function:

• Its return type
• The type of its parameters
• The number of its parameters
• Prototypes allow the compiler to perform three important operations:

30 C++ A Beginner’s Guide by Herbert Schildt

• They tell the compiler what type of code to generate when a function is called. Different return
types must be handled differently by the compiler.

• They allow C++ to find and report any illegal type conversions between the type of arguments used
to call a function and the type definition of its parameters.

• They allow the compiler to detect differences between the number of arguments used to call a
function and the number of parameters in the function.

The general form of a function prototype is shown here. It is the same as a function definition, except
that no body is present.

type func-name(type parm_name1, type parm_name2,..., type parm_nameN);

The use of parameter names in a prototype is optional. However, their use does let the compiler identify
any type mismatches by name when an error occurs, so it is a good idea to include them.

To better understand the usefulness of function prototypes, consider the following program. If you try
to compile it, an error message will be issued, because the program attempts to call sqr_it() with an
integer argument instead of the integer pointer required. (There is no automatic conversion from
integer to pointer.)

It is possible for a function definition to also serve as its prototype if the definition occurs prior to the
function’s first use in the program. For example, this is a valid program:

31 C++ A Beginner’s Guide by Herbert Schildt

Here, the function isEven() is defined before it is used in main(). Thus, its definition can also serve as its
prototype, and no separate prototype is needed.

In general, it is usually easier and better to simply declare a prototype for each function used by a
program rather than trying to make sure that each function is defined before it is used. This is especially
true for large programs in which it is hard to keep track of which functions use what other functions.
Furthermore, it is possible to have two functions that call each other. In this case, prototypes must be
used.

Headers Contain Prototypes

Earlier in this book, you were introduced to the standard C++ headers. You have learned that these
headers contain information needed by your programs. While this partial explanation is true, it does not
tell the whole story. C++’s headers contain the prototypes for the functions in the standard library.
(They also contain various values and definitions used by those functions.) Like functions that you write,
the standard library functions must be prototyped before they are used. For this reason, any program
that uses a library function must also include the header containing the prototype of that function. To
find out which header a library function requires, look in your compiler’s library documentation. Along
with a description of each function, you will find the name of the header that must be included in order
to use that function.

1. What is a function prototype? What is the purpose of a prototype?

2. Aside from main(), must all functions be prototyped?

32 C++ A Beginner’s Guide by Herbert Schildt

3. When you use a standard library function, why must you include its header?

CRITICAL SKILL 5.12: Recursion
The last topic that we will examine in this module is recursion. Sometimes called circular definition,
recursion is the process of defining something in terms of itself. As it relates to programming, recursion
is the process of a function calling itself. A function that calls itself is said to be recursive.

The classic example of recursion is the function factr(), which computes the factorial

of an integer. The factorial of a number N is the product of all the whole numbers between

1 and N. For example, 3 factorial is 1×2×3, or 6. Both factr() and its iterative equivalent

are shown here:

33 C++ A Beginner’s Guide by Herbert Schildt

The operation of the nonrecursive version of fact() should be clear. It uses a loop starting at 1 and
progressively multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex. When factr() is called with an argument
of 1, the function returns 1; otherwise, it returns the product of factr(n–1)*n. To evaluate this
expression, factr() is called with n–1. This happens until n equals 1 and the calls to the function begin
returning. For example, when the factorial of 2 is calculated, the first call to factr() will cause a second
call to be made with the argument of 1. This call will return 1, which is then multiplied by 2 (the original
n value). The answer is then 2. You might find it interesting to insert cout statements into factr() that
will show at what level each call is, and what the intermediate answers are.

34 C++ A Beginner’s Guide by Herbert Schildt

When a function calls itself, new local variables and parameters are allocated storage (usually on the
system stack), and the function code is executed with these new variables from the start. As each
recursive call returns, the old local variables and parameters are removed from the stack, and execution
resumes at the point just after the recursive call inside the function. Recursive functions could be said to
“telescope” out and back. Keep in mind that most recursive routines do not significantly reduce code
size. Also, the recursive versions of most routines may execute a bit more slowly than their iterative
equivalents, due to the added overhead of the additional function calls. Too many recursive calls to a
function may cause a stack overrun. Because storage for function parameters and local variables is on
the stack, and each new call creates a new copy of these variables, it is possible that the stack will be
exhausted. If this occurs, other data may be destroyed as well. However, you probably will not have to
worry about any of this unless a recursive function runs wild.

The main advantage of recursive functions is that they can be used to create versions of several
algorithms that are clearer and simpler than those produced with their iterative relatives. For example,
the Quicksort sorting algorithm is quite difficult to implement in an iterative way. Also, some problems,
especially those related to artificial intelligence, seem to lend themselves to recursive solutions.

When writing a recursive function, you must include a conditional statement, such as an if, somewhere
to force the function to return without execution of the recursive call. If you don’t provide the
conditional statement, then once you call the function, it will never return. This is a very common error.
When developing programs with recursive functions, use cout statements liberally so that you can
watch what is going on, and abort execution if you see that you have made a mistake. Here is another
example of a recursive function, called reverse(). It prints its string argument backwards on the screen.

35 C++ A Beginner’s Guide by Herbert Schildt

The reverse() function first checks to see if it is passed a pointer to the null terminating the string. If not,
then reverse() calls itself with a pointer to the next character in the string. When the null terminator is
finally found, the calls begin unraveling, and the characters are displayed in reverse order.

One last point: Recursion is often difficult for beginners. Don’t be discouraged if it seems a bit confusing
right now. Over time, you will grow more accustomed to it.

In Module 4, you were shown a simple sorting method called the bubble sort.

QSDemo.cpp

It was mentioned at the time that substantially better sorts exist. Here you will develop a version of one
of the best: the Quicksort. The Quicksort, invented and named by

C.A.R. Hoare, is the best general-purpose sorting algorithm currently available. The reason it could not
be shown in Module 4 is that the best implementations of the Quicksort rely on recursion. The version
we will develop sorts a character array, but the logic can be adapted to sort any type of object.

The Quicksort is built on the idea of partitions. The general procedure is to select a value, called the
comparand, and then to partition the array into two sections. All elements greater than or equal to the
comparand are put on one side, and those less than the value are put on the other. This process is then
repeated for each remaining section until the array is sorted. For example, given the array fedacb and
using the value d as the comparand, the first pass of the Quicksort would rearrange the array as follows:

This process is then repeated for each section—that is, bca and def. As you can see, the process is
essentially recursive in nature and, indeed, the cleanest implementation of Quicksort is as a recursive
function.

You can select the comparand value in two ways. You can either choose it at random, or you can select it
by averaging a small set of values taken from the array. For optimal sorting, you should select a value
that is precisely in the middle of the range of values. However, this is not easy to do for most sets of
data. In the worst case, the value chosen is at one extremity.

36 C++ A Beginner’s Guide by Herbert Schildt

Even in this case, however, Quicksort still performs correctly. The version of Quicksort that we will
develop selects the middle element of the array as the comparand.

One other thing: The C++ library contains a function called qsort() which also performs a Quicksort. You
might find it interesting to compare it to the version shown here.

Step By Step

1. Create a file called QSDemo.cpp.

2. The Quicksort will be implemented by a pair of functions. The first, called quicksort(), provides a
convenient interface for the user and sets up a call to the actual sorting function called qs(). First, create
the quicksort() function, as shown here:

Here, items points to the array to be sorted, and len specifies the number of elements in the array. As
shown in the next step, qs() requires an initial partition, which quicksort() supplies. The advantage of
using quicksort() is that it can be called with just a pointer to the array to be sorted and the number of
elements in the array. It then provides the beginning and ending indices of the region to be sorted.

3. Add the actual Quicksort function, called qs(), shown here:

37 C++ A Beginner’s Guide by Herbert Schildt

This function must be called with the indices of the region to be sorted. The left parameter must contain
the beginning (left boundary) of the partition. The right parameter must contain the ending (right
boundary) of the partition. When first called, the partition represents the entire array. Each recursive
call progressively sorts a smaller partition.

4. To use the Quicksort, simply call quicksort() with the name of the array to be sorted and its length.
After the call returns, the array will be sorted. Remember, this version works only for character arrays,
but you can adapt the logic to sort any type of arrays you want.

5. Here is a program that demonstrates the Quicksort:

38 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

Original order: jfmckldoelazlkper

Sorted order: acdeefjkklllmoprz

Ask the Expert

Q: I have heard of something called the “default-to-int” rule. What is it and does it apply to C++?

39 C++ A Beginner’s Guide by Herbert Schildt

A: In the original C language, and for early versions of C++, if no type specifier was present in a

declaration, int was assumed. For example, in old-style code, the following function would be valid and
would return an int result:

f() { // default to int return type

{ int x; // ... return x;

}

Here, the type returned by f() is int by default, since no other return type is specified. However, the
“default-to-int” rule (also called the “implicit int” rule) is not supported by modern versions of C++.
Although most compilers will continue to support the “default-to-int” rule for the sake of backward
compatibility, you should explicitly specify the return type of every function that you write. Since older
code frequently made use of the default integer return type, this change is also something to keep in
mind when converting legacy code.

Module 5 Mastery Check

1. Show the general form of a function.
2. Create a function called hypot() that computes the length of the hypotenuse of a right triangle given

the lengths of the two opposing sides. Demonstrate its use in a program. For this problem, you will
need to use the sqrt() standard library function, which returns the square root of its argument. It
has this prototype:

double sqrt(double val);
It uses the header <cmath>.

3. Can a function return a pointer? Can a function return an array?

4. Create your own version of the standard library function strlen(). Call your version mystrlen(), and

demonstrate its use in a program.

5. Does a local variable maintain its value between calls to the function in which it is declared?

6. Give one benefit of global variables. Give one disadvantage.

7. Create a function called byThrees() that returns a series of numbers, with each value 3 greater than

the preceding one. Have the series start at 0. Thus, the first five numbers returned by byThrees()
are 0, 3, 6, 9, and 12. Create another function called reset() that causes byThrees() to start the
series over again from 0. Demonstrate your functions in a program. Hint: You will need to use a
global variable.

8. Write a program that requires a password that is specified on the command line. Your program

doesn’t have to actually do anything except report whether the password was entered correctly or
incorrectly.

40 C++ A Beginner’s Guide by Herbert Schildt

9. A prototype prevents a function from being called with the improper number of arguments. True or
false?

10. Write a recursive function that prints the numbers 1 through 10. Demonstrate its use in a program.

1 C++ A Beginner’s Guide by Herbert Schildt

Module6

A Closer Look at Functions
Table of Contents

CRITICAL SKILL 6.1: Know the two approaches to argument passing ... 2

CRITICAL SKILL 6.2: How C++ Passes Arguments .. 2

CRITICAL SKILL 6.3: Using a Pointer to Create a Call-by-Reference .. 3

CRITICAL SKILL 6.4: Reference Parameters ... 4

CRITICAL SKILL 6.5: Returning References .. 9

CRITICAL SKILL 6.6: Independent References ... 12

CRITICAL SKILL 6.7: Function Overloading .. 13

CRITICAL SKILL 6.8:Default Function Arguments .. 26

CRITICAL SKILL 6.9: Function Overloading and Ambiguity .. 29

This module continues our examination of the function. It discusses three of C++’s most important
function-related topics: references, function overloading, and default arguments. These features vastly
expand the capabilities of a function. A reference is an implicit pointer. Function overloading is the
quality that allows one function to be implemented two or more different ways, each performing a
separate task. Function overloading is one way that C++ supports polymorphism. Using a default
argument, it is possible to specify a value for a parameter that will be automatically used when no
corresponding argument is specified. We will begin with an explanation of the two ways that arguments
can be passed to functions, and the implications of both methods. An understanding of argument
passing is needed in order to understand the reference.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 6.1: Know the two approaches to argument
passing
In general, there are two ways that a computer language can pass an argument to a subroutine. The first
is call-by-value. This method copies the value of an argument into the parameter of the subroutine.
Therefore, changes made to the parameter of the subroutine have no effect on the argument used to
call it.

Call-by-reference is the second way a subroutine can be passed arguments. In this method, the address
of an argument (not its value) is copied into the parameter. Inside the subroutine, this address is used to
access the actual argument specified in the call. This means that changes made to the parameter will
affect the argument used to call the subroutine.

CRITICAL SKILL 6.2: How C++ Passes Arguments
By default, C++ uses call-by-value for passing arguments. This means that the code inside a function
cannot alter the arguments used to call the function. In this book, all of the programs up to this point
have used the call-by-value method. For example, consider the reciprocal() function in this program:

takes place inside reciprocal(), the only thing modified is the local variable x. The variable t used as an
argument will still have the value 10 and is unaffected by the operations inside the function.

3 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 6.3: Using a Pointer to Create a
Call-by-Reference
Even though C++’s default parameter-passing convention is call-by-value, it is possible to manually
create a call-by-reference by passing the address of an argument (that is, a pointer) to a function. It is
then possible to change the value of the argument outside of the function. You saw an example of this in
the preceding module when the passing of pointers was discussed. As you know, pointers are passed to
functions just like any other values. Of course, it is necessary to declare the parameters as pointer types.

To see how passing a pointer allows you to manually create a call-by-reference, consider a function
called swap() that exchanges the values of the two variables pointed to by its arguments. Here is one
way to implement it:

The swap() function declares two pointer parameters, x and y. It uses these parameters to exchange the
values of the variables pointed to by the arguments passed to the function. Remember, *x and *y refer
to the variables pointed to by x and y. Thus, the statement

*x = *y;

puts the value of the object pointed to by y into the object pointed to by x. Consequently, when the
function terminates, the contents of the variables used to call the function will be swapped.

Since swap() expects to receive two pointers, you must remember to call swap() with the addresses of
the variables you want to exchange. The correct method is shown in this program:

4 C++ A Beginner’s Guide by Herbert Schildt

In main(), the variable i is assigned the value 10, and j, the value 20. Then swap() is called with the
addresses of i and j. The unary operator & is used to produce the addresses of the variables. Therefore,
the addresses of i and j, not their values, are passed into swap(). When swap() returns, i and j will have
their values exchanged, as the following output shows:

Initial values of i and j: 10 20 Swapped values of i and j: 20 10

1. Explain call-by-value.

2. Explain call-by-reference.

3. What parameter-passing mechanism does C++ use by default?

CRITICAL SKILL 6.4: Reference Parameters
While it is possible to achieve a call-by-reference manually by using the pointer operators, this approach
is rather clumsy. First, it compels you to perform all operations through pointers. Second, it requires
that you remember to pass the addresses (rather than the values) of the arguments when calling the
function. Fortunately, in C++, it is possible to tell the compiler to automatically use call-by-reference
rather than call-by-value for one or more parameters of a particular function. You can accomplish this
with a reference parameter. When you use a reference parameter, the address (not the value) of an
argument is automatically passed to the function. Within the function, operations on the reference
parameter are automatically dereferenced, so there is no need to use the pointer operators.

5 C++ A Beginner’s Guide by Herbert Schildt

A reference parameter is declared by preceding the parameter name in the function’s declaration with
an &. Operations performed on a reference parameter affect the argument used to call the function, not
the reference parameter itself.

To understand reference parameters, let’s begin with a simple example. In the following, the function f(
) takes one reference parameter of type int:

This program displays the following output:

Old value for val: 1

New value for val: 10

Pay special attention to the definition of f(), shown here:

void f(int &i) {

i = 10; // this modifies calling argument }

Notice the declaration of i. It is preceded by an &, which causes it to become a reference parameter.
(This declaration is also used in the function’s prototype.) Inside the function, the following statement

i = 10;

does not cause i to be given the value 10. Instead, it causes the variable referenced by i (in this case, val)
to be assigned the value 10. Notice that this statement does not use the * pointer operator. When you

6 C++ A Beginner’s Guide by Herbert Schildt

use a reference parameter, the C++ compiler automatically knows that it is an address and dereferences
it for you. In fact, using the * would be an error.

Since i has been declared as a reference parameter, the compiler will automatically pass f() the address
of any argument it is called with. Thus, in main(), the statement

7 C++ A Beginner’s Guide by Herbert Schildt

passes the address of val (not its value) to f(). There is no need to precede val with the & operator.
(Doing so would be an error.) Since f() receives the address of val in the form of a reference, it can
modify the value of val.

To illustrate reference parameters in actual use—and to fully demonstrate their benefits— the swap()
function is rewritten using references in the following program. Look carefully at how swap() is declared
and called.

// Use reference parameters to create the swap() function.

#include <iostream> using namespace std;

// Declare swap() using reference parameters. void swap(int &x, int &y);

int main() {

int i, j;

i = 10;

j = 20;

cout << "Initial values of i and j: ";

/* Here, swap() is defined as using call-by-reference,

not call-by-value. Thus, it can exchange the two

arguments it is called with. */ void swap(int &x, int &y) { int temp;

// use references to exchange the values of the arguments temp = x; x = y;

Now, the exchange takes place y = temp; automatically through the references. }

The output is the same as the previous version. Again, notice that by making x and y reference
parameters, there is no need to use the * operator when exchanging values. Remember, the compiler
automatically generates the addresses of the arguments used to call swap() and automatically
dereferences x and y.

Let’s review. When you create a reference parameter, that parameter automatically refers to (that is,
implicitly points to) the argument used to call the function. Further, there is no need to apply the &
operator to an argument. Also, inside the function, the reference parameter is used directly; the *
operator is not used. All operations involving the reference parameter automatically refer to the
argument used in the call to the function. Finally, when you assign a value to a reference parameter, you
are actually assigning that value to the variable to which the reference is pointing. In the case of a
function parameter, this will be the variable used in the call to the function.

One last point: The C language does not support references. Thus, the only way to create a
call-by-reference in C is to use pointers, as shown earlier in the first version of swap(). When converting
C code to C++, you will want to convert these types of parameters to references, where feasible.

8 C++ A Beginner’s Guide by Herbert Schildt

Ask the Expert

Q: In some C++ code, I have seen a declaration style in which the & is associated with the type

name as shown here:

int& i;

rather than the variable name, like this:

int &i;

Is there a difference?

A: The short answer is no, there is no difference between the two declarations. For example, here

is another way to write the prototype to swap():

void swap(int& x, int& y);

As you can see, the & is immediately adjacent to int and not to x. Furthermore, some programmers also
specify pointers by associating the * with the type rather the variable, as shown here:

float* p;

These types of declarations reflect the desire by some programmers for C++ to contain a separate
reference or pointer type. However, the trouble with associating the & or * with the type rather than
the variable is that, according to the formal C++ syntax, neither the & nor the * is distributive over a list
of variables, and this can lead to confusing declarations. For example, the following declaration creates
one, not two, int pointers:

int* a, b;

Here, b is declared as an integer (not an integer pointer) because, as specified by the C++ syntax, when
used in a declaration, an * or an & is linked to the individual variable that it precedes, not to the type
that it follows.

It is important to understand that as far as the C++ compiler is concerned, it doesn’t matter whether you
write int *p or int* p. Thus, if you prefer to associate the * or & with the type rather than the variable,
feel free to do so. However, to avoid confusion, this book will continue to associate the * and the & with
the variable name that each modifies, rather than with the type name.

1. How is a reference parameter declared?

9 C++ A Beginner’s Guide by Herbert Schildt

2. When calling a function that uses a reference parameter, must you precede the argument with
an &?

3. Inside a function that receives a reference parameter, do operations on that parameter need to

be preceded with an * or &?

CRITICAL SKILL 6.5: Returning References
A function can return a reference. In C++ programming, there are several uses for reference return
values. Some of these uses must wait until later in this book. However, there are some that you can use
now.

When a function returns a reference, it returns an implicit pointer to its return value. This gives rise to a
rather startling possibility: the function can be used on the left side of an assignment statement! For
example, consider this simple program:

10 C++ A Beginner’s Guide by Herbert Schildt

Let’s examine this program closely. At the beginning, f() is declared as returning a reference to a double,
and the global variable val is initialized to 100. In main(), the following statement displays the original
value of val:

cout << f() << '\n'; // display val's value

When f() is called, it returns a reference to val using this return statement:

return val; // return reference to val

This statement automatically returns a reference to val rather than val’s value. This reference is then
used by the cout statement to display val’s value.

In the line

x = f(); // assign value of val to x

the reference to val returned by f() assigns the value of val to x. The most interesting line in the
program is shown here:

f() = 99.1; // change val's value

This statement causes the value of val to be changed to 99.1. Here is why: since f() returns a reference
to val, this reference becomes the target of the assignment statement. Thus, the value of 99.1 is
assigned to val indirectly, through the reference to it returned by f().

Here is another sample program that uses a reference return type:

11 C++ A Beginner’s Guide by Herbert Schildt

This program changes the values of the second and fourth elements in the vals array. The program
displays the following output:

Here are the original values: 1.1 2.2 3.3 4.4 5.5
Here are the changed values: 1.1 5298.23 3.3 -98.8 5.5

Let’s see how this is accomplished.

The change_it() function is declared as returning a reference to a double. Specifically, it returns a
reference to the element of vals that is specified by its parameter i. The reference returned by
change_it() is then used in main() to assign a value to that element.

When returning a reference, be careful that the object being referred to does not go out of scope. For
example, consider this function:

12 C++ A Beginner’s Guide by Herbert Schildt

In f(), the local variable i will go out of scope when the function returns. Therefore, the reference to i
returned by f() will be undefined. Actually, some compilers will not compile f() as written for precisely
this reason. However, this type of problem can be created indirectly, so be careful which object you
return a reference to.

CRITICAL SKILL 6.6: Independent References
Even though the reference is included in C++ primarily for supporting call-by-reference parameter
passing and for use as a function return type, it is possible to declare a stand-alone reference variable.
This is called an independent reference. It must be stated at the outset, however, that non-parameter
reference variables are seldom used, because they tend to confuse and destructure your program. With
these reservations in mind, we will take a short look at them here.

An independent reference must point to some object. Thus, an independent reference must be
initialized when it is declared. Generally, this means that it will be assigned the address of a previously
declared variable. Once this is done, the name of the reference variable can be used anywhere that the
variable it refers to can be used. In fact, there is virtually no distinction between the two. For example,
consider the program shown here:

13 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

10 10
121
The address pointed to by a reference variable is fixed; it cannot be changed. Thus, when the statement

i = k;

is evaluated, it is k’s value that is copied into j (referred to by i), not its address.

As stated earlier, it is generally not a good idea to use independent references, because they are not
necessary and they tend to garble your code. Having two names for the same variable is an inherently
confusing situation.

A Few Restrictions When Using References

• There are some restrictions that apply to reference variables:

• You cannot reference a reference variable.

• You cannot create arrays of references.

• You cannot create a pointer to a reference. That is, you cannot apply the & operator to a reference.

1. Can a function return a reference?

2. What is an independent reference?

3. Can you create a reference to a reference?

CRITICAL SKILL 6.7: Function Overloading
In this section, you will learn about one of C++’s most exciting features: function overloading. In C++,
two or more functions can share the same name as long as their parameter declarations are different. In
this situation, the functions that share the same name are said to be overloaded, and the process is
referred to as function overloading. Function overloading is one way that C++ achieves polymorphism.

In general, to overload a function, simply declare different versions of it. The compiler takes care of the
rest. You must observe one important restriction: the type and/or number of the parameters of each
overloaded function must differ. It is not sufficient for two functions to differ only in their return types.
They must differ in the types or number of their parameters. (Return types do not provide sufficient
information in all cases for C++ to decide which function to use.) Of course, overloaded functions may
differ in their return types, too. When an overloaded function is called, the version of the function
whose parameters match the arguments is executed.

14 C++ A Beginner’s Guide by Herbert Schildt

Let’s begin with a short sample program:

This program produces the following output:

As you can see, f() is overloaded three times. The first version takes one integer parameter, the second
version requires two integer parameters, and the third version has one double parameter. Because the
parameter list for each version is different, the compiler is able to call the correct version of each
function based on the type of the arguments specified at the time of the call. To understand the value of
function overloading, consider a function called neg() that returns the negation of its arguments. For
example, when called with the value –10, neg() returns 10. When called with 9, it returns –9. Without

15 C++ A Beginner’s Guide by Herbert Schildt

function overloading, if you wanted to create negation functions for data of type int, double, and long,
you would need three different functions, each with a different name, such as ineg(), lneg(), and fneg(
). However, through the use of function overloading, you can use one name, such as neg(), to refer to all
functions that return the negation of their argument. Thus, overloading supports the polymorphic
concept of “one interface, multiple methods.” The following program demonstrates this:

The output is shown here:

neg(-10): 10
neg(9L): -9

16 C++ A Beginner’s Guide by Herbert Schildt

neg(11.23): -11.23

This program creates three similar but different functions called neg, each of which returns the absolute
value of its argument. The compiler knows which function to use in each given situation because of the
type of the argument.

The value of overloading is that it allows related sets of functions to be accessed using a common name.
Thus, the name neg represents the general action that is being performed. It is left to the compiler to
choose the right specific version for a particular circumstance. You, the programmer, need only
remember the general action being performed. Therefore, through the application of polymorphism,
three things to remember have been reduced to one. Although this example is fairly simple, if you
expand the concept, you can see how overloading can help you manage greater complexity.

Another advantage to function overloading is that it is possible to define slightly different versions of the
same function that are specialized for the type of data upon which they operate. For example, consider
a function called min() that determines the minimum of two values. It is possible to create versions of
min() that behave differently for different data types. When comparing two integers, min() returns the
smallest integer. When two characters are compared, min() could return the letter that is first in
alphabetical order, ignoring case differences. In the ASCII sequence, uppercase characters are
represented by values that are 32 less than the lowercase letters. Thus, ignoring case would be useful
when alphabetizing. When comparing two pointers, it is possible to have min() compare the values
pointed to by the pointers and return the pointer to the smallest value. Here is a program that
implements these versions of min():

17 C++ A Beginner’s Guide by Herbert Schildt

When you overload a function, each version of that function can perform any activity you desire. That is,
there is no rule stating that overloaded functions must relate to one another. However, from a stylistic
point of view, function overloading implies a relationship. Thus, while you can use the same name to
overload unrelated functions, you should not. For example, you could use the name sqr() to create
functions that return the square of an int and the square root of a double. These two operations are
fundamentally different, however, and applying function overloading in this manner defeats its original
purpose. (In fact, programming in this manner is considered to be extremely bad style!) In practice, you
should overload only closely related operations.

Automatic Type Conversions and Overloading

As you will recall from Module 2, C++ provides certain automatic type conversions. These conversions
also apply to parameters of overloaded functions. For example, consider the following:

18 C++ A Beginner’s Guide by Herbert Schildt

In this example, only two versions of f() are defined: one that has an int parameter and one that has a
double parameter. However, it is possible to pass f() a short or float value. In the case of short, C++
automatically converts it to int. Thus, f(int) is invoked. In the case of float, the value is converted to
double and f(double) is called.

It is important to understand, however, that the automatic conversions apply only if there is no direct
match between a parameter and an argument. For example, here is the preceding program with the
addition of a version of f() that specifies a short parameter:

19 C++ A Beginner’s Guide by Herbert Schildt

Now when the program is run, the following output is produced:

Inside f(int): 10
Inside f(double): 10.1
Inside f(short): 99
Inside f(double): 11.5
In this version, since there is a version of f() that takes a short argument, when f() is called with a short
value, f(short) is invoked and the automatic conversion to int does not occur.

20 C++ A Beginner’s Guide by Herbert Schildt

1. When a function is overloaded, what condition must be met?

2. Why should overloaded functions perform related actions?

3. Does the return type of a function participate in overload resolution?

In this project, you will create a collection of overloaded functions that output various data types to the
screen. Although using cout statements is quite convenient, such a collection of output functions offers
an alternative that might appeal to some programmers. In fact, both Java and C# use output functions
rather than output operators. By creating overloaded output functions, you can use either method and
have the best of both worlds. Furthermore, you can tailor your output functions to meet your specific
needs. For example, you can make the Boolean values display “true” or “false” rather than 1 and 0.

You will be creating two sets of functions called println() and print(). The println() function displays its
argument followed by a newline. The print() function will display its argument, but does not append a
newline. For example,

print(1);
println('X');
print("Function overloading is powerful. ");
print(18.22);

displays

1X

Function overloading is powerful. 18.22

In this project, print() and println() will be overloaded for data of type bool, char, int, long, char *, and
double, but you can add other types on your own.

Step by Step

1. Create a file called Print.cpp.

21 C++ A Beginner’s Guide by Herbert Schildt

2. Begin the project with these lines:

3. Add the prototypes for the print() and println() functions, as shown here:

4. Implement the println() functions, as shown here:

22 C++ A Beginner’s Guide by Herbert Schildt

Notice that each function appends a newline character to the output. Also notice that println(bool)
displays either “true” or “false” when a Boolean value is output. This illustrates how you can easily
customize output to meet your own needs and tastes.

5. Implement the print() functions, as shown next:

23 C++ A Beginner’s Guide by Herbert Schildt

These functions are the same as their println() counterparts except that they do not output a newline.
Thus, subsequent output appears on the same line.

6. Here is the complete Print.cpp program:

24 C++ A Beginner’s Guide by Herbert Schildt

25 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

26 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 6.8:Default Function Arguments
The next function-related feature to be discussed is the default argument. In C++, you can give a
parameter a default value that is automatically used when no argument corresponding to that
parameter is specified in a call to a function. Default arguments can be used to simplify calls to complex
functions. Also, they can sometimes be used as a “shorthand” form of function overloading.

A default argument is specified in a manner syntactically similar to a variable initialization. Consider the
following example, which declares myfunc() as taking two int arguments. The first defaults to 0. The
second defaults to 100.

void myfunc(int x = 0, int y = 100);

Now myfunc() can be called by one of the three methods shown here:

myfunc(1, 2); // pass explicit values

myfunc(10); // pass x a value, let y default

myfunc(); // let both x and y default

The first call passes the value 1 to x and 2 to y. The second gives x the value 10 and allows y to default to
100. Finally, the third call causes both x and y to default. The following program

The output shown here confirms the use of the default arguments:

 1, y: 2

27 C++ A Beginner’s Guide by Herbert Schildt

 10, y: 100

 0, y: 100

When creating a function that has default argument values, the default values must be specified only
once, and this must happen the first time the function is declared within the file. In the preceding
example, the default argument was specified in myfunc()’s prototype. If you try to specify new (or even
the same) default values in myfunc()’s definition, the compiler will display an error message and will not
compile your program.

Even though default arguments cannot be redefined within a program, you can specify different default
arguments for each version of an overloaded function; that is, different versions of the overloaded
function can have different default arguments.

It is important to understand that all parameters that take default values must appear to the right of
those that do not. For example, the following prototype is invalid:

// Wrong! void f(int a = 1, int b);

Once you’ve begun defining parameters that take default values, you cannot specify a

nondefaulting parameter. That is, a declaration like the following is also wrong and will not

compile:

int myfunc(float f, char *str, int i=10, int j); // Wrong!

Since i has been given a default value, j must be given one, too.

One reason that default arguments are included in C++ is that they enable the programmer to manage
greater complexity. To handle the widest variety of situations, quite frequently a function will contain
more parameters than are required for its most common usage. Thus, when the default arguments
apply, you need to remember and specify only the arguments that are meaningful to the exact situation,
not all those needed for the most general case.

Default Arguments Versus Overloading

One application of default arguments is as a shorthand form of function overloading. To see why this is
the case, imagine that you want to create two customized versions of the standard strcat() function.
One version will operate like strcat() and concatenate the entire contents of one string to the end of
another. The other version will take a third argument that specifies the number of characters to
concatenate. That is, this second version will concatenate only a specified number of characters from
one string to the end of another. Thus, assuming that you call your customized functions mystrcat(),
they will have the following prototypes:

void mystrcat(char *s1, char *s2, int len); void mystrcat(char *s1, char *s2);

28 C++ A Beginner’s Guide by Herbert Schildt

The first version will copy len characters from s2 to the end of s1. The second version will copy the
entire string pointed to by s2 onto the end of the string pointed to by s1 and will operate like strcat().

While it would not be wrong to implement two versions of mystrcat() to create the two versions that
you desire, there is an easier way. Using a default argument, you can create only one version of
mystrcat() that performs both operations. The following program demonstrates this:

The output from the program is shown here:

29 C++ A Beginner’s Guide by Herbert Schildt

This is a test01234 this is a test0123456789

As the program illustrates, mystrcat() concatenates up to len characters from the string pointed to by s2
onto the end of the string pointed to by s1. However, if len is zero, as it will be when it is allowed to
default, mystrcat() concatenates the entire string pointed to by s2 onto s1. (Thus, when len is zero, the
function operates like the standard strcat() function.)

By using a default argument for len, it is possible to combine both operations into one function. As this
example illustrates, default arguments sometimes provide a shorthand form of function overloading.

Using Default Arguments Correctly

Although default arguments are a powerful tool when used correctly, they can also be misused. The
point of default arguments is to allow a function to perform its job in an efficient, easy-to-use manner
while still allowing considerable flexibility. Toward this end, all default arguments should reflect the way
a function is generally used, or a reasonable alternate usage. When there is no single value that is
normally associated with a parameter, then there is no reason to declare a default argument. In fact,
declaring default arguments when there is insufficient basis for doing so destructures your code,
because they are liable to mislead and confuse anyone reading your program. Finally, a default
argument should cause no harm. That is, the accidental use of a default argument should not have
irreversible, negative consequences. For example, forgetting to specify an argument should not cause an
important data file to be erased!

1. Show how to declare a void function called count() that takes two int parameters called a and b,

and give each a default value of 0.

2. Can default arguments be declared in both a function’s prototype and its definition?

3. Is this declaration correct? If not, why not?
int f(int x=10, double b);

CRITICAL SKILL 6.9: Function Overloading and Ambiguity
Before concluding this module, it is necessary to discuss a type of error unique to C++: ambiguity. It is
possible to create a situation in which the compiler is unable to choose between two (or more) correctly
overloaded functions. When this happens, the situation is said to be ambiguous. Ambiguous statements
are errors, and programs containing ambiguity will not compile.

By far the main cause of ambiguity involves C++’s automatic type conversions. C++ automatically
attempts to convert the type of the arguments used to call a function into the type of the parameters
defined by the function. Here is an example:

30 C++ A Beginner’s Guide by Herbert Schildt

int myfunc(double d);
// ...
cout << myfunc('c'); // not an error, conversion applied

As the comment indicates, this is not an error, because C++ automatically converts the character c into
its double equivalent. Actually, in C++, very few type conversions of this sort are disallowed. While
automatic type conversions are convenient, they are also a prime cause of ambiguity. Consider the
following program:

Here, myfunc() is overloaded so that it can take arguments of either type float or type double. In the
unambiguous line, myfunc(double) is called because, unless explicitly specified as float, all floating-point
constants in C++ are automatically of type double. However, when myfunc() is called using the integer
10, ambiguity is introduced because the compiler has no way of knowing whether it should be
converted to a float or to a double. Both are valid conversions. This confusion causes an error message
to be displayed and prevents the program from compiling.

31 C++ A Beginner’s Guide by Herbert Schildt

The central issue illustrated by the preceding example is that it is not the overloading of myfunc()
relative to double and float that causes the ambiguity. Rather, the confusion is caused by the specific
call to myfunc() using an indeterminate type of argument. Put differently, it is not the overloading of
myfunc() that is in error, but the specific invocation.

Here is another example of ambiguity caused by the automatic type conversions in C++:

In C++, unsigned char and char are not inherently ambiguous. (They are different types.) However, when
myfunc() is called with the integer 88, the compiler does not know which function to call. That is, should
88 be converted into a char or unsigned char? Both are valid conversions.

Another way you can cause ambiguity is by using default arguments in an overloaded function. To see
how, examine this program:

32 C++ A Beginner’s Guide by Herbert Schildt

In the first call to myfunc(), two arguments are specified; therefore, no ambiguity is introduced, and
myfunc(int i, int j) is called. However, the second call to myfunc() results in ambiguity, because the
compiler does not know whether to call the version of myfunc() that takes one argument, or to apply
the default to the version that takes two arguments.

As you continue to write your own C++ programs, be prepared to encounter ambiguity errors.
Unfortunately, until you become more experienced, you will find that they are fairly easy to create.

Module 6 Mastery Check

1. What are the two ways that an argument can be passed to a subroutine?
2. In C++, what is a reference? How is a reference parameter created?
3. Given this fragment,

int f(char &c, int *i);
// ...
char ch = 'x'; int i = 10;

show how to call f() with the ch and i.
4. Create a void function called round() that rounds the value of its double argument to the nearest

whole value. Have round() use a reference parameter and return the rounded result in this
parameter. You can assume that all values to be rounded are positive. Demonstrate round() in a
program. To solve this problem, you will need to use the modf() standard library function, which is
shown here:
 double modf(double num, double *i);

33 C++ A Beginner’s Guide by Herbert Schildt

The modf() function decomposes num into its integer and fractional parts. It returns the fractional
portion and places the integer part in the variable pointed to by i. It requires the header <cmath>.

5. Modify the reference version of swap() so that in addition to exchanging the values of its
arguments, it returns a reference to the smaller of its two arguments. Call this function min_swap().

6. Why can’t a function return a reference to a local variable?
7. How must the parameter lists of two overloaded functions differ?
8. In Project 6-1, you created a collection of print() and println() functions. To these functions, add a

second parameter that specifies an indentation level. For example, when print() is called like this,
 print("test", 18);

output will indent 18 spaces and then will display the string “test”. Have the indentation parameter
default to 0 so that when it is not present, no indentation occurs.

9. Given this prototype,
 bool myfunc(char ch, int a=10, int b=20);

 show the ways that myfunc() can be called.
10. Briefly explain how function overloading can introduce ambiguity.

1 C++ A Beginner’s Guide by Herbert Schildt

Module 7

More Data Types and Operators
Table of Contents

CRITICAL SKILL 7.1: The const and volatile Qualifiers ... 2

CRITICAL SKILL 7.2: extern... 5

CRITICAL SKILL 7.3: static Variables .. 6

CRITICAL SKILL 7.4: register Variables ... 10

CRITICAL SKILL 7.5: Enumerations .. 12

CRITICAL SKILL 7.6 typedef .. 16

CRITICAL SKILL 7.8: The Shift Operators ... 22

CRITICAL SKILL 7.9: The ? Operator .. 29

CRITICAL SKILL 7.10: The Comma Operator .. 31

CRITICAL SKILL 7.11: Compound Assignment ... 33

CRITICAL SKILL 7.12: Using sizeof .. 33

This module returns to the topics of data types and operators. In addition to the data types that you
have been using so far, C++ supports several others. Some of these consist of modifiers added to the
types you already know about. Other data types include enumerations and typedefs. C++ also provides
several additional operators that greatly expand the range of programming tasks to which C++ can be
applied. These operators include the bitwise, shift, ?, and sizeof operators.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 7.1: The const and volatile Qualifiers
C++ has two type qualifiers that affect the ways in which variables can be accessed or modified. These
modifiers are const and volatile. Formally called the cv-qualifiers, they precede the base type when a
variable is declared.

const

A variable declared with the const modifier cannot have its value changed during the execution of your
program. Thus, a const “variable” isn’t really variable! You can give a variable declared as const an initial
value, however. For example,

const int max_users = 9;

creates an int variable called max_users that contains the value 9. This variable can be used in
expressions like any other variable, but its value cannot be modified by your program.

A common use of const is to create a named constant. Often programs require the same value for many
different purposes. For example, a program might have several different arrays that are all the same
size. In this case, you can specify the size of the arrays using a const variable. The advantage to this
approach is that if the size needs to be changed at a later date, you need change only the value of the
const variable and then recompile the program. You don’t need to change the size in each array
declaration. This approach avoids errors and is easier, too. The following example illustrates this
application of const:

In this example, if you need to use a new size for the arrays, you need change only the declaration of
num_employees and then recompile the program. All three arrays will then automatically be resized.

Another important use of const is to prevent an object from being modified through a pointer. For
example, you might want to prevent a function from changing the value of the object pointed to by a
parameter. To do this, declare a pointer parameter as const. This prevents the object pointed to by the
parameter from being modified by a function. That is, when a pointer parameter is preceded by const,

3 C++ A Beginner’s Guide by Herbert Schildt

no statement in the function can modify the variable pointed to by that parameter. For example, the
negate() function in the following program returns the negation of the value pointed to by its
parameter. The use of const in the parameter declaration prevents the code inside the function from
modifying the value pointed to by the parameter.

Since val is declared as being a const pointer, the function can make no changes to the value pointed to
by val. Since negate() does not attempt to change val, the program compiles and runs correctly.
However, if negate() were written as shown in the next example, a compile-time error would result.

In this case, the program attempts to alter the value of the variable pointed to by val, which is prevented
because val is declared as const.

The const modifier can also be used on reference parameters to prevent a function from modifying the
object referenced by a parameter. For example, the following version of negate() is incorrect because it
attempts to modify the variable referred to by val:

4 C++ A Beginner’s Guide by Herbert Schildt

volatile

The volatile modifier tells the compiler that a variable’s value may be changed in ways not explicitly
specified by the program. For example, the address of a global variable might be passed to an
interrupt-driven clock routine that updates the variable with each tick of the clock. In this situation, the
contents of the variable are altered without the use of any explicit assignment statement in the
program. The reason the external alteration of a variable may be important is that a C++ compiler is
permitted to automatically optimize certain expressions, on the assumption that the content of a
variable is unchanged if it does not occur on the left side of an assignment statement. However, if
factors beyond program control change the value of a variable, then problems can occur. To prevent
such problems, you must declare such variables volatile, as shown here:

volatile int current_users;

Because it is declared as volatile, the value of current_users will be obtained each time it is referenced.

1. Can the value of a const variable be changed by the program?

2. If a variable has its value changed by events outside the program, how should that variable be
declared?

Storage Class Specifiers

There are five storage class specifiers supported by C++. They are

auto
extern
register
static
mutable

These are used to tell the compiler how a variable should be stored. The storage specifier
precedes the rest of the variable declaration. The mutable specifier applies only to class objects, which
are discussed later in this book.

5 C++ A Beginner’s Guide by Herbert Schildt

Each of the other specifiers is examined here.

auto

The auto specifier declares a local variable. However, it is rarely (if ever) used, because local variables
are auto by default. It is extremely rare to see this keyword used in a program. It is a holdover from the
C language.

CRITICAL SKILL 7.2: extern
All the programs that you have worked with so far have been quite small. However, in reality, computer
programs tend to be much larger. As a program file grows, the compilation time eventually becomes
long enough to be annoying. When this happens, you should break your program into two or more
separate files. Then, changes to one file will not require that the entire program be recompiled. Instead,
you can simply recompile the file that changed, and link the existing object code for the other files. The
multiple file approach can yield a substantial time savings with large projects. The extern keyword helps
support this approach. Let’s see how.

In programs that consist of two or more files, each file must know the names and types of the global
variables used by the program. However, you cannot simply declare copies of the global variables in
each file. The reason is that your program can only have one copy of each global variable. Therefore, if
you try to declare the global variables needed by your program in each file, an error will occur when the
linker tries to link the files. It will find the duplicated global variables and will not link your program. The
solution to this dilemma is to declare all of the global variables in one file and use extern declarations in
the others, as shown in Figure 7-1.

File One declares x, y, and ch. In File Two, the global variable list is copied from File One, and the extern
specifier is added to the declarations. The extern specifier allows a variable to be made known to a
module, but does not actually create that variable. In other words, extern lets the compiler know what
the types and names are for these global variables without actually creating storage for them again.
When the linker links the two modules together, all references to the external variables are resolved.

While we haven’t yet worried about the distinction between the declaration and the definition of a
variable, it is important here. A declaration declares the name and type of a variable. A definition causes
storage to be allocated for the variable. In most cases, variable declarations are also definitions.
However, by preceding a variable name with the extern specifier, you can declare a variable without
defining it.

6 C++ A Beginner’s Guide by Herbert Schildt

A variation on extern provides a linkage specification, which is an instruction to the compiler about how
a function is to be handled by the linker. By default, functions are linked as C++ functions, but a linkage
specification lets you link a function for a different type of language. The general form of a linkage
specifier is shown here:

extern “language” function-prototype

where language denotes the desired language. For example, this specifies that myCfunc() will have C
linkage:

extern "C" void myCfunc();

All C++ compilers support both C and C++ linkage. Some may also allow linkage specifiers for FORTRAN,
Pascal, or BASIC. (You will need to check the documentation for your compiler.) You can specify more
than one function at a time using this form of the linkage specification:

extern “language” { prototypes

}

For most programming tasks, you won’t need to use a linkage specification.

CRITICAL SKILL 7.3: static Variables
Variables of type static are permanent variables within their own function or file. They differ from global
variables because they are not known outside their function or file. Because static affects local variables
differently than it does global ones, local and global variables will be examined separately.

static Local Variables

When the static modifier is applied to a local variable, permanent storage for the variable is allocated in
much the same way that it is for a global variable. This allows a static variable to maintain its value
between function calls. (That is, its value is not lost when the function returns, unlike the value of a

7 C++ A Beginner’s Guide by Herbert Schildt

normal local variable.) The key difference between a static local variable and a global variable is that the
static local variable is known only to the block in which it is declared.

To declare a static variable, precede its type withthe word static. For example, this statement declares
count as a static variable:

static int count;

A static variable may be given an initial value. For example, this statement gives count an initial value of
200:

static int count = 200;

Local static variables are initialized only once, when program execution begins, not each time the block
in which they are declared is entered.

The static local variable is important to functions that must preserve a value between calls. If static
variables were not available, then global variables would have to be used—opening the door to possible
side effects.

To see an example of a static variable, try this program. It keeps a running average of the numbers
entered by the user.

8 C++ A Beginner’s Guide by Herbert Schildt

Here, the local variables sum and count are both declared as static and initialized to 0. Remember, for
static variables the initialization only occurs once—not each time the function is entered. The program
uses running_avg() to compute and report the current average of the numbers entered by the user.
Because both sum and count are static, they will maintain their values between calls, causing the
program to work properly. To prove to yourself that the static modifier is necessary, try removing it and
running the program. As you can see, the program no longer works correctly, because the running total
is lost each time running_avg() returns.

static Global Variables

When the static specifier is applied to a global variable, it tells the compiler to create a global variable
that is known only to the file in which the static global variable is declared. This means that even though
the variable is global, other functions in other files have no knowledge of it and cannot alter its contents.
Thus, it is not subject to side effects. Therefore, for the few situations where a local static variable
cannot do the job, you can create a small file that contains only the functions that need the global static
variable, separately compile that file, and use it without fear of side effects. For an example of global

9 C++ A Beginner’s Guide by Herbert Schildt

static variables, we will rework the running average program from the preceding section. In this version,
the program is broken into the two files shown here. The function reset(), which resets the average, is
also added.

Here, sum and count are now global static variables that are restricted to the second file. Thus, they can
be accessed by both running_avg() and reset() in the second file, but not elsewhere. This allows them

10 C++ A Beginner’s Guide by Herbert Schildt

to be reset by a call to reset() so that a second set of numbers can be averaged. (When you run the
program, you can reset the average by entering –2.) However, no functions outside the second file can
access those variables. For example, if you try to access either sum or count from the first file, you will
receive an error message.

To review: The name of a local static variable is known only to the function or block of code in which it is
declared, and the name of a global static variable is known only to the file in which it resides. In essence,
the static modifier allows variables to exist that are known to the scopes that need them, thereby
controlling and limiting the possibility of side effects. Variables of type static enable you, the
programmer, to hide portions of your program from other portions. This can be a tremendous
advantage when you are trying to manage a very large and complex program.

Ask the Expert

Q: I have heard that some C++ programmers do not use static global variables. Is this true?

A: Although static global variables are still valid and widely used in C++ code, the C++ Standard

discourages their use. Instead, it recommends another method of controlling access to global variables
that involves the use of namespaces, which are described later in this book. However, static global
variables are widely used by C programmers because C does not support namespaces. For this reason,
you will continue to see static global variables for a long time to come.

CRITICAL SKILL 7.4: register Variables
Perhaps the most frequently used storage class specifier is register. The register modifier tells the
compiler to store a variable in such a way that it can be accessed as quickly as possible. Typically, this
means storing the variable either in a register of the CPU or in cache memory. As you probably know,
accessing the registers of the CPU (or cache memory) is fundamentally faster than accessing the main
memory of the computer. Thus, a variable stored in a register will be accessed much more quickly than if
that variable had been stored in RAM. Because the speed by which variables can be accessed has a
profound effect on the overall speed of your programs, the careful use of register is an important
programming technique.

Technically, register is only a request to the compiler, which the compiler is free to ignore. The reason
for this is easy to understand: there are a finite number of registers (or fast-access memory), and these
may differ from environment to environment. Thus, if the compiler runs out of fast-access memory, it
simply stores the variable normally. Generally, this causes no harm, but of course the register advantage
is lost. You can usually count on at least two variables being optimized for speed. Since only a limited
number of variables can actually be granted the fastest access, it is important to choose carefully those
to which you apply the register modifier. (Only by choosing the right variables can you gain the greatest
increase in performance.) In general, the more often a variable is accessed, the more benefit there will

11 C++ A Beginner’s Guide by Herbert Schildt

be to optimizing it as a register variable. For this reason, variables that control or are accessed within
loops are good candidates for the register specifier.

Here is an example that uses register variables to improve the performance of the summation()
function, which computes the summation of the values in an array. This example assumes that only two
variables will actually be optimized for speed.

Here, the variable i, which controls the for loop, and sum, which is accessed inside the loop, are
specified as register. Since they are both used within the loop, both benefit from being optimized for
fast access. This example assumed that only two variables could actually be optimized for speed, so n
and nums were not specified as register because they are not accessed as often as i and sum within the
loop. However, in environments in which more than two variables can be optimized, they too could be
specified as register to further improve performance.

1. A static local variable ___________ its value between function calls.

12 C++ A Beginner’s Guide by Herbert Schildt

2. You use extern to declare a variable without defining that variable. True or false?
3. What specifier requests that the compiler optimize a variable for speed?

Ask the Expert

Q: When I tried adding the register specifier to a program, I saw no change in performance. Why not?

A: Because of advances in compiler technology, most compilers today will automatically optimize

your code. Thus, in many cases, adding the register specifier to a declaration might not result in any
performance increase because that variable is already optimized. However, in some cases, using register
is still beneficial because it lets you tell the compiler which variables you think are the most important to
optimize. This can be valuable for functions that use a large number of variables, all of which cannot be
optimized. Thus, register still fulfills an important role despite advances in compiler design.

CRITICAL SKILL 7.5: Enumerations
In C++, you can define a list of named integer constants. Such a list is called an enumeration. These
constants can then be used anywhere that an integer can. Enumerations are defined using the keyword
enum and have this general format:

enum type-name { value-list } variable-list;

Here, type-name is the type name of the enumeration. The value-list is a comma-separated list of names
that represent the values of the enumeration. The variable-list is optional because variables may be
declared later using the enumeration type name.

The following fragment defines an enumeration called transport and two variables of type transport
called t1 and t2:

enum transport { car, truck, airplane, train, boat } t1, t2;

Once you have defined an enumeration, you can declare additional variables of its type using its name.
For example, this statement declares one variable, called how, of enumeration transport:

transport how;

The statement can also be written like this:

enum transport how;

However, the use of enum here is redundant. In C (which also supports enumerations), this second form
was required, so you may see it used in some programs.

Assuming the preceding declarations, the following gives how the value airplane:

13 C++ A Beginner’s Guide by Herbert Schildt

how = airplane;

The key point to understand about an enumeration is that each of the symbols stands for an integer
value. As such, they can be used in any integer expression. Unless initialized otherwise, the value of the
first enumeration symbol is 0, the value of the second symbol is 1, and so forth. Therefore,

cout << car << ' ' << train;

displays 0 3.

Although enumerated constants are automatically converted to integers, integers are not automatically
converted into enumerated constants. For example, the following statement is incorrect:

how = 1; // Error

This statement causes a compile-time error because there is no automatic conversion from integer to
transport. You can fix the preceding statement by using a cast, as shown here:

how = (transport) 1; // now OK, but probably poor style

This causes how to contain the value truck, because it is the transport constant associated with the
value 1. As the comment suggests, although this statement is now correct, it would be considered to be
poor style except in unusual circumstances.

It is possible to specify the value of one or more of the enumerated constants by using an initializer. This
is done
by

following the symbol with an equal sign and an integer value. When an initializer is used, each symbol
that appears after it is assigned a value 1 greater than the previous initialization value. For example, the
following statement assigns the value of 10 to airplane:

enum transport { car, truck, airplane = 10, train, boat };

Now, the values of these symbols are as follows:

car 0

truck 1

airplane 10

train 11

boat 12

14 C++ A Beginner’s Guide by Herbert Schildt

One common, but erroneous, assumption sometimes made about enumerations is that the symbols can
be input and output as a string. This is not the case. For example, the following code fragment will not
perform as desired:

// This will not print "train" on the screen. how = train; cout << how;

Remember, the symbol train is simply a name for an integer; it is not a string. Thus, the preceding code
will display the numeric value of train, not the string “train”. Actually, to create code that inputs and
outputs enumeration symbols as strings is quite tedious. For example, the following code is needed in
order to display, in words, the kind of transportation that how contains:

Sometimes it is possible to declare an array of strings and use the enumeration value as an index in
order to translate the value into its corresponding string. For example, the following program prints the
names of three types of transportation:

15 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:

Automobile
Airplane
Train

The approach used by this program to convert an enumeration value into a string can be applied to any
type of enumeration as long as that enumeration does not contain initializers. To properly index the
array of strings, the enumerated constants must begin at zero and be in strictly ascending order, each
precisely one greater than the previous. Given the fact that enumeration values must be converted
manually to their human-readable string values, they find their greatest use in routines that do not
make such conversions. It is common to see an enumeration used to define a compiler’s symbol table,
for example.

16 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 7.6 typedef
C++ allows you to define new data type names with the typedef keyword. When you use typedef, you
are not actually creating a new data type, but rather defining a new name for an existing type. This
process can help make machine-dependent programs more portable; only the typedef statements have
to be changed. It also helps you self-document your code by allowing descriptive names for the standard
data types. The general form of the typedef statement is

typedef type name;

where type is any valid data type, and name is the new name for this type. The new name you define is
in addition to, not a replacement for, the existing type name.

For example, you could create a new name for float using

typedef float balance;

This statement would tell the compiler to recognize balance as another name for float. Next, you could
create a float variable using balance:

balance over_due;

Here, over_due is a floating-point variable of type balance, which is another name for float.

1. An enumeration is a list of named ________ constants.

2. Enumerated values begin with what integer value?

3. Show how to declare BigInt to be another name for long int.

CRITICAL SKILL 7.7: Bitwise Operators

Since C++ is designed to allow full access to the computer’s hardware, it gives you the ability to operate
directly upon the bits within a byte or word. Toward this end, C++ contains the bitwise operators.
Bitwise operations refer to the testing, setting, or shifting of the actual bits in a byte or word, which
correspond to C++’s character and integer types. Bitwise operations cannot be used on bool, float,
double, long double, void, or other more complex data types. Bitwise operations are important in a wide
variety of systems-level programming, especially when status information from a device must be
interrogated or constructed. Table 7-1 lists the bitwise operators. Each operator is examined in turn.

17 C++ A Beginner’s Guide by Herbert Schildt

AND, OR, XOR, and NOT The bitwise AND, OR, and one’s complement (NOT) are

governed by the same truth table as their logical equivalents, except that they work on a bit-by-bit level.
The exclusive OR (XOR) operates according to the following truth table:

As the table indicates, the outcome of an XOR is true only if exactly one of the operands is true; it is false
otherwise.

In terms of its most common usage, you can think of the bitwise AND as a way to turn bits off. That is,
any bit that is 0 in either operand will cause the corresponding bit in the outcome to be set to 0. For
example:

The following program demonstrates the & by turning any lowercase letter into uppercase by resetting
the sixth bit to 0. As the ASCII character set is defined, the lowercase letters are the same as the
uppercase ones except that the lowercase ones are greater in value by exactly 32. Therefore, to
transform a lowercase letter to uppercase, just turn off the sixth bit, as this program illustrates:

18 C++ A Beginner’s Guide by Herbert Schildt

The output from this program is shown here:

aA bB cC dD eE fF gG hH iI jJ

The value 223 used in the AND statement is the decimal representation of 1101 1111. Thus, the AND
operation leaves all bits in ch unchanged except for the sixth one, which is set to zero.

The AND operator is also useful when you want to determine whether a bit is on or off. For example,
this statement checks to see if bit 4 in status is set:

if(status & 8) cout << "bit 4 is on";

The reason 8 is used is that in binary it is represented as 0000 1000. That is, the number 8 translated
into binary has only the fourth bit set. Therefore, the if statement can succeed only when bit 4 of status
is also on. An interesting use of this feature is the show_binary() function, shown next. It displays, in
binary format, the bit pattern of its argument. You will use show_binary() later in this module to
examine the effects of other bitwise operations.

19 C++ A Beginner’s Guide by Herbert Schildt

The show_binary() function works by successively testing each bit in the low-order byte of u, using the
bitwise AND, to determine if it is on or off. If the bit is on, the digit 1 is displayed; otherwise, 0 is
displayed.

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is set to 1 in either
operand will cause the corresponding bit in the variable to be set to 1. For example,

You can make use of the OR to change the uppercasing program used earlier into a lowercasing
program, as shown here:

20 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

When the sixth bit is set, each uppercase letter is transformed into its lowercase equivalent.

An exclusive OR, usually abbreviated XOR, will set a bit on only if the bits being compared are different,
as illustrated here:

The XOR operator has an interesting property that makes it a simple way to encode a message. When
some value X is XORed with another value Y, and then when that result is XORed with Y again, X is
produced. That is, given the sequence

then R2 is the same value as X. Thus, the outcome of a sequence of two XORs using the same value
produces the original value. You can use this principle to create a simple cipher program in which some
integer is the key that is used to both encode and decode a message by XORing the characters in that
message. To encode, the XOR operation is applied the first time, yielding the ciphertext. To decode, the
XOR is applied a second time, yielding the plaintext. Here is a simple example that uses this approach to
encode and decode a short message:

21 C++ A Beginner’s Guide by Herbert Schildt

Here is the output:

Original message: This is a test
Encoded message: 01+x1+x9x,=+,
Decoded message: This is a test

As the output proves, the result of two XORs using the same key produces the decoded message.

The unary one’s complement (NOT) operator reverses the state of all the bits of the operand. For
example, if some integer called A has the bit pattern 1001 0110, then ~A produces a result with the bit
pattern 0110 1001. The following program demonstrates the NOT operator by displaying a number and
its complement in binary, using the show_binary() function developed earlier:

22 C++ A Beginner’s Guide by Herbert Schildt

Here is a sample run produced by the program:

Enter a number between 0 and 255: 99
Here's the number in binary: 0 1 1 0 0 0 1 1
Here's the complement of the number: 1 0 0 1 1 1 0 0

In general, &, |, ^, and ~ apply their operations directly to each bit in a value individually.

For this reason, bitwise operations are not usually used in conditional statements the way the relational
and logical operators are. For example, if x equals 7, then x && 8 evaluates to true, whereas x & 8
evaluates to false.

CRITICAL SKILL 7.8: The Shift Operators
The shift operators, >> and <<, move all bits in a variable to the right or left as specified. The general
form of the right-shift operator is

variable >> num-bits

and the left-shift operator is

variable << num-bits

The value of num-bits determines how many bit places the bits are shifted. Each left-shift causes all bits
within the specified variable to be shifted left one position and a zero bit to be brought in on the right.
Each right-shift shifts all bits to the right one position and brings in a zero on the left. However, if the
variable is a signed integer containing a negative value, then each right-shift brings in a 1 on the left,
which preserves the sign bit. Remember, a shift is not a rotation. That is, the bits shifted off of one end
do not come back around to the other.

23 C++ A Beginner’s Guide by Herbert Schildt

The shift operators work only with integral types, such as int, char, long int, or short int. They cannot be
applied to floating-point values, for example.

Bit shift operations can be very useful for decoding input from external devices such as D/A converters
and for reading status information. The bitwise shift operators can also be used to perform very fast
multiplication and division of integers. A shift left will effectively multiply a number by 2, and a shift right
will divide it by 2.

The following program illustrates the effects of the shift operators:

24 C++ A Beginner’s Guide by Herbert Schildt

This program produces the following output:

1. What are the bitwise operators for AND, OR, NOT, and XOR?

2. A bitwise operator works on a bit-by-bit basis. True or false?

3. Given an integer called x, show how to left-shift x two places.

Although C++ provides two shift operators, it does not define a rotate operator.

A rotate is similar to a shift except that the bit shifted off one end is inserted onto the other end. Thus,
bits are not lost, just moved. There are both left and right rotations. For example, 1010 0000 rotated left
one place is 0100 0001. The same value rotated right one place is 0101 0000. In each case, the bit
shifted out is inserted onto the other end. Although the lack of rotation operators may seem to be a

25 C++ A Beginner’s Guide by Herbert Schildt

flaw in C++’s otherwise exemplary complement of bitwise operators, it really isn’t, because you can
easily create a left- and right-rotate by using the other bitwise operators.

This project creates two functions: rrotate() and lrotate(), which rotate a byte in the right or left
direction. Each function takes two parameters. The first is the value to be rotated.

The second is the number of places to rotate. Each function returns the result. This project involves
several bit manipulations and shows the bitwise operators in action.

Step by Step

1. Create a file called rotate.cpp.

2. Add the lrotate() function shown here. It performs a left-rotate.

Here is how lrotate() works. The function is passed the value to rotate in val, and the number of places
to rotate is passed in n. The function assigns val to t, which is an unsigned int. Transferring the value to
an unsigned int is necessary because it allows bits shifted off the left side to be recovered. Here’s why.
Because an unsigned int is larger than a byte, when a bit is shifted off the left side of a byte value, it
simply moves to bit 8 of the integer value. The value of this bit can then be copied into bit 0 of the byte
value, thus performing a rotation.

The actual rotation is performed as follows: A loop is established that performs the required number of
rotations, one at a time. Inside the loop, the value of t is left-shifted one place. This causes a 0 to be

26 C++ A Beginner’s Guide by Herbert Schildt

brought in on the right. However, if the value of bit 8 of the result (which is the bit shifted out of the
byte value) is a 1, then bit 0 is set to 1. Otherwise, bit 0 remains 0.

The eighth bit is tested using the statement

if(t & 256)

The value 256 is the decimal value in which only bit 8 is set. Thus, t & 256 will be true only when t has
the value 1 in bit 8.

After the rotation has been completed, t is returned. Since lrotate() is declared to return an unsigned
char value, only the lower 8 bits of t are returned.

3. Add the rrotate() function shown next. It performs a right rotate.

The right-rotate is slightly more complicated than the left-rotate because the value passed in val must
be shifted into the second byte of t so that bits being shifted off the right side can be caught. Once the
rotation is complete, the value must be shifted back into the low-order byte of t so that the value can be
returned. Because the bit being shifted out moves to bit 7, the following statement checks whether that
value is a 1:

27 C++ A Beginner’s Guide by Herbert Schildt

if(t & 128)

The decimal value 128 has only bit 7 set. If it is set, then t is ORed with 32768, which is the decimal value
in which bit 15 is set, and bits 14 through 0 are cleared. This causes bit 15 of t to be set and the other
bits to remain unchanged.

4. Here is an entire program that demonstrates lrotate() and rrotate(). It uses the show_binary()
function to display the results of each rotation.

28 C++ A Beginner’s Guide by Herbert Schildt

29 C++ A Beginner’s Guide by Herbert Schildt

5. The output from the program is shown here:

CRITICAL SKILL 7.9: The ? Operator
One of C++’s most fascinating operators is the ?. The ? operator is often used to replace if-else
statements of this general form:

30 C++ A Beginner’s Guide by Herbert Schildt

if (condition) var = expression1; else var = expression2;

Here, the value assigned to var depends upon the outcome of the condition controlling the if.

The ? is called a ternary operator because it requires three operands. It takes the general form

Exp1 ? Exp2 : Exp3;

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then Exp2 is evaluated
and becomes the value of the entire ? expression. If Exp1 is false, then Exp3 is evaluated, and its value
becomes the value of the expression. Consider this example, which assigns absval the absolute value of
val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then absval will be
assigned the negative of that value (which yields a positive value). The same code written using an
if-else statement would look like this:

if(val < 0) absval = -val; else absval = val;

Here is another example of the ? operator. This program divides two numbers, but will not allow a
division by zero.

31 C++ A Beginner’s Guide by Herbert Schildt

Here, if j is non-zero, then i is divided by j, and the outcome is assigned to result. Otherwise, the
div_zero() error handler is called, and zero is assigned to result.

CRITICAL SKILL 7.10: The Comma Operator
Another interesting C++ operator is the comma. You have seen some examples of the comma operator
in the for loop, where it has been used to allow multiple initialization or increment statements.
However, the comma can be used as a part of any expression. It strings together several expressions.
The value of a comma-separated list of expressions is the value of the right-most expression. The values
of the other expressions will be discarded. This means that the expression on the right side will become
the value of the total comma-separated expression. For example,

var = (count=19, incr=10, count+1);

first assigns count the value 19, assigns incr the value 10, then adds 1 to count, and finally assigns var
the value produced by the entire comma expression, which is 20. The parentheses are necessary
because the comma operator has a lower precedence than the assignment operator.

To actually see the effects of the comma operator, try running the following program:

32 C++ A Beginner’s Guide by Herbert Schildt

This program prints “1010” on the screen. Here is why: j starts with the value 10. j is then incremented
to 11. Next, j is added to 100. Finally, j (still containing 11) is added to 999, which yields the result 1010.

Essentially, the comma’s effect is to cause a sequence of operations to be performed. When it is used on
the right side of an assignment statement, the value assigned is the value of the last expression in the
comma-separated list. You can, in some ways, think of the comma operator as having the same meaning
that the word “and” has in English when used in the phrase “do this and this and this.”

1. Given this expression:

x = 10 > 11 ? 1 : 0;
what is the value of x after the expression evaluates?

2. The ? operator is called a ternary operator because it has _______ operands.

3. What does the comma do?

 Multiple Assignments

C++ allows a convenient method of assigning many variables the same value: using multiple

assignments in a single statement. For example, this fragment assigns count, incr, and index the value
10:

count = incr = index = 10;

In professionally written programs, you will often see variables assigned a common value using this
format.

33 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 7.11: Compound Assignment
C++ has a special compound-assignment operator that simplifies the coding of a certain type of
assignment statement. For example,

x = x+10;

can be rewritten using a compound assignment operator, as shown next:

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10. Compound assignment
operators exist for all the binary operators in C++ (that is, those that require two operands). Their
general form is

var op = expression;

Here is another example:

x = x-100;

is the same as

x -= 100;

Because it saves you some typing, compound assignment is also sometimes referred to as shorthand
assignment. You will see shorthand notation used widely in professionally written C++ programs, so you
should become familiar with it.

CRITICAL SKILL 7.12: Using sizeof
Sometimes it is helpful to know the size, in bytes, of a type of data. Since the sizes of C++’s built-in types
can differ between computing environments, knowing the size of a variable in advance, in all situations,
is not possible. To solve this problem, C++ includes the sizeof compile-time operator, which has these
general forms:

sizeof (type) sizeof var-name

The first version returns the size of the specified data type, and the second returns the size of the
specified variable. As you can see, if you want to know the size of a data type, such as int, you must
enclose the type name in parentheses. If you want to know the size of a variable, no parentheses are
needed, although you can use them if you desire.

To see how sizeof works, try the following short program. For many 32-bit environments, it displays the
values 1, 4, 4, and 8.

34 C++ A Beginner’s Guide by Herbert Schildt

You can apply sizeof to any data type. For example, when it is applied to an array, it returns the number
of bytes used by the array. Consider this fragment:

Assuming 4-byte integers, this fragment displays the value 16 (that is, 4 bytes times 4 elements).

As mentioned earlier, sizeof is a compile-time operator. All information necessary for computing the size
of a variable or data type is known during compilation. The sizeof operator primarily helps you to
generate portable code that depends upon the size of the C++ data types. Remember, since the sizes of
types in C++ are defined by the implementation, it is bad style to make assumptions about their sizes in
code that you write.

1. Show how to assign the variables t1, t2, and t3 the value 10 using one assignment statement.
2. How can

x = x + 100

be rewritten?
3. The sizeof operator returns the size of a variable or type in _____.

More Data Types and Operators

Precedence Summary
Table 7-2 lists the precedence, from highest to lowest, of all C++ operators. Most operators associate
from left to right. The unary operators, the assignment operators, and the ? operator associate from
right to left. Note that the table includes a few operators that you have not yet learned about, many of
which are used in object-oriented programming.

35 C++ A Beginner’s Guide by Herbert Schildt

Module 7 Mastery Check

1. Show how to declare an int variable called test that can’t be changed by the program. Give it an initial
value of 100.

2. The volatile specifier tells the compiler that a variable might be changed by forces outside the
program. True or false?

3. In a multifile project, what specifier do you use to tell one file about a global variable declared in
another file?

4. What is the most important attribute of a static local variable?

5. Write a program that contains a function called counter(), which simply counts how many times it is
called. Have it return the current count.

6. Given this fragment, which variable would most benefit from being specified as register?

Precedence Operators

Highest () [] -> :: .
 ! ~ ++ -- - * & sizeof new delete typeid type-casts

 .* ->*
 * / %

 + -
 << >>
 < <= > >=
 == !=
 &
 ^

 |
 &&

 ||
 ?:

 = += -= *= /= %= >>= <<= &= ^= |=

Lowest ,

Table 7-2 Precedence of the C++ Operators

36 C++ A Beginner’s Guide by Herbert Schildt

7. How does & differ from &&?

8. What does this statement do?

x *= 10;

9. Using the rrotate() and lrotate() functions from Project 7-1, it is possible to encode and decode a
string. To code the string, left-rotate each letter by some amount that is specified by a key. To decode,
right-rotate each character by the same amount. Use a key that consists of a string of characters. There
are many ways to compute the number of rotations from the key. Be creative. The solution shown in the
online answers is only one of many.

10. On your own, expand show_binary() so that it shows all bits within an unsigned int rather than just
the first eight.

1 C++ A Beginner’s Guide by Herbert Schildt

Module8

Classes and Objects

Table of Contents

CRITICAL SKILL 8.1: The General Form of a Class .. 2

CRITICAL SKILL 8.2: Defining a Class and Creating Objects ... 2

CRITICAL SKILL 8.3: Adding Member Functions to a Class .. 6

Project 8-1 Creating a Help Class .. 9

CRITICAL SKILL 8.4: Constructors and Destructors ... 14

CRITICAL SKILL 8.5: Parameterized Constructors .. 17

CRITICAL SKILL 8.6: Inline Functions ... 22

CRITICAL SKILL 8.7: Arrays of Objects ... 31

CRITICAL SKILL 8.8: Initializing Object Arrays .. 32

CRITICAL SKILL 8.9: Pointers to Objects .. 34

Up to this point, you have been writing programs that did not use any of C++’s object-oriented

capabilities. Thus, the programs in the preceding modules reflected structured programming, not
object-oriented programming. To write object-oriented programs, you will need to use classes. The class
is C++’s basic unit of encapsulation. Classes are used to create objects. Classes and objects are so
fundamental to C++ that much of the remainder of this book is devoted to them in one way or another.

Class Fundamentals

Let’s begin by reviewing the terms class and object. A class is a template that defines the form of an
object. A class specifies both code and data. C++ uses a class specification to construct objects. Objects
are instances of a class. Thus, a class is essentially a set of plans that specify how to build an object. It is
important to be clear on one issue: a class is a logical abstraction. It is not until an object of that class
has been created that a physical representation of that class exists in memory.

When you define a class, you declare the data that it contains and the code that operates on that data.
While very simple classes might contain only code or only data, most real-world classes contain both.

2 C++ A Beginner’s Guide by Herbert Schildt

Data is contained in instance variables defined by the class, and code is contained in functions. The code
and data that constitute a class are called members of the class.

CRITICAL SKILL 8.1: The General Form of a Class
A class is created by use of the keyword class. The general form of a simple class declaration is class
class-name
{

private data and functions
public:
public data and functions

} object-list;
Here class-name specifies the name of the class. This name becomes a new type name that can be used
to create objects of the class. You can also create objects of the class by specifying them immediately
after the class declaration in object-list, but this is optional. Once a class has been declared, objects can
be created where needed.

A class can contain private as well as public members. By default, all items defined in a class are private.
This means that they can be accessed only by other members of their class, and not by any other part of
your program. This is one way encapsulation is achieved—you can tightly control access to certain items
of data by keeping them private.

To make parts of a class public (that is, accessible to other parts of your program), you must declare
them after the public keyword. All variables or functions defined after the public specifier are accessible
by other parts of your program. Typically, your program will access the private members of a class
through its public functions. Notice that the public keyword is followed by a colon.

Although there is no syntactic rule that enforces it, a well-designed class should define one and only one
logical entity. For example, a class that stores names and telephone numbers will not normally also store
information about the stock market, average rainfall, sunspot cycles, or other unrelated information.
The point here is that a well-designed class groups logically connected information. Putting unrelated
information into the same class will quickly destructure your code!

Let’s review: In C++, a class creates a new data type that can be used to create objects.

Specifically, a class creates a logical framework that defines a relationship between its members. When
you declare a variable of a class, you are creating an object. An object has physical existence and is a
specific instance of a class. That is, an object occupies memory space, but a type definition does not.

CRITICAL SKILL 8.2: Defining a Class and Creating Objects
To illustrate classes, we will be evolving a class that encapsulates information about vehicles, such as
cars, vans, and trucks. This class is called Vehicle, and it will store three items of information about a
vehicle: the number of passengers that it can carry, its fuel capacity, and its average fuel consumption
(in miles per gallon).

3 C++ A Beginner’s Guide by Herbert Schildt

The first version of Vehicle is shown here. It defines three instance variables: passengers, fuelcap, and
mpg. Notice that Vehicle does not contain any functions. Thus, it is currently a data-only class.
(Subsequent sections will add functions to it.)

The instance variables defined by Vehicle illustrate the way that instance variables are declared in
general. The general form for declaring an instance variable is shown here:

type var-name;

Here, type specifies the type of variable, and var-name is the variable’s name. Thus, you declare an
instance variable in the same way that you declare other variables. For Vehicle, the variables are
preceded by the public access specifier. As explained, this allows them to be accessed by code outside of
Vehicle.

A class definition creates a new data type. In this case, the new data type is called Vehicle. You will use
this name to declare objects of type Vehicle. Remember that a class declaration is only a type
description; it does not create an actual object. Thus, the preceding code does not cause any objects of
type Vehicle to come into existence.

To actually create a Vehicle object, simply use a declaration statement, such as the following:

Vehicle minivan; // create a Vehicle object called minivan

After this statement executes, minivan will be an instance of Vehicle. Thus, it will have “physical” reality.

Each time you create an instance of a class, you are creating an object that contains its own copy of each
instance variable defined by the class. Thus, every Vehicle object will contain its own copies of the
instance variables passengers, fuelcap, and mpg. To access these variables, you will use the dot (.)
operator. The dot operator links the name of an object with the name of a member. The general form of
the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For example, to assign the
fuelcap variable of minivan the value 16, use the following statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access instance variables and call functions. Here is a
complete program that uses the Vehicle class:

4 C++ A Beginner’s Guide by Herbert Schildt

Let’s look closely at this program. The main() function creates an instance of Vehicle called minivan.
Then the code within main() accesses the instance variables associated with minivan, assigning them
values and then using those values. The code inside main() can access the members of Vehicle because
they are declared public. If they had not been specified as public, their access would have been limited
to the Vehicle class, and main() would not have been able to use them.

When you run the program, you will see the following output:

Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own copies of the instance
variables defined by its class. Thus, the contents of the variables in one object can differ from the
contents of the variables in another. There is no connection between the two objects except for the fact
that they are both objects of the same type. For example, if you have two Vehicle objects, each has its
own copy of passengers, fuelcap, and mpg, and the contents of these can differ between the two
objects. The following program demonstrates this fact:

5 C++ A Beginner’s Guide by Herbert Schildt

The output produced by this program is shown here:

Minivan can carry 7 with a range of 336

Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in sportscar. Figure 8-1
depicts this situation.

6 C++ A Beginner’s Guide by Herbert Schildt

1. A class can contain what two things?

2. What operator is used to access the members of a class through an object?

3. Each object has its own copies of the class’ _____________.

CRITICAL SKILL 8.3: Adding Member Functions to a Class
So far, Vehicle contains only data, but no functions. Although data-only classes are perfectly valid, most
classes will have function members. In general, member functions manipulate the data defined by the
class and, in many cases, provide access to that data. Typically, other parts of your program will interact
with a class through its functions.

To illustrate member functions, we will add one to the Vehicle class. Recall that main() in the preceding
examples computed the range of a vehicle by multiplying its fuel consumption rate by its fuel capacity.
While technically correct, this is not the best way to handle this computation. The calculation of a
vehicle’s range is something that is best handled by the

Vehicle class itself. The reason for this conclusion is easy to understand: The range of a vehicle is
dependent upon the capacity of the fuel tank and the rate of fuel consumption, and both of these
quantities are encapsulated by Vehicle. By adding a function to Vehicle that computes the range, you
are enhancing its object-oriented structure.

To add a function to Vehicle, specify its prototype within Vehicle’s declaration. For example, the
following version of Vehicle specifies a member function called range(), which returns the range of the
vehicle:

7 C++ A Beginner’s Guide by Herbert Schildt

Because a member function, such as range(), is prototyped within the class definition, it need not be
prototyped elsewhere.

To implement a member function, you must tell the compiler to which class the function belongs by
qualifying the function’s name with its class name. For example, here is one way to code the range()
function:

// Implement the range member function. int Vehicle::range() {

return mpg * fuelcap; }

Notice the :: that separates the class name Vehicle from the function name range(). The :: is called the
scope resolution operator. It links a class name with a member name in order to tell the compiler what
class the member belongs to. In this case, it links range() to the Vehicle class. In other words, :: states
that this range() is in Vehicle’s scope. Several different classes can use the same function names. The
compiler knows which function belongs to which class because of the scope resolution operator and the
class name.

The body of range() consists solely of this line:

return mpg * fuelcap;

This statement returns the range of the vehicle by multiplying fuelcap by mpg. Since each object of type
Vehicle has its own copy of fuelcap and mpg, when range() is called, the range computation uses the
calling object’s copies of those variables.

Inside range() the instance variables fuelcap and mpg are referred to directly, without preceding them
with an object name or the dot operator. When a member function uses an instance variable that is
defined by its class, it does so directly, without explicit reference to an object and without use of the dot
operator. This is easy to understand if you think about it. A member function is always invoked relative
to some object of its class. Once this invocation has occurred, the object is known. Thus, within a
member function, there is no need to specify the object a second time. This means that fuelcap and mpg
inside range() implicitly refer to the copies of those variables found in the object that invokes range().
Of course, code outside Vehicle must refer to fuelcap and mpg through an object and by using the dot
operator.

A member function must be called relative to a specific object. There are two ways that this can happen.
First, a member function can be called by code that is outside its class. In this case, you must use the
object’s name and the dot operator. For example, this calls range() on minivan:

8 C++ A Beginner’s Guide by Herbert Schildt

range = minivan.range();

The invocation minivan.range() causes range() to operate on minivan’s copy of the instance variables.
Thus, it returns the range for minivan.

The second way a member function can be called is from within another member function of the same
class. When one member function calls another member function of the same class, it can do so directly,
without using the dot operator. In this case, the compiler already knows which object is being operated
upon. It is only when a member function is called by code that does not belong to the class that the
object name and the dot operator must be used.

The program shown here puts together all the pieces and missing details, and illustrates the range()
function:

9 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

Minivan can carry 7 with a range of 336

Sportscar can carry 2 with a range of 168

1. What is the :: operator called?

2. What does :: do?

3. If a member function is called from outside its class, it must be called through an object using

the dot operator. True or false?

Project 8-1 Creating a Help Class
If one were to try to summarize the essence of the class in one sentence, it might be this: A class
encapsulates functionality. Of course, sometimes the trick is knowing where one “functionality” ends
and another begins. As a general rule, you will want your classes to be the building blocks of your larger
application. To do this, each class must represent a single functional unit that performs clearly
delineated actions. Thus, you will want your classes to be as small as possible—but no smaller! That is,
classes that contain extraneous functionality confuse and destructure code, but classes that contain too
little functionality are fragmented. What is the balance? It is at this point that the science of
programming becomes the art of programming. Fortunately, most programmers find that this balancing
act becomes easier with experience.

To begin gaining that experience, you will convert the help system from Project 3-3 in Module 3 into a
Help class. Let’s examine why this is a good idea. First, the help system defines one logical unit. It simply
displays the syntax for the C++ control statements. Thus, its functionality is compact and well defined.
Second, putting help in a class is an esthetically pleasing approach. Whenever you want to offer the help

10 C++ A Beginner’s Guide by Herbert Schildt

system to a user, simply instantiate a help-system object. Finally, because help is encapsulated, it can be
upgraded or changed without causing unwanted side effects in the programs that use it.

Step by Step

1. Create a new file called HelpClass.cpp. To save you some typing, you might want to copy the file from
Project 3-3, Help3.cpp, into HelpClass.cpp.

2. To convert the help system into a class, you must first determine precisely what constitutes the help
system. For example, in Help3.cpp, there is code to display a menu, input the user’s choice, check for a
valid response, and display information about the item selected. The program also loops until q is
pressed. If you think about it, it is clear that the menu, the check for a valid response, and the display of
the information are integral to the help system. How user input is obtained, and whether repeated
requests should be processed, are not. Thus, you will create a class that displays the help information,
the help menu, and checks for a valid selection. These functions will be called helpon(), showmenu(
),and isvalid(), respectively.

3. Declare the Help class, as shown here:

Notice that this is a function-only class; no instance variables are needed. As explained, data-only and
code-only classes are perfectly valid. (Question 9 in the Mastery Check adds an instance variable to the
Help class.)

4. Create the helpon() function, as shown here:

11 C++ A Beginner’s Guide by Herbert Schildt

5. Create the showmenu() function:

12 C++ A Beginner’s Guide by Herbert Schildt

6. Create the isvalid() function, shown here:

7. Rewrite the main() function from Project 3-3 so that it uses the new Help class. The entire listing for
HelpClass.cpp is shown here:

13 C++ A Beginner’s Guide by Herbert Schildt

14 C++ A Beginner’s Guide by Herbert Schildt

When you try the program, you will find that it is functionally the same as in Module 3. The advantage to
this approach is that you now have a help system component that can be reused whenever it is needed.

CRITICAL SKILL 8.4: Constructors and Destructors
In the preceding examples, the instance variables of each Vehicle object had to be set manually by use
of a sequence of statements, such as:

15 C++ A Beginner’s Guide by Herbert Schildt

minivan.passengers = 7; minivan.fuelcap = 16; minivan.mpg = 21;

An approach like this would never be used in professionally written C++ code. Aside from being error
prone (you might forget to set one of the fields), there is simply a better way to accomplish this task: the
constructor.

A constructor initializes an object when it is created. It has the same name as its class and is syntactically
similar to a function. However, constructors have no explicit return type. The general form of a
constructor is shown here:

class-name() {

// constructor code }

Typically, you will use a constructor to give initial values to the instance variables defined by the class, or
to perform any other startup procedures required to create a fully formed object.

The complement of the constructor is the destructor. In many circumstances, an object will need to
perform some action or series of actions when it is destroyed. Local objects are created when their block
is entered, and destroyed when the block is left. Global objects are destroyed when the program
terminates. There are many reasons why a destructor may be needed. For example, an object may need
to deallocate memory that it had previously allocated, or an open file may need to be closed. In C++, it is
the destructor that handles these types of operations. The destructor has the same name as the
constructor, but is preceded by a ~. Like constructors, destructors do not have return types.

Here is a simple example that uses a constructor and a destructor:

16 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

10 10

Destructing...

Destructing...

In this example, the constructor for MyClass is

// Implement MyClass constructor. MyClass::MyClass() {

x = 10; }

Notice that the constructor is specified under public. This is because the constructor will be called from
code defined outside of its class. This constructor assigns the instance variable x of MyClass the value 10.
This constructor is called when an object is created. For example, in the line

MyClass ob1;

the constructor MyClass() is called on the ob1 object, giving ob1.x the value 10. The same is true for
ob2. After construction, ob2.x also has the value 10.

The destructor for MyClass is shown next:

// Implement MyClass constructor. MyClass::~MyClass() {

17 C++ A Beginner’s Guide by Herbert Schildt

cout << "Destructing...\n"; }

This destructor simply displays a message, but in real programs, the destructor would be used to release
one or more resources (such as a file handle or memory) used by the class.

1. What is a constructor and when is it executed?

2. Does a constructor have a return type?

3. When is a destructor called?

CRITICAL SKILL 8.5: Parameterized Constructors
In the preceding example, a parameterless constructor was used. While this is fine for some situations,
most often you will need a constructor that has one or more parameters. Parameters are added to a
constructor in the same way that they are added to a function: just declare them inside the parentheses
after the constructor’s name. For example, here is a parameterized constructor for MyClass:

Myclass::MyClass(int i) { x = i;

}

To pass an argument to the constructor, you must associate the value or values being passed with an
object when it is being declared. C++ provides two ways to do this. The first method is illustrated here:

MyClass ob1 = MyClass(101);

This declaration creates a MyClass object called ob1 and passes the value 101 to it. However, this form is
seldom used (in this context), because the second method is shorter and more to the point. In the
second method, the argument or arguments must follow the object’s name and be enclosed between
parentheses. For example, this statement accomplishes the same thing as the previous declaration:

MyClass ob1(101);

This is the most common way that parameterized objects are declared. Using this method, the general
form of passing arguments to a constructor is

class-type var(arg-list);

Here, arg-list is a comma-separated list of arguments that are passed to the constructor.

18 C++ A Beginner’s Guide by Herbert Schildt

NOTE: Technically, there is a small difference between the two initialization forms, which you will learn about

later in this book. However, this difference does not affect the programs in this module, or most programs that you
will write.

Here is a complete program that demonstrates the MyClass parameterized constructor:

The output from this program is shown here:

5 19
Destructing object whose x value is 19
Destructing object whose x value is 5

In this version of the program, the MyClass() constructor defines one parameter called i, which is used
to initialize the instance variable, x. Thus, when the line

MyClass ob1(5);

executes, the value 5 is passed to i, which is then assigned to x.

19 C++ A Beginner’s Guide by Herbert Schildt

Unlike constructors, destructors cannot have parameters. The reason for this is easy to understand:
there is no means by which to pass arguments to an object that is being destroyed. Although the
situation is rare, if your object needs to be “passed” some data just before its destructor is called, you
will need to create a specific variable for this purpose. Then, just prior to the object’s destruction, you
will need to set that variable.

Adding a Constructor to the Vehicle Class

We can improve the Vehicle class by adding a constructor that automatically initializes the passengers,
fuelcap, and mpg fields when an object is constructed. Pay special attention to how Vehicle objects are
created.

20 C++ A Beginner’s Guide by Herbert Schildt

Both minivan and sportscar were initialized by the Vehicle() constructor when they were created. Each
object is initialized as specified in the parameters to its constructor. For example, in the line

Vehicle minivan(7, 16, 21);

21 C++ A Beginner’s Guide by Herbert Schildt

the values 7, 16, and 21 are passed to the Vehicle() constructor. Therefore, minivan’s copy of
passengers, fuelcap, and mpg will contain the values 7, 16, and 21, respectively. Thus, the output from
this program is the same as the previous version.

An Initialization Alternative

If a constructor takes only one parameter, then you can use an alternative method to initialize it.
Consider the following program:

Here, the constructor for MyClass takes one parameter. Pay special attention to how ob is declared in
main(). It uses this declaration:

MyClass ob = 5;

In this form of initialization, 5 is automatically passed to the i parameter in the MyClass() constructor.
That is, the declaration statement is handled by the compiler as if it were written like this:

MyClass ob (5);

22 C++ A Beginner’s Guide by Herbert Schildt

In general, any time that you have a constructor that requires only one argument, you can use either
ob(x) or ob = x to initialize an object. The reason is that whenever you create a constructor that takes
one argument, you are also implicitly creating a conversion from the type of that argument to the type
of the class.

Remember that the alternative shown here applies only to constructors that have exactly one
parameter.

1. Assuming a class called Test, show how to declare a constructor that takes one int parameter
called count.

2. How can this statement be rewritten?
Test ob = Test(10);

3. How else can the declaration in the second question be rewritten?

CRITICAL SKILL 8.6: Inline Functions
Before we continue exploring the class, a small but important digression is in order. Although it does not
pertain specifically to object-oriented programming, one very useful feature of C++, called an inline
function, is frequently used in class definitions. An inline function is a function that is expanded inline at
the point at which it is invoked, instead of actually being called. There are two ways to create an inline
function. The first is to use the inline modifier.

Ask the Expert

Q: Can one class be declared within another? That is, can classes be nested?

A: Yes, it is possible to define one class within another. Doing so creates a nested class. Since a

class declaration does, in fact, define a scope, a nested class is valid only within the scope of the
enclosing class. Frankly, because of the richness and flexibility of C++’s other features, such as
inheritance, discussed later in this book, the need to create a nested class is virtually nonexistent.

For example, to create an inline function called f that returns an int and takes no parameters, you
declare it like this:

inline int f()
{
// ...
}
The inline modifier precedes all other aspects of a function’s declaration.

23 C++ A Beginner’s Guide by Herbert Schildt

The reason for inline functions is efficiency. Every time a function is called, a series of instructions must
be executed, both to set up the function call, including pushing any arguments onto the stack, and to
return from the function. In some cases, many CPU cycles are used to perform these procedures.
However, when a function is expanded inline, no such overhead exists, and the overall speed of your
program will increase. Even so, in cases where the inline function is large, the overall size of your
program will also increase. For this reason, the best inline functions are those that are small. Most large
functions should be left as normal functions.

The following program demonstrates inline:

It is important to understand that technically, inline is a request, not a command, that the compiler
generate inline code. There are various situations that might prevent the compiler from complying with
the request. Here are some examples:

• Some compilers will not generate inline code if a function contains a loop, a switch,ora goto.

24 C++ A Beginner’s Guide by Herbert Schildt

• Often, you cannot have inline recursive functions.

• Inline functions that contain static variables are frequently disallowed.

Remember: Inline restrictions are implementation-dependent, so you must check your compiler’s
documentation to find out about any restrictions that may apply in your situation.

Creating Inline Functions Inside a Class

The second way to create an inline function is by defining the code to a member function inside a class
definition. Any function that is defined inside a class definition is automatically made into an inline
function. It is not necessary to precede its declaration with the keyword inline. For example, the
preceding program can be rewritten as shown here:

Notice the way the function code is arranged. For very short functions, this arrangement reflects
common C++ style. However, you could write them as shown here:

25 C++ A Beginner’s Guide by Herbert Schildt

Short functions, like those illustrated in this example, are usually defined inside the class declaration.
In-class, inline functions are quite common when working with classes because frequently a public
function provides access to a private variable. Such functions are called accessor functions. Part of
successful object-oriented programming is controlling access to data through member functions.
Because most C++ programmers define accessor functions and other short member functions inside
their classes, this convention will be followed by the rest of the C++ examples in this book. It is an
approach that you should use, too.

Here is the Vehicle class recoded so that its constructor, destructor, and range() function are defined
inside the class. Also, the passengers, fuelcap, and mpg fields have been made private, and accessor
functions have been added to get their values.

26 C++ A Beginner’s Guide by Herbert Schildt

Because the member variables of Vehicle are now private, the accessor function get_passengers() must
be used inside main() to obtain the number of passengers that a vehicle can hold.

1. What does inline do?

2. Can an inline function be declared inside a class declaration?

27 C++ A Beginner’s Guide by Herbert Schildt

3. What is an accessor function?

As you may know, a data structure is a means of organizing data. The simplest data structure is the
array, which is a linear list that supports random access to its elements. Arrays are often used as the
underpinning for more sophisticated data structures, such as stacks and queues. A stack is a list in which
elements can be accessed in first-in, last-out (FILO) order only. A queue is a list in which elements can be
accessed in first-in, first-out (FIFO) order only. Thus, a stack is like a stack of plates on a table; the first
down is the last to be used. A queue is like a line at a bank; the first in line is the first served.

What makes data structures such as stacks and queues interesting is that they combine storage for
information with the functions that access that information. Thus, stacks and queues are data engines in
which storage and retrieval is provided by the data structure itself, and not manually by your program.
Such a combination is, obviously, an excellent choice for a class, and in this project, you will create a
simple queue class. In general, queues support two basic operations: put and get. Each put operation
places a new element on the end of the queue. Each get operation retrieves the next element from the
front of the queue. Queue operations are consumptive. Once an element has been retrieved, it cannot
be retrieved again. The queue can also become full if there is no space available to store an item, and it
can become empty if all of the elements have been removed.

One last point: there are two basic types of queues, circular and non-circular. A circular queue reuses
locations in the underlying array when elements are removed. A non-circular queue does not and
eventually becomes exhausted. For the sake of simplicity, this example creates a non-circular queue, but
with a little thought and effort, you can easily transform it into a circular queue.

Step by Step

1. Create a file called Queue.cpp.

2. Although there are other ways to support a queue, the method we will use is based upon an array.
That is, an array will provide the storage for the items put into the queue. This array will be accessed
through two indices. The put index determines where the next element of data will be stored. The get
index indicates at what location the next element of data will be obtained. Keep in mind that the get
operation is consumptive, and it is not possible to retrieve the same element twice. Although the queue
that we will be creating stores characters, the same logic can be used to store any type of object. Begin
creating the Queue class with these lines:

28 C++ A Beginner’s Guide by Herbert Schildt

The const variable maxQsize defines the size of the largest queue that can be created. The actual size of
the queue is stored in the size field.

3. The constructor for the Queue class creates a queue of a given size. Here is the Queue constructor:

If the requested queue size is greater than maxQsize, then the maximum size queue is created. If the
requested queue size is zero or less, a queue of length 1 is created. The size of the queue is stored in the
size field. The put and get indices are initially set to zero.

4. The put() function, which stores elements, is shown next:

The function begins by checking for a queue-full condition. If putloc is equal to the size of the queue,
then there is no more room in which to store elements. Otherwise, putloc is incremented, and the new
element is stored at that location. Thus, putloc is always the index of the last element stored.

5. To retrieve elements, use the get() function, shown next:

29 C++ A Beginner’s Guide by Herbert Schildt

Notice first the check for queue-empty. If getloc and putloc both index the same element, then the
queue is assumed to be empty. This is why getloc and putloc were both initialized to zero by the Queue
constructor. Next, getloc is incremented and the next element is returned. Thus, getloc always indicates
the location of the last element retrieved.

6. Here is the entire Queue.cpp program:

30 C++ A Beginner’s Guide by Herbert Schildt

31 C++ A Beginner’s Guide by Herbert Schildt

7. The output produced by the program is shown here:

Using bigQ to store the alphabet.
Contents of bigQ: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Using smallQ to generate errors.
Attempting to store Z
Attempting to store Y
Attempting to store X
Attempting to store W
Attempting to store V -- Queue is full.

Contents of smallQ: ZYXW -- Queue is empty.

8. On your own, try modifying Queue so that it stores other types of objects. For example, have it store
ints or doubles.

CRITICAL SKILL 8.7: Arrays of Objects
You can create arrays of objects in the same way that you create arrays of any other data type. For
example, the following program creates an array of MyClass objects. The objects that comprise the
elements of the array are accessed using the normal array-indexing syntax.

32 C++ A Beginner’s Guide by Herbert Schildt

This program produces the following output:

obs[0].get_x(): 0
obs[1].get_x(): 1
obs[2].get_x(): 2
obs[3].get_x(): 3

CRITICAL SKILL 8.8: Initializing Object Arrays
If a class includes a parameterized constructor, an array of objects can be initialized. For example, here
MyClass is a parameterized class, and obs is an initialized array of objects of that class.

33 C++ A Beginner’s Guide by Herbert Schildt

In this example, the values –1 through –4 are passed to the MyClass constructor function. This program
displays the following output:

obs[0].get_x(): -1
obs[1].get_x(): -2
obs[2].get_x(): -3
obs[3].get_x(): -4

Actually, the syntax shown in the initialization list is shorthand for this longer form:

As explained earlier, when a constructor takes only one argument, there is an implicit conversion from
the type of that argument to the type of the class. The longer form simply calls the constructor directly.

When initializing an array of objects whose constructor takes more than one argument, you must use
the longer form of initialization. For example:

34 C++ A Beginner’s Guide by Herbert Schildt

In this example, MyClass’ constructor takes two arguments. In main(), the array obs is declared and
initialized using direct calls to MyClass’ constructor. When initializing arrays you can always use the long
form of initialization, even if the object takes only one argument. It’s just that the short form is more
convenient when only one argument is required. The program displays the following output:

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

CRITICAL SKILL 8.9: Pointers to Objects
You can access an object either directly (as has been the case in all preceding examples), or by using a
pointer to that object. To access a specific element of an object when using a pointer to the object, you
must use the arrow operator: –>. It is formed by using the minus sign followed by a greater-than sign.

35 C++ A Beginner’s Guide by Herbert Schildt

To declare an object pointer, you use the same declaration syntax that you would use to declare a
pointer for any other type of data. The next program creates a simple class called P_example, defines an
object of that class called ob, and defines a pointer to an object of type P_example called p. It then
illustrates how to access ob directly, and how to use a pointer to access it indirectly.

Notice that the address of ob is obtained using the & (address of) operator in the same way that the
address is obtained for any type of variable.

As you know, when a pointer is incremented or decremented, it is increased or decreased in such a way
that it will always point to the next element of its base type. The same thing occurs when a pointer to an
object is incremented or decremented: the next object is pointed to. To illustrate this, the preceding
program has been modified here so that ob is a two-element array of type P_example. Notice how p is
incremented and decremented to access the two elements in the array.

36 C++ A Beginner’s Guide by Herbert Schildt

The output from this program is 10, 20, 10.

As you will see later in this book, object pointers play a pivotal role in one of C++’s most important
concepts: polymorphism.

1. Can an array of objects be given initial values?

2. Given a pointer to an object, what operator is used to access a member?

Object References
Objects can be referenced in the same way as any other data type. No special restrictions or instructions
apply.

Module 8 Mastery Check

1. What is the difference between a class and an object?
2. What keyword is used to declare a class?

37 C++ A Beginner’s Guide by Herbert Schildt

3. What does each object have its own copy of?
4. Show how to declare a class called Test that contains two private int variables called count and

max.
5. What name does a constructor have? What name does a destructor have?
6. Given this class declaration:

show how to declare a Sample object that initializes i to the value 10.

7. When a member function is declared within a class declaration, what optimization automatically
takes place?

8. Create a class called Triangle that stores the length of the base and height of a right triangle in
two private instance variables. Include a constructor that sets these values. Define two
functions. The first is hypot(), which returns the length of the hypotenuse. The second is area(),
which returns the area of the triangle.

9. Expand the Help class so that it stores an integer ID number that identifies each user of the
class. Display the ID when a help object is destroyed. Return the ID when the function getID() is
called.

1 C++ A Beginner’s Guide by Herbert Schildt

Module 9

A Closer Look at Classes
Table of Contents

CRITICAL SKILL 9.1: Overload contructors .. 2

CRITICAL SKILL 9.2: Assign objects .. 3

CRITICAL SKILL 9.3: Pass objects to functions ... 4

CRITICAL SKILL 9.4: Return objects from functions... 9

CRITICAL SKILL 9.5: Create copy contructors .. 13

CRITICAL SKILL 9.6: Use friend functions .. 16

CRITICAL SKILL 9.7: Know the structure and union ... 21

CRITICAL SKILL 9.8: Understand this ... 27

CRITICAL SKILL 9.9: Know operator overlaoding fundamentals ... 28

CRITICAL SKILL 9.10: Overlaod operators using member functions ... 29

CRITICAL SKILL 9.11: Overlad operators using nonmember functions ... 37

This module continues the discussion of the class begun in Module 8. It examines a number of
class-related topics, including overloading constructors, passing objects to functions, and returning
objects. It also describes a special type of constructor, called the copy constructor, which is used when a
copy of an object is needed. Next, friend functions are described, followed by structures and unions, and
the ‘this’ keyword. The module concludes with a discussion of operator overloading, one of C++’s most
exciting features.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 9.1: Overloading Constructors

Although they perform a unique service, constructors are not much different from other types of
functions, and they too can be overloaded. To overload a class’ constructor, simply declare the various
forms it will take. For example, the following program defines three constructors:

The output is shown here:

t.x: 0, t.y: 0
t1.x: 5, t1.y: 5
t2.x: 9, t2.y: 10

This program creates three constructors. The first is a parameterless constructor, which initializes both x
and y to zero. This constructor becomes the default constructor, replacing the default constructor
supplied automatically by C++. The second takes one parameter, assigning its value to both x and y. The
third constructor takes two parameters, initializing x and y individually.

3 C++ A Beginner’s Guide by Herbert Schildt

Overloaded constructors are beneficial for several reasons. First, they add flexibility to the classes that
you create, allowing an object to be constructed in a variety of ways. Second, they offer convenience to
the user of your class by allowing an object to be constructed in the most natural way for the given task.
Third, by defining both a default constructor and a parameterized constructor, you allow both initialized
and uninitialized objects to be created.

CRITICAL SKILL 9.2: Assigning Objects

If both objects are of the same type (that is, both are objects of the same class), then one object can be
assigned to another. It is not sufficient for the two classes to simply be physically similar—their type
names must be the same. By default, when one object is assigned to another, a bitwise copy of the first
object’s data is assigned to the second. Thus, after the assignment, the two objects will be identical, but
separate. The following program demonstrates object assignment:

//

4 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

As the program shows, the assignment of one object to another creates two objects that contain the
same values. The two objects are otherwise still completely separate. Thus, a subsequent modification
of one object’s data has no effect on that of the other. However, you will need to watch for side effects,
which may still occur. For example, if an object A contains a pointer to some other object B, then when a
copy of A is made, the copy will also contain a field that points to B. Thus, changing B will affect both
objects. In situations like this, you may need to bypass the default bitwise copy by defining a custom
assignment operator for the class, as explained later in this module.

CRITICAL SKILL 9.3: Passing Objects to Functions

5 C++ A Beginner’s Guide by Herbert Schildt

An object can be passed to a function in the same way as any other data type. Objects are passed to
functions using the normal C++ call-by-value parameter-passing convention. This means that a copy of
the object, not the actual object itself, is passed to the function. Therefore, changes made to the object
inside the function do not affect the object used as the argument to the function. The following program
illustrates this point:

The output is shown here:

Value of a before calling change(): 10

6 C++ A Beginner’s Guide by Herbert Schildt

Value of ob inside change(): 100
Value of a after calling change(): 10
As the output shows, changing the value of ob inside change() has no effect on a inside main().

Constructors, Destructors, and Passing Objects

Although passing simple objects as arguments to functions is a straightforward procedure, some rather
unexpected events occur that relate to constructors and destructors. To understand why, consider this
short program:

This program produces the following unexpected output:

7 C++ A Beginner’s Guide by Herbert Schildt

As you can see, there is one call to the constructor (which occurs when a is created), but there are two
calls to the destructor. Let’s see why this is the case.

When an object is passed to a function, a copy of that object is made. (And this copy becomes the
parameter in the function.) This means that a new object comes into existence. When the function
terminates, the copy of the argument (that is, the parameter) is destroyed. This raises two fundamental
questions: First, is the object’s constructor called when the copy is made? Second, is the object’s
destructor called when the copy is destroyed? The answers may, at first, surprise you.

When a copy of an argument is made during a function call, the normal constructor is not called.
Instead, the object’s copy constructor is called. A copy constructor defines how a copy of an object is
made. (Later in this module you will see how to create a copy constructor.)

However, if a class does not explicitly define a copy constructor, then C++ provides one by default. The
default copy constructor creates a bitwise (that is, identical) copy of the object.

The reason a bitwise copy is made is easy to understand if you think about it. Since a normal constructor
is used to initialize some aspect of an object, it must not be called to make a copy of an already existing
object. Such a call would alter the contents of the object. When passing an object to a function, you
want to use the current state of the object, not its initial state.

However, when the function terminates and the copy of the object used as an argument is destroyed,
the destructor function is called. This is necessary because the object has gone out of scope. This is why
the preceding program had two calls to the destructor. The first was when the parameter to display()
went out of scope. The second is when a inside main() was destroyed when the program ended.

To summarize: When a copy of an object is created to be used as an argument to a function, the normal
constructor is not called. Instead, the default copy constructor makes a bit-by-bit identical copy.
However, when the copy is destroyed (usually by going out of scope when the function returns), the
destructor is called.

Passing Objects by Reference

Another way that you can pass an object to a function is by reference. In this case, a reference to the
object is passed, and the function operates directly on the object used as an argument. Thus, changes
made to the parameter will affect the argument, and passing an object by reference is not applicable to
all situations. However, in the cases in which it is, two benefits result. First, because only an address to
the object is being passed rather than the entire object, passing an object by reference can be much
faster and more efficient than passing an object by value. Second, when an object is passed by

8 C++ A Beginner’s Guide by Herbert Schildt

reference, no new object comes into existence, so no time is wasted constructing or destructing a
temporary object.

Here is an example that illustrates passing an object by reference:

The output is

9 C++ A Beginner’s Guide by Herbert Schildt

In this program, both display() and change() use reference parameters. Thus, the address of the
argument, not a copy of the argument, is passed, and the functions operate directly on the argument.
For example, when change() is called, a is passed by reference. Thus, changes made to the parameter
ob in change() affect a in main(). Also, notice that only one call to the constructor and one call to the
destructor is made. This is because only one object, a, is created and destroyed. No temporary objects
are needed by the program.

A Potential Problem When Passing Objects

Even when objects are passed to functions by means of the normal call-by-value parameter-passing
mechanism, which, in theory, protects and insulates the calling argument, it is still possible for a side
effect to occur that may affect, or even damage, the object used as an argument. For example, if an
object allocates some system resource (such as memory) when it is created and frees that resource
when it is destroyed, then its local copy inside the function will free that same resource when its
destructor is called. This is a problem because the original object is still using this resource. This situation
usually results in the original object being damaged.

One solution to this problem is to pass an object by reference, as shown in the preceding section. In this
case, no copy of the object is made, and thus, no object is destroyed when the function returns. As
explained, passing objects by reference can also speed up function calls, because only the address of the
object is being passed. However, passing an object by reference may not be applicable to all cases.
Fortunately, a more general solution is available: you can create your own version of the copy
constructor. Doing so lets you define precisely how a copy of an object is made, allowing you to avoid
the type of problems just described. However, before examining the copy constructor, let’s look at
another, related situation that can also benefit from a copy constructor.

CRITICAL SKILL 9.4: Returning Objects

Just as objects can be passed to functions, functions can return objects. To return an object, first declare
the function as returning a class type. Second, return an object of that type using the normal return
statement. The following program has a member function called mkBigger(). It returns an object that
gives val a value twice as large as the invoking object.

10 C++ A Beginner’s Guide by Herbert Schildt

11 C++ A Beginner’s Guide by Herbert Schildt

12 C++ A Beginner’s Guide by Herbert Schildt

In this example, mkBigger() creates a local object called o that has a val value twice that of the invoking
object. This object is then returned by the function and assigned to a inside main(). Then o is destroyed,
causing the first “Destructing” message to be displayed. But what explains the second call to the
destructor?

When an object is returned by a function, a temporary object is automatically created, which holds the
return value. It is this object that is actually returned by the function. After the value has been returned,
this object is destroyed. This is why the output shows a second “Destructing” message just before the
message “After mkBigger() returns.” This is the temporary object being destroyed.

As was the case when passing an object to a function, there is a potential problem when returning an
object from a function. The destruction of this temporary object may cause unexpected side effects in
some situations. For example, if the object returned by the function has a destructor that releases a
resource (such as memory or a file handle), that resource will be freed even though the object that is
assigned the return value is still using it. The solution to this type of problem involves the use of a copy
constructor, which is described next.

One last point: It is possible for a function to return an object by reference, but you need to be careful
that the object being referenced does not go out of scope when the function is terminated.

1. Constructors cannot be overloaded. True or false?

13 C++ A Beginner’s Guide by Herbert Schildt

2. When an object is passed by value to a function, a copy is made. Is this copy destroyed when the

function returns?

3. When an object is returned by a function, a temporary object is created that contains the return
value. True or false?

CRITICAL SKILL 9.5: Creating and Using a Copy Constructor

As earlier examples have shown, when an object is passed to or returned from a function, a copy of the
object is made. By default, the copy is a bitwise clone of the original object. This default behavior is
often acceptable, but in cases where it is not, you can control precisely how a copy of an object is made
by explicitly defining a copy constructor for the class. A copy constructor is a special type of overloaded
constructor that is automatically invoked when a copy of an object is required.

To begin, let’s review why you might need to explicitly define a copy constructor. By default, when an
object is passed to a function, a bitwise (that is, exact) copy of that object is made and given to the
function parameter that receives the object. However, there are cases in which this identical copy is not
desirable. For example, if the object uses a resource, such as an open file, then the copy will use the
same resource as does the original object. Therefore, if the copy makes a change to that resource, it will
be changed for the original object, too!

Furthermore, when the function terminates, the copy will be destroyed, thus causing its destructor to be
called. This may cause the release of a resource that is still needed by the original object.

A similar situation occurs when an object is returned by a function. The compiler will generate a
temporary object that holds a copy of the value returned by the function. (This is done automatically
and is beyond your control.) This temporary object goes out of scope once the value is returned to the
calling routine, causing the temporary object’s destructor to be called. However, if the destructor
destroys something needed by the calling code, trouble will follow.

At the core of these problems is the creation of a bitwise copy of the object. To prevent them, you need
to define precisely what occurs when a copy of an object is made so that you can avoid undesired side
effects. The way you accomplish this is by creating a copy constructor.

Before we explore the use of the copy constructor, it is important for you to understand that C++
defines two distinct types of situations in which the value of one object is given to another. The first
situation is assignment. The second situation is initialization, which can occur three ways:

When one object explicitly initializes another, such as in a declaration

When a copy of an object is made to be passed to a function

When a temporary object is generated (most commonly, as a return value)

14 C++ A Beginner’s Guide by Herbert Schildt

The copy constructor applies only to initializations. The copy constructor does not apply to assignments.

The most common form of copy constructor is shown here:

classname (const classname &obj) {

// body of constructor }

Here, obj is a reference to an object that is being used to initialize another object. For example,
assuming a class called MyClass,and y as an object of type MyClass, then the following statements would
invoke the MyClass copy constructor:

MyClass x = y; // y explicitly initializing x func1(y); // y passed as a parameter y = func2(); // y receiving a returned
object

In the first two cases, a reference to y would be passed to the copy constructor. In the third, a reference
to the object returned by func2() would be passed to the copy constructor. Thus, when an object is
passed as a parameter, returned by a function, or used in an initialization, the copy constructor is called
to duplicate the object.

Remember, the copy constructor is not called when one object is assigned to another. For example, the
following sequence will not invoke the copy constructor:

MyClass x; MyClass y;

x = y; // copy constructor not used here.

Again, assignments are handled by the assignment operator, not the copy constructor.

The following program demonstrates a copy constructor:

15 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

16 C++ A Beginner’s Guide by Herbert Schildt

Here is what occurs when the program is run: When a is created inside main(), the value of its
copynumber is set to 0 by the normal constructor. Next, a is passed to ob of display(). When this occurs,
the copy constructor is called, and a copy of a is created. In the process, the copy constructor
increments the value of copynumber. When display() returns, ob goes out of scope. This causes its
destructor to be called. Finally, when main() returns, a goes out of scope.

You might want to try experimenting with the preceding program a bit. For example, create a function
that returns a MyClass object, and observe when the copy constructor is called.

1. When the default copy constructor is used, how is a copy of an object made?

2. A copy constructor is called when one object is assigned to another. True or false?

3. Why might you need to explicitly define a copy constructor for a class?

CRITICAL SKILL 9.6: Friend Functions

In general, only other members of a class have access to the private members of the class. However, it is
possible to allow a nonmember function access to the private members of a class by declaring it as a
friend of the class. To make a function a friend of a class, you include its prototype in the public section
of the class declaration and precede it with the friend keyword. For example, in this fragment, frnd() is
declared to be a friend of the class MyClass:

class MyClass { // ... public: friend void frnd(MyClass ob); // ... };

As you can see, the keyword friend precedes the rest of the prototype. A function can be a friend of
more than one class. Here is a short example that uses a friend function to determine if the private fields
of MyClass have a common denominator:

17 C++ A Beginner’s Guide by Herbert Schildt

In this example, the comDenom() function is not a member of MyClass. However, it still has full access
to the private members of MyClass. Specifically, it can access x.a and x.b. Notice also that comDenom()
is called normally— that is, not in conjunction with an object and the dot operator. Since it is not a
member function, it does not need to be qualified with an object’s name. (In fact, it cannot be qualified
with an object.) Typically, a friend function is passed one or more objects of the class for which it is a
friend, as is the case with comDenom().

While there is nothing gained by making comDenom() a friend rather than a member function of
MyClass, there are some circumstances in which friend functions are quite valuable. First, friends can be
useful for overloading certain types of operators, as described later in this module. Second, friend
functions simplify the creation of some types of I/O functions, as described in Module 11.

The third reason that friend functions may be desirable is that, in some cases, two or more classes can
contain members that are interrelated relative to other parts of your program. For example, imagine

18 C++ A Beginner’s Guide by Herbert Schildt

two different classes called Cube and Cylinder that define the characteristics of a cube and cylinder, of
which one of these characteristics is the color of the object. To enable the color of a cube and cylinder to
be easily compared, you can define a friend function that compares the color component of each object,
returning true if the colors match and false if they differ. The following program illustrates this concept:

19 C++ A Beginner’s Guide by Herbert Schildt

The output produced by this program is shown here:

cube1 and cyl are different colors.

cube2 and cyl are the same color.

Notice that this program uses a forward declaration (also called a forward reference) for the class
Cylinder. This is necessary because the declaration of sameColor() inside Cube refers to Cylinder before
it is declared. To create a forward declaration to a class, simply use the form shown in this program.

A friend of one class can be a member of another. For example, here is the preceding program rewritten
so that sameColor() is a member of Cube. Notice the use of the scope resolution operator when
declaring sameColor() to be a friend of Cylinder.

20 C++ A Beginner’s Guide by Herbert Schildt

21 C++ A Beginner’s Guide by Herbert Schildt

Since sameColor() is a member of Cube, it must be called on a Cube object, which means that it can
access the color variable of objects of type Cube directly. Thus, only objects of type Cylinder need to be
passed to sameColor().

1. What is a friend function? What keyword declares one?

2. Is a friend function called on an object using the dot operator?

3. Can a friend of one class be a member of another?

CRITICAL SKILL 9.7: Structures and Unions

In addition to the keyword class, C++ gives you two other ways to create a class type. First, you can
create a structure. Second, you can create a union. Each is examined here.

Structures

Structures are inherited from the C language and are declared using the keyword struct. A struct is
syntactically similar to a class, and both create a class type. In the C language, a struct can contain only
data members, but this limitation does not apply to C++. In C++, the struct is essentially just an
alternative way to specify a class. In fact, in C++ the only difference between a class and a struct is that
by default all members are public in a struct and private in a class. In all other respects, structures and
classes are equivalent.

Here is an example of a structure:

22 C++ A Beginner’s Guide by Herbert Schildt

This simple program defines a structure type called Test, in which get_i() and put_i() are public and i is
private. Notice the use of the keyword private to specify the private elements of the structure.

The following program shows an equivalent program that uses a class instead of a struct:

Ask the Expert

Q: Since struct and class are so similar, why does C++ have both?

23 C++ A Beginner’s Guide by Herbert Schildt

A: On the surface, there is seeming redundancy in the fact that both structures and classes have

virtually identical capabilities. Many newcomers to C++ wonder why this apparent duplication exists. In
fact, it is not uncommon to hear the suggestion that either the keyword class or struct is unnecessary.

The answer to this line of reasoning is rooted in the desire to keep C++ compatible with C. As C++ is
currently defined, a standard C structure is also a completely valid C++ structure. In C, which has no
concept of public or private structure members, all structure members are public by default. This is why
members of C++ structures are public (rather than private) by default. Since the class keyword is
expressly designed to support encapsulation, it makes sense that its members are private by default.
Thus, to avoid incompatibility with C on this issue, the structure default could not be altered, so a new
keyword was added. However, in the long term, there is a more important reason for the separation of
structures and classes. Because class is an entity syntactically separate from struct, the definition of a
class is free to evolve in ways that may not be syntactically compatible with C-like structures. Since the
two are separated, the future direction of C++ will not be encumbered by concerns of compatibility with
C-like structures.

For the most part, C++ programmers will use a class to define the form of an object that contains
member functions and will use a struct in its more traditional role to create objects that contain only
data members. Sometimes the acronym “POD” is used to describe a structure that does not contain
member functions. It stands for “plain old data.”

Unions

A union is a memory location that is shared by two or more different variables. A union is created using
the keyword union, and its declaration is similar to that of a structure, as shown in this example:

union utype { short int i; char ch;

} ;

This defines a union in which a short int value and a char value share the same location. Be clear on one
point: It is not possible to have this union hold both an integer and a character at the same time,
because i and ch overlay each other. Instead, your program can treat the information in the union as an
integer or as a character at any time. Thus, a union gives you two or more ways to view the same piece
of data.

You can declare a union variable by placing its name at the end of the union declaration, or by using a
separate declaration statement. For example, to declare a union variable called u_var of type utype, you
would write

utype u_var;

In u_var, both the short integer i and the character ch share the same memory location. (Of course, i
occupies two bytes and ch uses only one.) Figure 9-1 shows how i and ch both share the same address.

24 C++ A Beginner’s Guide by Herbert Schildt

As far as C++ is concerned, a union is essentially a class in which all elements are stored in the same
location. In fact, a union defines a class type. A union can contain constructors and destructors as well as
member functions. Because the union is inherited from C, its members are public, not private, by
default.

Here is a program that uses a union to display the characters that comprise the low- and high-order
bytes of a short integer (assuming short integers are two bytes):

The output is shown here:

u as integer: 1000
u as chars: è
u2 as integer: 22872
u2 as chars: X Y

25 C++ A Beginner’s Guide by Herbert Schildt

As the output shows, using the u_type union, it is possible to view the same data two different ways.

Like the structure, the C++ union is derived from its C forerunner. However, in C, unions can include only
data members; functions and constructors are not allowed. In C++, the union has the expanded
capabilities of the class. But just because C++ gives unions greater power and flexibility does not mean
that you have to use it. Often unions contain only data. However, in cases where you can encapsulate a
union along with the routines that manipulate it, you will be adding considerable structure to your
program by doing so.

There are several restrictions that must be observed when you use C++ unions. Most of these have to do
with features of C++ that will be discussed later in this book, but they are mentioned here for
completeness. First, a union cannot inherit a class. Further, a union cannot be a base class. A union
cannot have virtual member functions. No static variables can be

members of a union. A reference member cannot be used. A union cannot have as a member any object
that overloads the = operator. Finally, no object can be a member of a union if the object has an explicit
constructor or destructor.

Anonymous Unions

 There is a special type of union in C++ called an anonymous union. An anonymous union does not
include a type name, and no variables of the union can be declared. Instead, an anonymous union tells
the compiler that its member variables are to share the same location. However, the variables
themselves are referred to directly, without the normal dot operator syntax. For example, consider this
program:

26 C++ A Beginner’s Guide by Herbert Schildt

As you can see, the elements of the union are referenced as if they had been declared as normal local
variables. In fact, relative to your program, that is exactly how you will use them. Further, even though
they are defined within a union declaration, they are at the same scope level as any other local variable
within the same block. This implies that the names of the members of an anonymous union must not
conflict with other identifiers known within the same scope.

All restrictions involving unions apply to anonymous ones, with these additions. First, the only elements
contained within an anonymous union must be data. No member functions are allowed. Anonymous
unions cannot contain private or protected elements. (The protected specifier is discussed in Module
10.) Finally, global anonymous unions must be specified as static.

CRITICAL SKILL 9.8: The this Keyword

Before moving on to operator overloading, it is necessary to describe another C++ keyword: this. Each
time a member function is invoked, it is automatically passed a pointer, called this, to the object on
which it is called. The this pointer is an implicit parameter to all member functions. Therefore, inside a
member function, this can be used to refer to the invoking object.

As you know, a member function can directly access the private data of its class. For example, given this
class:

27 C++ A Beginner’s Guide by Herbert Schildt

inside f(), the following statement can be used to assign i the value 10:

i = 10;

In actuality, the preceding statement is shorthand for this one:

this->i = 10;

To see the this pointer in action, examine the following short program:

This program displays the number 100. This example is, of course, trivial, and no one would actually use
the this pointer in this way. Soon, however, you will see why the this pointer is important to C++
programming.

One other point: Friend functions do not have a this pointer, because friends are not members of a
class. Only member functions have a this pointer.

28 C++ A Beginner’s Guide by Herbert Schildt

1. Can a struct contain member functions?

2. What is the defining characteristic of a union?

3. To what does this refer?

CRITICAL SKILL 9.9: Operator Overloading

The remainder of this module explores one of C++’s most exciting and powerful features: operator
overloading. In C++, operators can be overloaded relative to class types that you create. The principal
advantage to overloading operators is that it allows you to seamlessly integrate new data types into
your programming environment.

When you overload an operator, you define the meaning of an operator for a particular class. For
example, a class that defines a linked list might use the + operator to add an object to the list. A class
that implements a stack might use the + to push an object onto the stack.

Another class might use the + operator in an entirely different way. When an operator is overloaded,
none of its original meaning is lost. It is simply that a new operation, relative to a specific class, is
defined. Therefore, overloading the + to handle a linked list, for example, does not cause its meaning
relative to integers (that is, addition) to be changed.

Operator overloading is closely related to function overloading. To overload an operator, you must
define what the operation means relative to the class to which it is applied. To do this, you create an
operator function. The general form of an operator function is

type classname::operator#(arg-list)
{ // operations
}

Here, the operator that you are overloading is substituted for the #, and type is the type of value
returned by the specified operation. Although it can be of any type you choose, the return value is often
of the same type as the class for which the operator is being overloaded. This correlation facilitates the
use of the overloaded operator in compound expressions. Thespecificnatureof arg-list is determined by
several factors, described in the sections that follow.

Operator functions can be either members or nonmembers of a class. Nonmember operator functions
are often friend functions of the class, however. Although similar, there are some differences between
the way a member operator function is overloaded and the way a nonmember operator function is
overloaded. Each approach is described here.

29 C++ A Beginner’s Guide by Herbert Schildt

NOTE: Because C++ defines many operators, the topic of operator overloading is quite large, and it is not

possible to describe every aspect of it in this book. For a comprehensive description of operator overloading, refer
to my book C++: The Complete Reference, Osborne/McGraw-Hill.

CRITICAL SKILL 9.10: Operator Overloading Using Member
Functions
To begin our examination of member operator functions, let’s start with a simple example. The
following program creates a class called ThreeD, which maintains the coordinates of an object in
three-dimensional space. This program overloads the + and the = operators relative to the ThreeD class.
Examine it closely.

30 C++ A Beginner’s Guide by Herbert Schildt

This program produces the following output:

Original value of a: 1, 2, 3
Original value of b: 10, 10, 10
Value of c after c = a + b: 11, 12, 13
Value of c after c = a + b + c: 22, 24, 26
Value of c after c = b = a: 1, 2, 3

31 C++ A Beginner’s Guide by Herbert Schildt

Value of b after c = b = a: 1, 2, 3
As you examined the program, you may have been surprised to see that both operator functions have
only one parameter each, even though they overload binary operations. The reason for this apparent
contradiction is that when a binary operator is overloaded using a member function, only one argument
is explicitly passed to it. The other argument is implicitly passed using the this pointer. Thus, in the line

temp.x = x + op2.x;

the x refers to this–>x, which is the x associated with the object that invokes the operator function. In all
cases, it is the object on the left side of an operation that causes the call to the operator function. The
object on the right side is passed to the function.

In general, when you use a member function, no parameters are used when overloading a unary
operator, and only one parameter is required when overloading a binary operator. (You cannot overload
the ternary ? operator.) In either case, the object that invokes the operator function is implicitly passed
via the this pointer.

To understand how operator overloading works, let’s examine the preceding program carefully,
beginning with the overloaded operator +. When two objects of type ThreeD are operated on by the +
operator, the magnitudes of their respective coordinates are added together, as shown in operator+().
Notice, however, that this function does not modify the value of either operand. Instead, an object of
type ThreeD, which contains the result of the operation, is returned by the function. To understand why
the + operation does not change the contents of either object, think about the standard arithmetic +
operation as applied like this: 10 + 12. The outcome of this operation is 22, but neither 10 nor 12 is
changed by it. Although there is no rule that prevents an overloaded + operator from altering the value
of one of its operands, it is best for the actions of an overloaded operator to be consistent with its
original meaning.

Notice that operator+() returns an object of type ThreeD. Although the function could have returned
any valid C++ type, the fact that it returns a ThreeD object allows the + operator to be used in
compound expressions, such as a+b+c. Here, a+b generates a result that is of type ThreeD. This value
can then be added to c. Had any other type of value been generated by a+b, such an expression would
not work.

In contrast with the + operator, the assignment operator does, indeed, cause one of its arguments to be
modified. (This is, after all, the very essence of assignment.) Since the operator=() function is called by
the object that occurs on the left side of the assignment, it is this object that is modified by the
assignment operation. Most often, the return value of an overloaded assignment operator is the object
on the left, after the assignment has been made.

(This is in keeping with the traditional action of the = operator.) For example, to allow statements like

a = b = c = d;

32 C++ A Beginner’s Guide by Herbert Schildt

it is necessary for operator=() to return the object pointed to by this, which will be the object that
occurs on the left side of the assignment statement. This allows a chain of assignments to be made. The
assignment operation is one of the most important uses of the this pointer.

In the preceding program, it was not actually necessary to overload the = because the default
assignment operator provided by C++ is adequate for the ThreeD class. (As explained earlier in this
module, the default assignment operation is a bitwise copy.) The = was overloaded simply to show the
proper procedure. In general, you need to overload the = only when the default bitwise copy cannot be
used. Because the default = operator is sufficient for ThreeD, subsequent examples in this module will
not overload it.

Order Matters
When overloading binary operators, remember that in many cases, the order of the operands does
make a difference. For example, although A + B is commutative, A – B is not. (That is, A – B is not the
same as B – A!) Therefore, when implementing overloaded versions of the noncommutative operators,
you must remember which operand is on the left and which is on the right. For example, here is how to
overload the minus for the ThreeD class:

Remember, it is the operand on the left that invokes the operator function. The operand on the right is
passed explicitly.

Using Member Functions to Overload Unary Operators

You can also overload unary operators, such as ++, – –, or the unary – or +. As stated earlier, when a
unary operator is overloaded by means of a member function, no object is explicitly passed to the
operator function. Instead, the operation is performed on the object that generates the call to the
function through the implicitly passed this pointer. For example, here is a program that defines the
increment operation for objects of type ThreeD:

33 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:

Original value of a: 1, 2, 3

Value after ++a: 2, 3, 4

34 C++ A Beginner’s Guide by Herbert Schildt

As the output verifies, operator++() increments each coordinate in the object and returns the modified
object. Again, this is in keeping with the traditional meaning of the ++ operator. As you know, the ++ and
– – have both a prefix and a postfix form. For example, both

++x;

and

A Closer Look at Classes

x++;

are valid uses of the increment operator. As the comments in the preceding program state, the
operator++() function defines the prefix form of ++ relative to the ThreeD class. However, it is possible
to overload the postfix form as well. The prototype for the postfix form of the ++ operator relative to the
ThreeD class is shown here:

ThreeD operator++(int notused);

The parameter notused is not used by the function and should be ignored. This parameter is simply a
way for the compiler to distinguish between the prefix and postfix forms of the increment operator.
(The postfix decrement uses the same approach.)

Here is one way to implement a postfix version of ++ relative to the ThreeD class:

Notice that this function saves the current state of the operand using the statement

ThreeD temp = *this;

and then returns temp. Keep in mind that the normal meaning of a postfix increment is to first obtain
the value of the operand, and then to increment the operand. Therefore, it is necessary to save the
current state of the operand and return its original value, before it is incremented, rather than its
modified value.

The following program implements both forms of the ++ operator:

35 C++ A Beginner’s Guide by Herbert Schildt

36 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

Original value of a: 1, 2, 3

Value after ++a: 2, 3, 4

Value after a++: 3, 4, 5

Value of a after b = ++a: 4, 5, 6

Value of b after b = ++a: 4, 5, 6

Value of a after b = a++: 5, 6, 7

Value of b after b = a++: 4, 5, 6

37 C++ A Beginner’s Guide by Herbert Schildt

Remember that if the ++ precedes its operand, the operator++() is called. If it follows its operand, the
operator++(int notused) function is called. This same approach is also used to overload the prefix and
postfix decrement operator relative to any class. You might want to try defining the decrement operator
relative to ThreeD as an exercise.

As a point of interest, early versions of C++ did not distinguish between the prefix and postfix forms of
the increment or decrement operators. For these old versions, the prefix form of the operator function
was called for both uses of the operator. When working on older C++ code, be aware of this possibility.

1. Operators must be overloaded relative to a class. True or false?

2. How many parameters does a member operator function have for a binary operator?

3. For a binary member operator function, the left operand is passed via ______.

CRITICAL SKILL 9.11: Nonmember Operator Functions

You can overload an operator for a class by using a nonmember function, which is often a friend of the
class. As you learned earlier, friend functions do not have a this pointer. Therefore, when a friend is used
to overload an operator, both operands are passed explicitly when a binary operator is overloaded, and
one operand is passed explicitly when a unary operator is overloaded. The only operators that cannot be
overloaded using friend functions are =, (), [], and –>.

The following program uses a friend instead of a member function to overload the + operator for the
ThreeD class:

38 C++ A Beginner’s Guide by Herbert Schildt

39 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:

Original value of a: 1, 2, 3

Original value of b: 10, 10, 10

Value of c after c = a + b: 11, 12, 13

Value of c after c = a + b + c: 22, 24, 26

Value of c after c = b = a: 1, 2, 3

Value of b after c = b = a: 1, 2, 3

As you can see by looking at operator+(), now both operands are passed to it. The left operand is
passed in op1, and the right operand in op2.

40 C++ A Beginner’s Guide by Herbert Schildt

In many cases, there is no benefit to using a friend function instead of a member function when
overloading an operator. However, there is one situation in which a friend function is quite useful: when
you want an object of a built-in type to occur on the left side of a binary operation. To understand why,
consider the following. As you know, a pointer to the object that invokes a member operator function is
passed in this. In the case of a binary operator, it is the object on the left that invokes the function. This
is fine, provided that the object on the left defines the specified operation. For example, assuming some
object called T, which has assignment and integer addition defined for it, then this is a perfectly valid
statement:

T = T + 10; // will work

Since the object T is on the left side of the + operator, it invokes its overloaded operator function, which
(presumably) is capable of adding an integer value to some element of T. However, this statement won’t
work:

T = 10 + T; // won't work

The problem with this statement is that the object on the left of the + operator is an integer, a built-in
type for which no operation involving an integer and an object of T’s type is defined. The solution to the
preceding problem is to overload the + using two friend functions. In

A Closer Look at Classes

this case, the operator function is explicitly passed both arguments and is invoked like any other
overloaded function, based upon the types of its arguments. One version of the + operator function
handles object + integer, and the other handles integer + object. Overloading the + (or any other binary
operator) using friend functions allows a built-in type to occur on the left or right side of the operator.
The following program illustrates this technique. It defines two versions of operator+() for objects of
type ThreeD. Both add an integer value to each of ThreeD’s instance variables. The integer can be on
either the left or right side of the operator.

41 C++ A Beginner’s Guide by Herbert Schildt

42 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:

Original value of a: 1, 2, 3

Value of b after b = a + 10: 11, 12, 13

Value of b after b = 10 + a: 11, 12, 13

Because the operator+() function is overloaded twice, it can accommodate the two ways in which an
integer and an object of type ThreeD can occur in the addition operation.

Using a Friend to Overload a Unary Operator
You can also overload a unary operator by using a friend function. However, if you are overloading the
++ or – –, you must pass the operand to the function as a reference parameter. Since a reference
parameter is an implicit pointer to the argument, changes to the parameter will affect the argument.
Using a reference parameter allows the function to increment or decrement the object used as an
operand. When a friend is used for overloading the increment or decrement operators, the prefix form
takes one parameter (which is the operand). The postfix form takes two parameters. The second
parameter is an integer, which is not used. Here is the way to overload both forms of a friend
operator++() function for the ThreeD class:

43 C++ A Beginner’s Guide by Herbert Schildt

1. How many parameters does a nonmember binary operator function have?

2. When using a nonmember operator function to overload the ++ operator, how must the
operand be passed?

3. One advantage to using friend operator functions is that it allows a built-in type (such as int) to

be used as the left operand. True or false?

Operator Overloading Tips and Restrictions
The action of an overloaded operator as applied to the class for which it is defined need not bear any
relationship to that operator’s default usage, as applied to C++’s built-in types. For example, the << and
>> operators, as applied to cout and cin, have little in common with the same operators applied to
integer types. However, for the purposes of the structure and readability of your code, an overloaded
operator should reflect, when possible, the spirit of the operator’s original use. For example, the +
relative to ThreeD is conceptually similar to the + relative to integer types. There would be little benefit
in defining the + operator relative to some class in such a way that it acts more the way you would
expect the || operator, for instance, to perform. The central concept here is that although you can give
an overloaded operator any meaning you like, for clarity it is best when its new meaning is related to its
original meaning.

Ask the Expert

Q: Are there any special issues to consider when overloading the relational operators?

A: Overloading a relational operator, such as == or <, is a straightforward process. However, there

is one small issue. As you know, an overloaded operator function often returns an object of the class for
which it is overloaded. However, an overloaded relational operator typically returns true or false. This is

44 C++ A Beginner’s Guide by Herbert Schildt

in keeping with the normal usage of relational operators and allows the overloaded relational operators
to be used in conditional expressions. The same rationale applies when overloading the logical
operators.

To show you how an overloaded relational operator can be implemented, the following function
overloads == relative to the ThreeD class:

Once operator==() has been implemented, the following fragment is perfectly valid:

ThreeD a(1, 1, 1), b(2, 2, 2); // ... if(a == b) cout << "a equals b\n"; else cout << "a does not equal b\n";

There are some restrictions to overloading operators. First, you cannot alter the precedence of any
operator. Second, you cannot alter the number of operands required by the operator, although your
operator function could choose to ignore an operand. Finally, except for the function call operator,
operator functions cannot have default arguments.

Nearly all of the C++ operators can be overloaded. This includes specialized operators, such as the array
indexing operator [], the function call operator (), and the –> operator. The only operators that you
cannot overload are shown here:

. :: .* ?

The .* is a special-purpose operator whose use is beyond the scope of this book.

Operator overloading helps you create classes that can be fully integrated into the C++programming
environment. Consider this point: by defining the necessary operators, you enable a class type to be
used in a program in just the same way as you would use a built-in type. You can act on objects of that
class through operators and use objects of that class in expressions. To illustrate the creation and
integration of a new class into the C++ environment, this project creates a class called Set that defines a
set type.

Before we begin, it is important to understand precisely what we mean by a set. For the purposes of this
project, a set is a collection of unique elements. That is, no two elements in any given set can be the
same. The ordering of a set’s members is irrelevant. Thus, the set

{ A, B, C }

45 C++ A Beginner’s Guide by Herbert Schildt

is the same as the set

{ A, C, B }

A set can also be empty.

Sets support a number of operations. The ones that we will implement are

• Adding an element to a set

• Removing an element from a set

• Set union

• Set difference

Adding an element to a set and removing an element from a set are self- explanatory operations. The
other two warrant some explanation. The union of two sets is a set that contains all of the elements
from both sets. (Of course, no duplicate elements are allowed.) We will use the + operator to perform a
set union.

The difference between two sets is a set that contains those elements in the first set that are not part of
the second set. We will use the – operator to perform a set difference. For example, given two sets S1
and S2, this statement removes the elements of S2 from S1, putting the result in S3:

S3 = S1 – S2

If S1 and S2 are the same, then S3 will be the null set. The Set class will also include a function called
isMember(), which determines if a specified element is a member of a given set. Of course, there are
several other operations that can be performed on sets. Some are developed in the Mastery Check.
Others you might find fun to try adding on your own.

For the sake of simplicity, the Set class stores sets of characters, but the same basic principles could be
used to create a Set class capable of storing other types of elements.

Step by Step
1. Create a new file called Set.cpp.

2. Begin creating Set by specifying its class declaration, as shown here:

46 C++ A Beginner’s Guide by Herbert Schildt

Each set is stored in a char array referred to by members. The number of members actually in the set is
stored in len. The maximum size of a set is MaxSize, which is set to 100. (You can increase this value if
you work with larger sets.)
The Set constructor creates a null set, which is a set with no members. There is no need to create any
other constructors, or to define an explicit copy constructor for the Set class, because the default
bitwise copy is sufficient. The getLength() function returns the value of len, which is the number of
elements currently in the set.

3. Begin defining the member functions, starting with the private function find(), as shown here:

This function determines if the element passed in ch is a member of the set. It returns the index of the
element if it is found and –1 if the element is not part of the set. This function is private because it is not

47 C++ A Beginner’s Guide by Herbert Schildt

used outside the Set class. As explained earlier in this book, member functions can be private to their
class. A private member function can be called only by other member functions in the class.

4. Add the showset() function, as shown here:

This function displays the contents of a set.

5. Add the isMember() function, shown here, which determines if a character is a member of a set:

This function calls find() to determine if ch is a member of the invoking set. If it is, isMember() returns
true. Otherwise, it returns false.

6. Begin adding the set operators, beginning with set addition. To do this, overload + for objects of type
Set, as shown here. This version adds an element to a set.

48 C++ A Beginner’s Guide by Herbert Schildt

This function bears some close examination. First, a new set is created, which will hold the contents of
the original set plus the character specified by ch. Before the character in ch is added, a check is made to
see if there is enough room in the set to hold another character. If there is room for the new element,
the original set is assigned to newset. Next, the find() function is called to determine if ch is already part
of the set. If it is not, then ch is added and len is updated. In either case, newset is returned. Thus, the
original set is untouched by this operation.

7. Overload – so that it removes an element from the set, as shown here:

This function starts by creating a new null set. Then, find() is called to determine the index of ch within
the original set. Recall that find() returns –1 if ch is not a member. Next, the elements of the original set
are added to the new set, except for the element whose index matches that returned by find(). Thus,
the resulting set contains all of the elements of the original set except for ch. If ch was not part of the
original set to begin with, then the two sets are equivalent.

8. Overload the + and – again, as shown here. These versions implement set union and set difference.

49 C++ A Beginner’s Guide by Herbert Schildt

As you can see, these functions utilize the previously defined versions of the + and – operators to help
perform their operations. In the case of set union, a new set is created that contains the elements of the
first set. Then, the elements of the second set are added. Because the + operation only adds an element
if it is not already part of the set, the resulting set is the union (without duplication) of the two sets. The
set difference operator subtracts matching elements.

9. Here is the complete code for the Set class along with a main() function that demonstrates it:
/* Project 9-1
A set class for characters. */

50 C++ A Beginner’s Guide by Herbert Schildt

51 C++ A Beginner’s Guide by Herbert Schildt

52 C++ A Beginner’s Guide by Herbert Schildt

53 C++ A Beginner’s Guide by Herbert Schildt

54 C++ A Beginner’s Guide by Herbert Schildt

Module 9 Mastery Check

1. What is a copy constructor and when is it called? Show the general form of a copy constructor.

2. Explain what happens when an object is returned by a function. Specifically, when is its destructor

called?

55 C++ A Beginner’s Guide by Herbert Schildt

3. Given this class:

show how to rewrite sum() so that it uses this.

4. What is a structure? What is a union?

5. Inside a member function, to what does *this refer?

6. What is a friend function?

7. Show the general form used for overloading a binary member operator function.

8. To allow operations involving a class type and a built-in type, what must you do?

9. Can the ? be overloaded? Can you change the precedence of an operator?

10. For the Set class developed in Project 9-1, define < and > so that they determine if one set is a

subset or a superset of another set. Have < return true if the left set is a subset of the set on the
right, and false otherwise. Have > return true if the left set is a superset of the set on the right, and
false otherwise.

11. For the Set class, define the & so that it yields the intersection of two sets.

12. On your own, try adding other Set operators. For example, try defining | so that it yields the

symmetric difference between two sets. The symmetric difference consists of those elements that
the two sets do not have in common.

1 C++ A Beginner’s Guide by Herbert Schildt

Module 10

Inheritance, Virtual Functions,
and Polymorphism

Table of Contents

CRITICAL SKILL 10.1: Inheritance Fundamentals ... 2

CRITICAL SKILL 10.2: Base Class Access Control .. 7

CRITICAL SKILL 10.3: Using protected Members ... 9

CRITICAL SKILL 10.4: Calling Base Class Constructors ... 14

CRITICAL SKILL 10.5: Creating a Multilevel Hierarchy ... 22

CRITICAL SKILL 10.6: Inheriting Multiple Base Classes .. 25

CRITICAL SKILL 10.7: When Constructor and Destructor Functions Are Executed 26

CRITICAL SKILL 10.8: Pointers to Derived Types ... 27

CRITICAL SKILL 10.9: Virtual Functions and Polymorphism .. 28

CRITICAL SKILL 10.10: Pure Virtual Functions and Abstract Classes ... 37

This module discusses three features of C++ that directly relate to object-oriented programming:
inheritance, virtual functions, and polymorphism. Inheritance is the feature that allows one class to
inherit the characteristics of another. Using inheritance, you can create a general class that defines traits
common to a set of related items. This class can then be inherited by other, more specific classes, each
adding those things that are unique to it. Built on the foundation of inheritance is the virtual function.
The virtual function supports polymorphism, the “one interface, multiple methods” philosophy of
object-oriented programming.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 10.1: Inheritance Fundamentals
In the language of C++, a class that is inherited is called a base class. The class that does the inheriting is
called a derived class. Therefore, a derived class is a specialized version of a base class. A derived class
inherits all of the members defined by the base class and adds its own, unique elements.

C++ implements inheritance by allowing one class to incorporate another class into its declaration. This
is done by specifying a base class when a derived class is declared. Let’s begin with a short example that
illustrates several of the key features of inheritance. The following program creates a base class called
TwoDShape that stores the width and height of a two-dimensional object, and a derived class called
Triangle. Pay close attention to the way that Triangle is declared.

3 C++ A Beginner’s Guide by Herbert Schildt

Here, TwoDShape defines the attributes of a “generic” two-dimensional shape, such as a square,
rectangle, triangle, and so on. The Triangle class creates a specific type of TwoDShape,inthis case, a
triangle. The Triangle class includes all of TwoDShape and adds the field style,the function area(), and
the function showStyle(). A description of the type of triangle is stored in style, area() computes and
returns the area of the triangle, and showStyle() displays the triangle style.

The following line shows how Triangle inherits TwoDShape:

class Triangle : public TwoDShape {

Here, TwoDShape is a base class that is inherited by Triangle, which is a derived class. As this example
shows, the syntax for inheriting a class is remarkably simple and easy-to-use.

4 C++ A Beginner’s Guide by Herbert Schildt

Because Triangle includes all of the members of its base class, TwoDShape, it can access width and
height inside area(). Also, inside main(), objects t1 and t2 can refer to width and height directly, as if
they were part of Triangle. Figure 10-1 depicts conceptually how TwoDShape is incorporated into
Triangle.

One other point: Even though TwoDShape is a base for Triangle, it is also a completely independent,
stand-alone class. Being a base class for a derived class does not mean that the base class cannot be
used by itself.

The general form for inheritance is shown here:

class derived-class : access base-class { // body of derived class }

Here, access is optional. However, if present, it must be public, private, or protected. You will learn more
about these options later in this module. For now, all inherited classes will use public. Using public
means that all the public members of the base class will also be public members of the derived class.

A major advantage of inheritance is that once you have created a base class that defines the attributes
common to a set of objects, it can be used to create any number of more specific derived classes. Each
derived class can precisely tailor its own classification. For example, here is another class derived from
TwoDShape that encapsulates rectangles:

The Rectangle class includes TwoDShape and adds the functions isSquare(), which determines if the
rectangle is square, and area(), which computes the area of a rectangle.

5 C++ A Beginner’s Guide by Herbert Schildt

Member Access and Inheritance

As you learned in Module 8, members of a class are often declared as private to prevent their
unauthorized use or tampering. Inheriting a class does not overrule the private access restriction. Thus,
even though a derived class includes all of the members of its base class, it cannot access those
members of the base class that are private. For example, if width and height are made private in
TwoDShape, as shown here, then Triangle will not be able to access them.

The Triangle class will not compile because the reference to width and height inside the area() function
causes an access violation. Since width and height are now private, they are accessible only by other
members of their own class. Derived classes have no access to them.

At first, you might think that it is a serious restriction that derived classes do not have access to the
private members of base classes, because it would prevent the use of private members in many
situations. Fortunately, this is not the case, because C++ provides various solutions. One is to use
protected members, which is described in the next section. A second is to use public functions to
provide access to private data. As you have seen in the preceding modules, C++ programmers typically
grant access to the private members of a class through functions. Functions that provide access to
private data are called accessor functions. Here is a rewrite of the TwoDShape class that adds accessor
functions for width and height:

6 C++ A Beginner’s Guide by Herbert Schildt

7 C++ A Beginner’s Guide by Herbert Schildt

1. How is a base class inherited by a derived class?
2. Does a derived class include the members of its base class?
3. Does a derived class have access to the private members of its base class?

CRITICAL SKILL 10.2: Base Class Access Control
As explained, when one class inherits another, the members of the base class become members of the
derived class. However, the accessibility of the base class members inside the derived class is
determined by the access specifier used when inheriting the base class. The base class access specifier
must be public, private, or protected. If the access specifier is not used, then it is private by default if the
derived class is a class. If the derived class is a struct, then public is the default. Let’s examine the
ramifications of using public or private access. (The protected specifier is described in the next section.)

Ask the Expert

Q: I have heard the terms superclass and subclass used in discussions of Java programming. Do

these terms have meaning in C++?

A: What Java calls a superclass, C++ calls a base class. What Java calls a subclass, C++ calls a derived

class. You will commonly hear both sets of terms applied to a class of either language, but this book will

8 C++ A Beginner’s Guide by Herbert Schildt

continue to use the standard C++ terms. By the way, C# also uses the base class, derived class
terminology.

When a base class is inherited as public, all public members of the base class become public members of
the derived class. In all cases, the private elements of the base class remain private to that class and are
not accessible by members of the derived class. For example, in the following program, the public
members of B become public members of D. Thus, they are accessible by other parts of the program.

Since set() and show() are public in B, they can be called on an object of type D from within main().
Because i and j are specified as private, they remain private to B. This is why the line

// i = 10; // Error! i is private to B and access is not allowed.

is commented-out. D cannot access a private member of B.

The opposite of public inheritance is private inheritance. When the base class is inherited as private,
then all public members of the base class become private members of the derived class. For example,

9 C++ A Beginner’s Guide by Herbert Schildt

the program shown next will not compile, because both set() and show() are now private members of
D, and thus cannot be called from main().

To review: when a base class is inherited as private, public members of the base class become private
members of the derived class. This means that they are still accessible by members of the derived class,
but cannot be accessed by other parts of your program.

CRITICAL SKILL 10.3: Using protected Members
As you know, a private member of a base class is not accessible by a derived class. This would seem to
imply that if you wanted a derived class to have access to some member in the base class, it would need
to be public. Of course, making the member public also makes it available to all other code, which may
not be desirable. Fortunately, this implication is wrong because C++ allows you to create a protected
member. A protected member is public within a class hierarchy, but private outside that hierarchy.

A protected member is created by using the protected access modifier. When a member of a class is
declared as protected, that member is, with one important exception, private. The exception occurs

10 C++ A Beginner’s Guide by Herbert Schildt

when a protected member is inherited. In this case, the protected member of the base class is accessible
by the derived class. Therefore, by using protected, you can create class members that are private to
their class but that can still be inherited and accessed by a derived class. The protected specifier can also
be used with structures.

Consider this sample program:

Here, because B is inherited by D as public and because i and j are declared as protected, D’s function
setk() can access them. If i and j were declared as private by B, then D would not have access to them,
and the program would not compile.

When a base class is inherited as public, protected members of the base class become protected
members of the derived class. When a base class is inherited as private, protected members of the base
class become private members of the derived class.

11 C++ A Beginner’s Guide by Herbert Schildt

The protected access specifier may occur anywhere in a class declaration, although typically it occurs
after the (default) private members are declared and before the public members. Thus, the most
common full form of a class declaration is

class class-name{

// private members by default protected:

// protected members public:

// public members };

Of course, the protected category is optional.

In addition to specifying protected status for members of a class, the keyword protected can also act as
an access specifier when a base class is inherited. When a base class is inherited as protected, all public
and protected members of the base class become protected members of the derived class. For example,
in the preceding example, if D inherited B, as shown here:

class D : protected B {

then all non-private members of B would become protected members of D.

1. When a base class is inherited as private, public members of the base class become private
members of the derived class. True or false?

2. Can a private member of a base class be made public through inheritance?
3. To make a member accessible within a hierarchy, but private otherwise, what access specifier

do you use?

Ask the Expert

Q: Can you review public, protected, and private?

A: When a class member is declared as public, it can be accessed by any other part of a program.

When a member is declared as private, it can be accessed only by members of its class. Further, derived
classes do not have access to private base class members. When a member is declared as protected, it
can be accessed only by members of its class and by its derived classes. Thus, protected allows a
member to be inherited, but to remain private within a class hierarchy.

When a base class is inherited by use of public, its public members become public members of the
derived class, and its protected members become protected members of the derived class. When a base
class is inherited by use of protected, its public and protected members become protected members of

12 C++ A Beginner’s Guide by Herbert Schildt

the derived class. When a base class is inherited by use of private, its public and protected members
become private members of the derived class. In all cases, private members of a base class remain
private to that base class.

Constructors and Inheritance

In a hierarchy, it is possible for both base classes and derived classes to have their own constructors.
This raises an important question: what constructor is responsible for building an object of the derived
class, the one in the base class, the one in the derived class, or both? The answer is this: the constructor
for the base class constructs the base class portion of the object, and the constructor for the derived
class constructs the derived class part. This makes sense because the base class has no knowledge of or
access to any element in a derived class. Thus, their construction must be separate. The preceding
examples have relied upon the default constructors created automatically by C++, so this was not an
issue. However, in practice, most classes will define constructors. Here you will see how to handle this
situation.

When only the derived class defines a constructor, the process is straightforward: simply construct the
derived class object. The base class portion of the object is constructed automatically using its default
constructor. For example, here is a reworked version of Triangle that defines a constructor. It also makes
style private since it is now set by the constructor.

13 C++ A Beginner’s Guide by Herbert Schildt

Here, Triangle’s constructor initializes the members of TwoDShape that it inherits along with its own
style field.

14 C++ A Beginner’s Guide by Herbert Schildt

When both the base class and the derived class define constructors, the process is a bit more
complicated, because both the base class and derived class constructors must be executed.

CRITICAL SKILL 10.4: Calling Base Class Constructors
When a base class has a constructor, the derived class must explicitly call it to initialize the base class
portion of the object. A derived class can call a constructor defined by its base class by using an
expanded form of the derived class’ constructor declaration. The general form of this expanded
declaration is shown here:

derived-constructor(arg-list) : base-cons(arg-list); {

body of derived constructor

}

Here, base-cons is the name of the base class inherited by the derived class. Notice that a colon
separates the constructor declaration of the derived class from the base class constructor. (If a class
inherits more than one base class, then the base class constructors are separated from each other by
commas.)

The following program shows how to pass arguments to a base class constructor. It defines a
constructor for TwoDShape that initializes the width and height properties.

15 C++ A Beginner’s Guide by Herbert Schildt

16 C++ A Beginner’s Guide by Herbert Schildt

Here, Triangle() calls TwoDShape with the parameters w and h, which initializes width and height using
these values. Triangle no longer initializes these values itself. It need only initialize the value unique to it:
style. This leaves TwoDShape free to construct its subobject in any manner that it so chooses.
Furthermore, TwoDShape can add functionality about which existing derived classes have no
knowledge, thus preventing existing code from breaking.

Any form of constructor defined by the base class can be called by the derived class’ constructor. The
constructor executed will be the one that matches the arguments. For example, here are expanded
versions of both TwoDShape and Triangle that include additional constructors:

17 C++ A Beginner’s Guide by Herbert Schildt

18 C++ A Beginner’s Guide by Herbert Schildt

Here is the output from this version:

Info for t1:
Triangle is right
Width and height are 8 and 12
Area is 48
Info for t2: Triangle is right Width and height are 8 and 12
Area is 48
Info for t3: Triangle is isosceles Width and height are 4 and 4

19 C++ A Beginner’s Guide by Herbert Schildt

Area is 8

1. How does a derived class execute its base class’ constructor?
2. Can parameters be passed to a base class constructor?
3. What constructor is responsible for initializing the base class portion of a derived object, the one

defined by the derived class or the one defined by the base class?

This project creates a subclass of the Vehicle class first developed in Module 8.

As you should recall, Vehicle encapsulates information about vehicles, including the number of
passengers they can carry, their fuel capacity, and their fuel consumption rate. We can use the Vehicle
class as a starting point from which more specialized classes are developed. For example, one type of
vehicle is a truck. An important attribute of a truck is its cargo capacity. Thus, to create a Truck class, you
can inherit Vehicle, adding an instance variable that stores the carrying capacity. In this project, you will
create the Truck class. In the process, the instance variables in Vehicle will be made private, and
accessor functions are provided to get their values.

Step by Step

1. Create a file called TruckDemo.cpp, and copy the last implementation of Vehicle from Module 8 into
the file.

2. Create the Truck class, as shown here:

20 C++ A Beginner’s Guide by Herbert Schildt

Here, Truck inherits Vehicle, adding the cargocap member. Thus, Truck includes all of the general vehicle
attributes defined by Vehicle. It need add only those items that are unique to its own class.

3. Here is an entire program that demonstrates the Truck class:

21 C++ A Beginner’s Guide by Herbert Schildt

4. The output from this program is shown here:

5. Many other types of classes can be derived from Vehicle. For example, the following skeleton
creates an off-road class that stores the ground clearance of the vehicle:

The key point is that once you have created a base class that defines the general aspects of an object,
that base class can be inherited to form specialized classes. Each derived class simply adds its own,
unique attributes. This is the essence of inheritance.

22 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 10.5: Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies consisting of only a base class and a
derived class. However, you can build hierarchies that contain as many layers of inheritance as you like.
As mentioned, it is perfectly acceptable to use a derived class as a base class of another. For example,
given three classes called A, B, and C, C can be derived from B, which can be derived from A. When this
type of situation occurs, each derived class inherits all of the traits found in all of its base classes. In this
case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program. In it, the derived class
Triangle is used as a base class to create the derived class called ColorTriangle.

ColorTriangle inherits all of the traits of Triangle and TwoDShape, and adds a field called color, which
holds the color of the triangle.

23 C++ A Beginner’s Guide by Herbert Schildt

24 C++ A Beginner’s Guide by Herbert Schildt

The output of this program is shown here:

Because of inheritance, ColorTriangle can make use of the previously defined classes of Triangle and
TwoDShape, adding only the extra information it needs for its own, specific application. This is part of
the value of inheritance; it allows the reuse of code.

25 C++ A Beginner’s Guide by Herbert Schildt

This example illustrates one other important point. In a class hierarchy, if a base class constructor
requires parameters, then all derived classes must pass those parameters “up the line.” This is true
whether or not a derived class needs parameters of its own.

CRITICAL SKILL 10.6: Inheriting Multiple Base Classes
In C++, it is possible for a derived class to inherit two or more base classes at the same time. For
example, in this short program, D inherits both B1 and B2:

As this example illustrates, to cause more than one base class to be inherited, you must use a
comma-separated list. Further, be sure to use an access specifier for each base class inherited.

26 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 10.7: When Constructor and Destructor
Functions Are Executed
Because a base class, a derived class, or both can contain constructors and/or destructors, it is
important to understand the order in which they are executed. Specifically, when an object of a derived
class comes into existence, in what order are the constructors called? When the object goes out of
existence, in what order are the destructors called? To answer these questions, let’s begin with this
simple program:

As the comment in main() indicates, this program simply constructs and then destroys an object called
ob, which is of class D. When executed, this program displays

Constructing base portion Constructing derived portion Destructing derived portion Destructing base portion

As the output shows, first the constructor for B is executed, followed by the constructor of D. Next
(since ob is immediately destroyed in this program), the destructor of D is called, followed by that of B.

The results of the foregoing experiment can be generalized as follows: When an object of a derived class
is created, the base class constructor is called first, followed by the constructor for the derived class.
When a derived object is destroyed, its destructor is called first, followed by that of the base class. Put
differently, constructors are executed in the order of their derivation. Destructors are executed in
reverse order of derivation. In the case of a multilevel class hierarchy (that is, where a derived class
becomes the base class for another derived class), the same general rule applies: Constructors are called

27 C++ A Beginner’s Guide by Herbert Schildt

in order of derivation; destructors are called in reverse order. When a class inherits more than one base
class at a time, constructors are called in order from left to right as specified in the derived class’
inheritance list. Destructors are called in reverse order right to left.

1. Can a derived class be used as a base class for another derived class?
2. In a class hierarchy, in what order are the constructors called?
3. In a class hierarchy, in what order are the destructors called?

Ask the Expert

Q: Why are constructors called in order of derivation, and destructors called in reverse order?

A: If you think about it, it makes sense that constructors are executed in order of derivation.

Because a base class has no knowledge of any derived class, any initialization it needs to perform is
separate from, and possibly prerequisite to, any initialization performed by the derived class. Therefore,
the base class constructor must be executed first.

Likewise, it is quite sensible that destructors be executed in reverse order of derivation. Since the base
class underlies a derived class, the destruction of the base class implies the destruction of the derived
class. Therefore, the derived destructor must be called before the object is fully destroyed.

CRITICAL SKILL 10.8: Pointers to Derived Types
Before moving on to virtual functions and polymorphism, it is necessary to discuss an important aspect
of pointers. Pointers to base classes and derived classes are related in ways that other types of pointers
are not. In general, a pointer of one type cannot point to an object of another type. However, base class
pointers and derived objects are the exceptions to this rule. In C++, a base class pointer can also be used
to point to an object of any class derived from that base. For example, assume that you have a base
class called B and a class called D, which is derived from B. Any pointer declared as a pointer to B can
also be used to point to an object of type D. Therefore, given

both of the following statements are perfectly valid:

28 C++ A Beginner’s Guide by Herbert Schildt

A base pointer can be used to access only those parts of a derived object that were inherited from the
base class. Thus, in this example, p can be used to access all elements of D_ob inherited from B_ob.
However, elements specific to D_ob cannot be accessed through p.

Another point to understand is that although a base pointer can be used to point to a derived object,
the reverse is not true. That is, you cannot access an object of the base type by using a derived class
pointer.

As you know, a pointer is incremented and decremented relative to its base type. Therefore, when a
base class pointer is pointing at a derived object, incrementing or decrementing it will not make it point
to the next object of the derived class. Instead, it will point to (what it thinks is) the next object of the
base class. Therefore, you should consider it invalid to increment or decrement a base class pointer
when it is pointing to a derived object.

The fact that a pointer to a base type can be used to point to any object derived from that base is
extremely important, and fundamental to C++. As you will soon learn, this flexibility is crucial to the way
C++ implements runtime polymorphism.

References to Derived Types

Similar to the action of pointers just described, a base class reference can be used to refer to an object
of a derived type. The most common application of this is found in function parameters. A base class
reference parameter can receive objects of the base class as well as any other type derived from that
base.

CRITICAL SKILL 10.9: Virtual Functions and Polymorphism
The foundation upon which C++ builds its support for polymorphism consists of inheritance and base
class pointers. The specific feature that actually implements polymorphism is the virtual function. The
remainder of this module examines this important feature.

Virtual Function Fundamentals

A virtual function is a function that is declared as virtual in a base class and redefined in one or more
derived classes. Thus, each derived class can have its own version of a virtual function.

What makes virtual functions interesting is what happens when a base class pointer is used to call one.
When a virtual function is called through a base class pointer, C++ determines which version of that
function to call based upon the type of the object pointed to by the pointer. This determination is made
at runtime. Thus, when different objects are pointed to, different versions of the virtual function are
executed. In other words, it is the type of the object being pointed to (not the type of the pointer) that
determines which version of the virtual function will be executed. Therefore, if a base class contains a
virtual function and if two or more different classes are derived from that base class, then when
different types of objects are pointed to through a base class pointer, different versions of the virtual

29 C++ A Beginner’s Guide by Herbert Schildt

function are executed. The same effect occurs when a virtual function is called through a base class
reference.

You declare a virtual function as virtual inside a base class by preceding its declaration with the keyword
virtual. When a virtual function is redefined by a derived class, the keyword virtual need not be repeated
(although it is not an error to do so).

A class that includes a virtual function is called a polymorphic class. This term also applies to a class that
inherits a base class containing a virtual function.

The following program demonstrates a virtual function:

30 C++ A Beginner’s Guide by Herbert Schildt

This program produces the following output:

Base
First derivation
Second derivation

Let’s examine the program in detail to understand how it works.

As you can see, in B, the function who() is declared as virtual. This means that the function can be
redefined by a derived class. Inside both D1 and D2, who() is redefined relative to each class. Inside
main(), four variables are declared: base_obj, which is an object of type B; p, which is a pointer to B

31 C++ A Beginner’s Guide by Herbert Schildt

objects; and D1_obj and D2_obj, which are objects of the two derived classes. Next, p is assigned the
address of base_obj, and the who() function is called. Since who() is declared as virtual, C++ determines
at runtime which version of who() to execute based on the type of object pointed to by p. In this case, p
points to an object of type B, so it is the version of who() declared in B that is executed. Next, p is
assigned the address of D1_obj. Recall that a base class pointer can refer to an object of any derived
class. Now, when who() is called, C++ again checks to see what type of object is pointed to by p and,
based on that type, determines which version of who() to call. Since p points to an object of type D1,
that version of who() is used. Likewise, when p is assigned the address of D2_obj, the version of who()
declared inside D2 is executed.

To review: When a virtual function is called through a base class pointer, the version of the virtual
function actually executed is determined at runtime by the type of object being pointed to.

Although virtual functions are normally called through base class pointers, a virtual function can also be
called normally, using the standard dot operator syntax. This means that in the preceding example, it
would have been syntactically correct to access who() using this statement:

D1_obj.who();

However, calling a virtual function in this manner ignores its polymorphic attributes. It is only when a
virtual function is accessed through a base class pointer (or reference) that runtime polymorphism is
achieved.

At first, the redefinition of a virtual function in a derived class seems to be a special form of function
overloading. However, this is not the case. In fact, the two processes are fundamentally different. First,
an overloaded function must differ in its type and/or number of parameters, while a redefined virtual
function must have exactly the same type and number of parameters. In fact, the prototypes for a
virtual function and its redefinitions must be exactly the same. If the prototypes differ, then the function
is simply considered to be overloaded, and its virtual nature is lost. Another restriction is that a virtual
function must be a member, not a friend, of the class for which it is defined. However, a virtual function
can be a friend of another class. Also, it is permissible for destructors, but not constructors, to be virtual.

Because of the restrictions and differences between overloading normal functions and redefining virtual
functions, the term overriding is used to describe the redefinition of a virtual function.

Virtual Functions Are Inherited

Once a function is declared as virtual, it stays virtual no matter how many layers of derived classes it
may pass through. For example, if D2 is derived from D1 instead of B, as shown in the next example,
then who() is still virtual:

32 C++ A Beginner’s Guide by Herbert Schildt

When a derived class does not override a virtual function, then the function as defined in the base class
is used. For example, try this version of the preceding program. Here, D2 does not override who():

The program now outputs the following:

33 C++ A Beginner’s Guide by Herbert Schildt

Base
First derivation
Base

Because D2 does not override who(), the version of who() defined in B is used instead.

Keep in mind that inherited characteristics of virtual are hierarchical. Therefore, if the preceding
example is changed such that D2 is derived from D1 instead of B, then when who() is called on an object
of type D2, it will not be the who() inside B, but the version of who() declared inside D1 that is called
since it is the class closest to D2.

Why Virtual Functions?

As stated earlier, virtual functions in combination with derived types allow C++ to support runtime
polymorphism. Polymorphism is essential to object-oriented programming, because it allows a
generalized class to specify those functions that will be common to all derivatives of that class, while
allowing a derived class to define the specific implementation of some or all of those functions.
Sometimes this idea is expressed as follows: the base class dictates the general interface that any object
derived from that class will have, but lets the derived class define the actual method used to implement
that interface. This is why the phrase “one interface, multiple methods” is often used to describe
polymorphism.

Part of the key to successfully applying polymorphism is understanding that the base and derived classes
form a hierarchy, which moves from greater to lesser generalization (base to derived). When designed
correctly, the base class provides all of the elements that a derived class can use directly. It also defines
those functions that the derived class must implement on its own. This allows the derived class the
flexibility to define its own methods, and yet still enforces a consistent interface. That is, since the form
of the interface is defined by the base class, any derived class will share that common interface. Thus,
the use of virtual functions makes it possible for the base class to define the generic interface that will
be used by all derived classes.

At this point, you might be asking yourself why a consistent interface with multiple implementations is
important. The answer, again, goes back to the central driving force behind object-oriented
programming: It helps the programmer handle increasingly complex programs. For example, if you
develop your program correctly, then you know that all objects you derive from a base class are
accessed in the same general way, even if the specific actions vary from one derived class to the next.
This means that you need to deal with only one interface, rather than several. Also, your derived class is
free to use any or all of the functionality provided by the base class. You need not reinvent those
elements.

The separation of interface and implementation also allows the creation of class libraries, which can be
provided by a third party. If these libraries are implemented correctly, they will provide a common
interface that you can use to derive classes of your own that meet your specific needs. For example,
both the Microsoft Foundation Classes (MFC) and the newer .NET Framework Windows Forms class
library support Windows programming. By using these classes, your program can inherit much of the

34 C++ A Beginner’s Guide by Herbert Schildt

functionality required by a Windows program. You need add only the features unique to your
application. This is a major benefit when programming complex systems.

Applying Virtual Functions

To better understand the power of virtual functions, we will apply it to the TwoDShape class. In the
preceding examples, each class derived from TwoDShape defines a function called area(). This suggests
that it might be better to make area() a virtual function of the TwoDShape class, allowing each derived
class to override it, defining how the area is calculated for the type of shape that the class encapsulates.
The following program does this. For convenience, it also adds a name field to TwoDShape. (This makes
it easier to demonstrate the classes.)

35 C++ A Beginner’s Guide by Herbert Schildt

36 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

object is triangle Area is 48
object is rectangle Area is 100
object is rectangle

37 C++ A Beginner’s Guide by Herbert Schildt

Area is 40
object is triangle Area is 24.5
object is generic
Error: area() must be overridden.
Area is 0

Let’s examine this program closely. First, area() is declared as virtual in TwoDShape class and is
overridden by Triangle and Rectangle. Inside TwoDShape, area() is given a placeholder implementation
that simply informs the user that this function must be overridden by a derived class. Each override of
area() supplies an implementation that is suitable for the type of object encapsulated by the derived
class. Thus, if you were to implement an ellipse class, for example, then area() would need to compute
the area of an ellipse.

There is one other important feature in the preceding program. Notice in main() that shapes is declared
as an array of pointers to TwoDShape objects. However, the elements of this array are assigned pointers
to Triangle, Rectangle,and TwoDShape objects. This is valid because a base class pointer can point to a
derived class object. The program then cycles through the array, displaying information about each
object. Although quite simple, this illustrates the power of both inheritance and virtual functions. The
type of object pointed to by a base class pointer is determined at runtime and acted on accordingly. If an
object is derived from TwoDShape,then its area can be obtained by calling area(). The interface to this
operation is the same no matter what type of shape is being used.

1. What is a virtual function?
2. Why are virtual functions important?
3. When an overridden virtual function is called through a base class pointer, which version of the

function is executed?

CRITICAL SKILL 10.10: Pure Virtual Functions and Abstract
Classes
Sometimes you will want to create a base class that defines only a generalized form that will be shared
by all of its derived classes, leaving it to each derived class to fill in the details. Such a class determines
the nature of the functions that the derived classes must implement, but does not, itself, provide an
implementation of one or more of these functions. One way this situation can occur is when a base class
is unable to create a meaningful implementation for a function. This is the case with the version of
TwoDShape used in the preceding example. The definition of area() is simply a placeholder. It will not
compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a function to have no
meaningful definition in the context of its base class. You can handle this situation two ways. One way,

38 C++ A Beginner’s Guide by Herbert Schildt

as shown in the previous example, is to simply have it report a warning message. While this approach
can be useful in certain situations—such as debugging—it is not usually appropriate. You may have
functions that must be overridden by the derived class in order for the derived class to have any
meaning. Consider the class Triangle. It has no meaning if area() is not defined. In this case, you want
some way to ensure that a derived class does, indeed, override all necessary functions. The C++ solution
to this problem is the pure virtual function.

A pure virtual function is a function declared in a base class that has no definition relative to the base. As
a result, any derived class must define its own version—it cannot simply use the version defined in the
base. To declare a pure virtual function, use this general form: virtual type func-name(parameter-list) =
0;

Here, type is the return type of the function, and func-name is the name of the function. Using a pure
virtual function, you can improve the TwoDShape class. Since there is no meaningful concept of area for
an undefined two-dimensional figure, the following version of the preceding program declares area() as
a pure virtual function inside TwoDShape. This, of course, means that all classes derived from
TwoDShape must override area().

39 C++ A Beginner’s Guide by Herbert Schildt

40 C++ A Beginner’s Guide by Herbert Schildt

If a class has at least one pure virtual function, then that class is said to be abstract. An abstract class has
one important feature: there can be no objects of that class. To prove this to yourself, try removing the

41 C++ A Beginner’s Guide by Herbert Schildt

override of area() from the Triangle class in the preceding program. You will receive an error when you
try to create an instance of Triangle. Instead, an abstract class must be used only as a base that other
classes will inherit. The reason that an abstract class cannot be used to declare an object is because one
or more of its functions have no definition. Because of this, the shapes array in the preceding program
has been shortened to 4, and a generic TwoDShape object is no longer created. As the program
illustrates, even if the base class is abstract, you still can use it to declare a pointer of its type, which can
be used to point to derived class objects.

Module 10 Mastery Check

1. A class that is inherited is called a _______ class. The class that does the inheriting is called a

________ class.

2. Does a base class have access to the members of a derived class? Does a derived class have access

to the members of a base class?

3. Create a derived class of TwoDShape called Circle. Include an area() function that computes the

area of the circle.

4. How do you prevent a derived class from having access to a member of a base class?

5. Show the general form of a constructor that calls a base class constructor.

6. Given the following hierarchy:

in what order are the constructors for these classes called when a Gamma object is instantiated?

7. How can protected members be accessed?

8. A base class pointer can refer to a derived class object. Explain why this is important as it relates to

function overriding.

9. What is a pure virtual function? What is an abstract class?

10. Can an object of an abstract class be instantiated?

11. Explain how the pure virtual function helps implement the “one interface, multiple methods” aspect

of polymorphism.

1 C++ A Beginner’s Guide by Herbert Schildt

Module 11

The C++ I/O System
Table of Contents

CRITICAL SKILL 11.1: Understand I/O streams .. 2

CRITICAL SKILL 11.2: Know the I/O class hierarchy ... 3

CRITICAL SKILL 11.3: Overload the << and >> operators .. 4

CRITICAL SKILL 11.4: Format I/O by using iso member functions ... 10

CRITICAL SKILL 11.5: Format I/O by using manipulators... 16

CRITICAL SKILL 11.6: Create your own manupulators .. 18

CRITICAL SKILL 11.7: Open and close files... 20

CRITICAL SKILL 11.8: Read and write text files .. 23

CRITICAL SKILL 11.9: Read and write binary files .. 25

CRITICAL SKILL 11.10: Know additional file functions ... 29

CRITICAL SKILL 11.11: Use randon access files I/O ... 35

CRITICAL SKILL 11.12: Check I/O system status .. 37

Since the beginning of this book you have been using the C++ I/O system, but you have been doing so
without much formal explanation. Since the I/O system is based upon a hierarchy of classes, it was not
possible to present its theory and details without first discussing classes and inheritance. Now it is time
to examine the C++ I/O system in detail. The C++ I/O system is quite large, and it won’t be possible to
discuss here every class, function, or feature, but this module will introduce you to the most important
and commonly used parts. Specifically, it shows how to overload the << and >> operators so that you
can input or output objects of classes that you design. It describes how to format output and how to use
I/O manipulators. The module ends by discussing file I/O.

Old vs. Modern C++ I/O
There are currently two versions of the C++ object-oriented I/O library in use: the older one that is based
upon the original specifications for C++ and the newer one defined by Standard C++. The old I/O library
is supported by the header file <iostream.h>. The new I/O library is supported by the header

2 C++ A Beginner’s Guide by Herbert Schildt

<iostream>. For the most part, the two libraries appear the same to the programmer. This is because the
new I/O library is, in essence, simply an updated and improved version of the old one. In fact, the vast
majority of differences between the two occur beneath the surface, in the way that the libraries are
implemented—not in how they are used.

From the programmer’s perspective, there are two main differences between the old and new C++ I/O
libraries. First, the new I/O library contains a few additional features and defines some new data types.
Thus, the new I/O library is essentially a superset of the old one. Nearly all programs originally written
for the old library will compile without substantive changes when the new library is used. Second, the
old-style I/O library was in the global namespace. The new-style library is in the std namespace. (Recall
that the std namespace is used by all of the Standard C++ libraries.) Since the old-style I/O library is now
obsolete, this book describes only the new I/O library, but most of the information is applicable to the
old I/O library as well.

CRITICAL SKILL 11.1: C++ Streams
The most fundamental point to understand about the C++ I/O system is that it operates on streams. A
stream is an abstraction that either produces or consumes information. A stream is linked to a physical
device by the C++ I/O system. All streams behave in the same manner, even if the actual physical devices
they are linked to differ. Because all streams act the same, the same I/O functions and operators can
operate on virtually any type of device. For example, the same method that you use to write to the
screen can be used to write to a disk or to the printer.

In its most common form, a stream is a logical interface to a file. As C++ defines the term “file,” it can
refer to a disk file, the screen, the keyboard, a port, a file on tape, and so on. Although files differ in
form and capabilities, all streams are the same. The advantage to this approach is that to you, the
programmer, one hardware device will look much like any other. The stream provides a consistent
interface.

A stream is linked to a file through an open operation. A stream is disassociated from a file through a
close operation.

There are two types of streams: text and binary. A text stream is used with characters. When a text
stream is being used, some character translations may take place. For example, when the newline
character is output, it may be converted into a carriage return–linefeed sequence. For this reason, there
might not be a one-to-one correspondence between what is sent to the stream and what is written to
the file. A binary stream can be used with any type of data. No character translations will occur, and
there is a one-to-one correspondence between what is sent to the stream and what is actually
contained in the file.

One more concept to understand is that of the current location. The current location (also referred to as
the current position) is the location in a file where the next file access will occur. For example, if a file is
100 bytes long and half the file has been read, the next read operation will occur at byte 50, which is the
current location.

3 C++ A Beginner’s Guide by Herbert Schildt

To summarize: In C++, I/O is performed through a logical interface called a stream. All streams have
similar properties, and every stream is operated upon by the same I/O functions, no matter what type of
file it is associated with. A file is the actual physical entity that contains

The C++ I/O System

the data. Even though files differ, streams do not. (Of course, some devices may not support all
operations, such as random-access operations, so their associated streams will not support these
operations either.)

The C++ Predefined Streams

C++ contains several predefined streams that are automatically opened when your C++ program begins
execution. They are cin, cout, cerr, and clog. As you know, cin is the stream associated with standard
input, and cout is the stream associated with standard output. The cerr stream is linked to standard
output, and so is clog. The difference between these two streams is that clog is buffered, but cerr is not.
This means that any output sent to cerr is immediately output, but output to clog is written only when a
buffer is full. Typically, cerr and clog are streams to which program debugging or error information is
written. C++ also opens wide (16-bit) character versions of the standard streams called wcin, wcout,
wcerr, and wclog. These streams exist to support languages, such as Chinese, that require large
character sets. We won’t be using them in this book. By default, the C++ standard streams are linked to
the console, but they can be redirected to other devices or files by your program. They can also be
redirected by the operating system.

CRITICAL SKILL 11.2: The C++ Stream Classes

As you learned in Module 1, C++ provides support for its I/O system in <iostream>.Inthis header, a
rather complicated set of class hierarchies is defined that supports I/O operations. The I/O classes begin
with a system of template classes. As you will learn in Module 12, a template defines the form of a class
without fully specifying the data upon which it will operate. Once a template class has been defined,
specific instances of the template class can be created. As it relates to the I/O library, Standard C++
creates two specific versions of these template classes: one for 8-bit characters and another for wide
characters. These specific versions act like any other classes, and no familiarity with templates is
required to fully utilize the C++ I/O system.

The C++ I/O system is built upon two related, but different, template class hierarchies. The first is
derived from the low-level I/O class called basic_streambuf. This class supplies the basic, low-level input
and output operations, and provides the underlying support for the entire C++ I/O system. Unless you
are doing advanced I/O programming, you will not need to use basic_streambuf directly. The class
hierarchy that you will most commonly be working with is derived from basic_ios. This is a high-level I/O
class that provides formatting, error-checking, and status information related to stream I/O. (A base
class for basic_ios is called ios_base, which defines several traits used by basic_ios.) basic_ios is used as
a base for several derived classes, including basic_istream, basic_ostream, and basic_iostream. These
classes are used to create streams capable of input, output, and input/output, respectively.

4 C++ A Beginner’s Guide by Herbert Schildt

As explained, the I/O library creates two specific versions of the I/O class hierarchies: one for 8-bit
characters and one for wide characters. This book discusses only the 8-bit character classes since they
are by far the most frequently used. Here is a list of the mapping of template class names to their
character-based versions.

The character-based names will be used throughout the remainder of this book, since they are the
names that you will use in your programs. They are also the same names that were used by the old I/O
library. This is why the old and the new I/O library are compatible at the source code level.

One last point: The ios class contains many member functions and variables that control or monitor the
fundamental operation of a stream. It will be referred to frequently. Just remember that if you include
<iostream> in your program, you will have access to this important class.

1. What is a stream? What is a file?

2. What stream is connected to standard output?

3. C++ I/O is supported by a sophisticated set of class hierarchies. True or false?

CRITICAL SKILL 11.3: Overloading the I/O Operators

In the preceding modules, when a program needed to output or input the data associated with a class,
member functions were created whose only purpose was to output or input the class’ data. While there
is nothing, in itself, wrong with this approach, C++ allows a much better way of performing I/O
operations on classes: by overloading the << and the >> I/O operators.

In the language of C++, the << operator is referred to as the insertion operator because it inserts data
into a stream. Likewise, the >> operator is called the extraction operator because it extracts data from a

5 C++ A Beginner’s Guide by Herbert Schildt

stream. The operator functions that overload the insertion and extraction operators are generally called
inserters and extractors, respectively.

In <iostream>, the insertion and extraction operators are overloaded for all of the C++ built-in types.
Here you will see how to define these operators relative to classes that you create.

Creating Inserters

As a simple first example, let’s create an inserter for the version of the ThreeD class shown here:

The C++ I/O System

To create an inserter function for an object of type ThreeD, overload the << for it. Here is one way to do
this:

Let’s look closely at this function, because many of its features are common to all inserter functions.
First, notice that it is declared as returning a reference to an object of type ostream. This declaration is
necessary so that several inserters of this type can be combined in a compound I/O expression. Next,
the function has two parameters. The first is the reference to the stream that occurs on the left side of
the << operator. The second parameter is the object that occurs on the right side. (This parameter can
also be a reference to the object, if you like.) Inside the function, the three values contained in an object
of type ThreeD are output, and stream is returned.

Here is a short program that demonstrates the inserter:

6 C++ A Beginner’s Guide by Herbert Schildt

If you eliminate the code that is specific to the ThreeD class, you are left with the skeleton for an
inserter function, as shown here:

Of course, it is permissible for obj to be passed by reference.

Within wide boundaries, what an inserter function actually does is up to you. However, good
programming practice dictates that your inserter should produce reasonable output. Just make sure that
you return stream.

Using Friend Functions to Overload Inserters

7 C++ A Beginner’s Guide by Herbert Schildt

In the preceding program, the overloaded inserter function is not a member of ThreeD. In fact, neither
inserter nor extractor functions can be members of a class. The reason is that when an operator function
is a member of a class, the left operand (implicitly passed using the this pointer) is an object of that
class. There is no way to change this. However, when inserters are overloaded, the left operand is a
stream, and the right operand is an object of the class being output. Therefore, overloaded inserters
must be nonmember functions.

The fact that inserters must not be members of the class they are defined to operate on raises a serious
question: How can an overloaded inserter access the private elements of a class? In the preceding
program, the variables x, y,and z were made public so that the inserter could access them. But hiding
data is an important part of OOP, and forcing all data to be public is a serious inconsistency. However,
there is a solution: an inserter can be a friend of a class. As a friend of the class for which it is defined, it
has access to private data. Here, the ThreeD class and sample program are reworked, with the
overloaded inserter declared as a friend:

// Use a friend to overload <<.

Notice that the variables x, y, and z are now private to ThreeD, but can still be directly accessed by the
inserter. Making inserters (and extractors) friends of the classes for which they are defined preserves
the encapsulation principle of OOP.

8 C++ A Beginner’s Guide by Herbert Schildt

Overloading Extractors

To overload an extractor, use the same general approach that you use when overloading an inserter. For
example, the following extractor inputs 3-D coordinates into an object of type ThreeD. Notice that it also
prompts the user.

An extractor must return a reference to an object of type istream. Also, the first parameter must be a
reference to an object of type istream. This is the stream that occurs on the left side of the >>. The
second parameter is a reference to the variable that will be receiving input. Because it is a reference, the
second parameter can be modified when information is input.

The skeleton of an extractor is shown here:

The following program demonstrates the extractor for objects of type ThreeD:

9 C++ A Beginner’s Guide by Herbert Schildt

A sample run is shown here:

Like inserters, extractor functions cannot be members of the class they are designed to operate upon.
They can be friends or simply independent functions.

10 C++ A Beginner’s Guide by Herbert Schildt

Except for the fact that you must return a reference to an object of type istream, you can do anything
you like inside an extractor function. However, for the sake of structure and clarity, it is best to use
extractors only for input operations.

1. What is an inserter?

2. What is an extractor?

3. Why are friend functions often used for inserter or extractor functions?

Formatted I/O

Up to this point, the format for inputting or outputting information has been left to the defaults
provided by the C++ I/O system. However, you can precisely control the format of your data in either of
two ways. The first uses member functions of the ios class. The second uses a

special type of function called a manipulator. We will begin by looking at formatting using the ios
member functions.

CRITICAL SKILL 11.4: Formatting with the ios Member
Functions

Each stream has associated with it a set of format flags that control the way information is formatted by
a stream. The ios class declares a bitmask enumeration called fmtflags in which the following values are
defined. (Technically, these values are defined within ios_base, which is a base class for ios.)

adjustfield basefield boolalpha dec

fixed floatfield hex internal

left oct right scientific

showbase showpoint showpos skipws

unitbuf uppercase

11 C++ A Beginner’s Guide by Herbert Schildt

These values are used to set or clear the format flags. Some older compilers may not define the fmtflags
enumeration type. In this case, the format flags will be encoded into a long integer.

When the skipws flag is set, leading whitespace characters (spaces, tabs, and newlines) are discarded
when performing input on a stream. When skipws is cleared, whitespace characters are not discarded.

When the left flag is set, output is left-justified. When right is set, output is right-justified.

When the internal flag is set, a numeric value is padded to fill a field by inserting spaces between any
sign or base character. If none of these flags is set, output is right-justified by default.

By default, numeric values are output in decimal. However, it is possible to change the number base.
Setting the oct flag causes output to be displayed in octal. Setting the hex flag causes output to be
displayed in hexadecimal. To return output to decimal, set the dec flag.

Setting showbase causes the base of numeric values to be shown. For example, if the conversion base is
hexadecimal, the value 1F will be displayed as 0x1F.

By default, when scientific notation is displayed, the e is in lowercase. Also, when a hexadecimal value is
displayed, the x is in lowercase. When uppercase is set, these characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values. Setting showpoint
causes a decimal point and trailing zeros to be displayed for all floating-point output—whether needed
or not.

By setting the scientific flag, floating-point numeric values are displayed using scientific notation. When
fixed is set, floating-point values are displayed using normal notation. When neither flag is set, the
compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operation. When boolalpha is set,
Booleans can be input or output using the keywords true and false.

Since it is common to refer to the oct, dec, and hex fields, they can be collectively referred to as
basefield. Similarly, the left, right, and internal fields can be referred to as adjustfield.

Finally, the scientific and fixed fields can be referenced as floatfield.

Setting and Clearing Format Flags

To set a flag, use the setf() function. This function is a member of ios. Its most common form is shown
here:

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags specified by flags.
For example, to turn on the showbase flag, you can use this statement:

12 C++ A Beginner’s Guide by Herbert Schildt

stream.setf(ios::showbase);

Here, stream is the stream you want to affect. Notice the use of ios:: to qualify showbase. Because
showbase is an enumerated constant defined by the ios class, it must be qualified by ios when it is
referred to. This principle applies to all of the format flags.

The following program uses setf() to turn on both the showpos and scientific flags:

The output produced by this program is shown here:

+123 +1.232300e+002

You can OR together as many flags as you like in a single call. For example, by ORing together scientific
and showpos, as shown next, you can change the program so that only one call is made to setf():

cout.setf(ios::scientific | ios::showpos);

To turn off a flag, use the unsetf() function, whose prototype is shown here: void unsetf(fmtflags flags);
The flags specified by flags are cleared. (All other flags are unaffected.)

Sometimes it is useful to know the current flag settings. You can retrieve the current flag values using
the flags() function, whose prototype is shown here: fmtflags flags();

This function returns the current value of the flags relative to the invoking stream. The following form of
flags() sets the flag values to those specified by flags and returns the previous flag values: fmtflags
flags(fmtflags flags); The following program demonstrates flags() and unsetf():

13 C++ A Beginner’s Guide by Herbert Schildt

The program produces this output:

showpos is cleared for cout.
Setting showpos for cout.
showpos is set for cout.
Clearing showpos for cout.
showpos is cleared for cout.

In the program, notice that the type fmtflags is preceded by ios:: when f is declared. This is necessary
since fmtflags is a type defined by ios. In general, whenever you use the name of a type or enumerated
constant that is defined by a class, you must qualify it with the name of the class.

Setting the Field Width, Precision, and Fill Character

14 C++ A Beginner’s Guide by Herbert Schildt

In addition to the formatting flags, there are three member functions defined by ios that set these
additional format values: the field width, the precision, and the fill character. The functions that set
these values are width(), precision(), and fill(), respectively. Each is examined in turn.

By default, when a value is output, it occupies only as much space as the number of characters it takes
to display it. However, you can specify a minimum field width by using the width() function. Its
prototype is shown here:

streamsize width(streamsize w);

Here, w becomes the field width, and the previous field width is returned. In some implementations, the
field width must be set before each output. If it isn’t, the default field width is used. The streamsize type
is defined as some form of integer by the compiler.

After you set a minimum field width, when a value uses less than the specified width, the field will be
padded with the current fill character (space, by default) to reach the field width. If the size of the value
exceeds the minimum field width, then the field will be overrun. No values are truncated.

When outputting floating-point values in scientific notation, you can determine the number of digits to
be displayed after the decimal point by using the precision() function. Its prototype is shown here:

streamsize precision(streamsize p);

Here, the precision is set to p, and the old value is returned. The default precision is 6. In some
implementations, the precision must be set before each floating-point output. If you don’t set it, the
default precision is used.

By default, when a field needs to be filled, it is filled with spaces. You can specify the fill character by
using the fill() function. Its prototype is

char fill(char ch);

After a call to fill(), ch becomes the new fill character, and the old one is returned.

Here is a program that demonstrates these three functions:

15 C++ A Beginner’s Guide by Herbert Schildt

As mentioned, in some implementations, it is necessary to reset the field width before each output
operation. This is why width() is called repeatedly in the preceding program. There are overloaded
forms of width(), precision(), and fill() that obtain, but do not change, the current setting. These forms
are shown here:

char fill(); streamsize width(); streamsize precision();

1. What does boolalpha do?

2. What does setf() do?

3. What function is used to set the fill character?

16 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 10.5: Using I/O Manipulators

The C++ I/O system includes a second way in which you can alter the format parameters of a stream.
This method uses special functions, called manipulators, that can be included in an I/O expression. The
standard manipulators are shown in Table 11-1. To use those manipulators that take arguments, you
must include <iomanip> in your program.

Manipulator Purpose Input/Output

boolalpha Turns on boolalpha flag Input/Output

dec Turns on dec flag Input/Output

endl Outputs a newline character and flushes the
stream Output

ends Outputs a null Output

fixed Turns on fixed flag Output

flush Flushes a stream Output

hex Turns on hex flag Input/Output

internal Turns on internal flag Output

left Turns on left flag Output

noboolalpha Turns off boolalpha flag Input/Output

noshowbase Turns off showbase flag Output

noshowpoint Turns off showpoint flag Output

noshowpos Turns off showpos flag Output

noskipws Turns off skipws flag Input

nounitbuf Turns off unitbuf flag Output

nouppercase Turns off uppercase flag Output

oct Turns on oct flag Input/Output

resetiosflags (fmtflags f) Turns off the flags specified in f Input/Output

right Turns on right flag Output

scientific Turns on scientific flag Output

setbase(int base) Sets the number base to base Input/Output

setfill(int ch) Sets the fill character to ch Output

setiosflags(fmtflags f) Turns on the flags specified in f Input/Output

setprecision (int p) Sets the number of digits of precision Output

setw(int w) Sets the field width to w Output

showbase Turns on showbase flag Output

showpoint Turns on showpoint flag Output

Table 11-1 The C++ I/O Manipulators

17 C++ A Beginner’s Guide by Herbert Schildt

A

manipulator is used as part of a larger I/O expression. Here is a sample program that uses manipulators
to control the format of its output:

Notice how the manipulators occur in the chain of I/O operations. Also, notice that when a manipulator
does not take an argument, such as endl in the example, it is not followed by parentheses.

The following program uses setiosflags() to set the scientific and showpos flags:

Manipulator Purpose Input/Output

showpos Turns on showpos flag Output

skipws Turns on skipws flag Input

unitbuf Turns on unitbuf flag Output

uppercase Turns on uppercase flag Output

ws Skips leading whitespace Input

Table 11-1 The C++ I/O Manipulators (continued)

18 C++ A Beginner’s Guide by Herbert Schildt

The program shown next uses ws to skip any leading whitespace when inputting a string into s:

CRITICAL SKILL 11.6: Creating Your Own Manipulator Functions

You can create your own manipulator functions. There are two types of manipulator functions: those
that take arguments and those that don’t. The creation of parameterized manipulators requires the use
of techniques beyond the scope of this book. However, the creation of parameterless manipulators is
quite easy and is described here.

All parameterless manipulator output functions have this skeleton:

Here, manip_name is the name of the manipulator. It is important to understand that even though the
manipulator has as its single argument a pointer to the stream upon which

it is operating, no argument is specified when the manipulator is used in an output expression.

The following program creates a manipulator called setup() that turns on left justification, sets the field
width to 10, and specifies that the dollar sign will be the fill character.

19 C++ A Beginner’s Guide by Herbert Schildt

Custom manipulators are useful for two reasons. First, you might need to perform an I/O operation on a
device for which none of the predefined manipulators applies—a plotter, for example. In this case,
creating your own manipulators will make it more convenient when outputting to the device. Second,
you may find that you are repeating the same sequence of operations many times. You can consolidate
these operations into a single manipulator, as the foregoing program illustrates.

All parameterless input manipulator functions have this skeleton:

For example, the following program creates the prompt() manipulator. It displays a prompting message
and then configures input to accept hexadecimal.

20 C++ A Beginner’s Guide by Herbert Schildt

Remember that it is crucial that your manipulator return stream. If this is not done, then your
manipulator cannot be used in a chain of input or output operations.

1. What does endl do?

2. What does ws do?

3. Is an I/O manipulator used as part of a larger I/O expression?

File I/O

You can use the C++ I/O system to perform file I/O. To perform file I/O, you must include the header
<fstream> in your program. It defines several important classes and values.

CRITICAL SKILL 11.7: Opening and Closing a File

In C++, a file is opened by linking it to a stream. As you know, there are three types of streams: input,
output, and input/output. To open an input stream, you must declare the stream to be of class ifstream.

21 C++ A Beginner’s Guide by Herbert Schildt

To open an output stream, it must be declared as class ofstream. A stream that will be performing both
input and output operations must be declared as class fstream. For example, this fragment creates one
input stream, one output stream, and one stream capable of both input and output:

Once you have created a stream, one way to associate it with a file is by using open().This function is a
member of each of the three stream classes. The prototype for each is shown here:

Here, filename is the name of the file; it can include a path specifier. The value of mode determines how
the file is opened. It must be one or more of the values defined by openmode, which is an enumeration
defined by ios (through its base class ios_base). The values are shown here:

You can combine two or more of these values by ORing them together. Including ios::app causes all
output to that file to be appended to the end. This value can be used only with files capable of output.
Including ios::ate causes a seek to the end of the file to occur when the file is opened. Although ios::ate
causes an initial seek to end-of-file, I/O operations can still occur anywhere within the file.

The ios::in value specifies that the file is capable of input. The ios::out value specifies that the file is
capable of output.

The ios::binary value causes a file to be opened in binary mode. By default, all files are opened in text
mode. In text mode, various character translations may take place, such as carriage return–linefeed
sequences being converted into newlines. However, when a file is opened in binary mode, no such
character translations will occur. Understand that any file, whether it contains formatted text or raw
data, can be opened in either binary or text mode. The only difference is whether character translations
take place.

22 C++ A Beginner’s Guide by Herbert Schildt

The ios::trunc value causes the contents of a preexisting file by the same name to be destroyed, and the
file to be truncated to zero length. When creating an output stream using ofstream, any preexisting file
by that name is automatically truncated.

The following fragment opens a text file for output:

ofstream mystream; mystream.open("test");

Since the mode parameter to open() defaults to a value appropriate to the type of stream being
opened, there is often no need to specify its value in the preceding example. (Some compilers do not
default the mode parameter for fstream::open() to in | out, so you might need to specify this explicitly.)

If open() fails, the stream will evaluate to false when used in a Boolean expression. You can make use of
this fact to confirm that the open operation succeeded by using a statement like this:

if(!mystream) {

cout << "Cannot open file.\n";

// handle error }

In general, you should always check the result of a call to open() before attempting to access the file.
You can also check to see if you have successfully opened a file by using the is_open() function, which is
a member of fstream, ifstream, and ofstream. It has this prototype:

bool is_open();

It returns true if the stream is linked to an open file and false otherwise. For example, the following
checks if mystream is currently open:

if(!mystream.is_open()) {

cout << "File is not open.\n";

// ...

Although it is entirely proper to use the open() function for opening a file, most of the time you will not
do so because the ifstream, ofstream, and fstream classes have constructors that automatically open
the file. The constructors have the same parameters and defaults as the open() function. Therefore, the
most common way you will see a file opened is shown in this example:

ifstream mystream("myfile"); // open file for input

If, for some reason, the file cannot be opened, the value of the associated stream variable will evaluate
to false. To close a file, use the member function close(). For example, to close the file linked to a
stream called mystream, you would use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

23 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 11.8: Reading and Writing Text Files

The easiest way to read from or write to a text file is to use the << and >> operators. For example, this
program writes an integer, a floating-point value, and a string to a file called test:

The following program reads an integer, a float, a character, and a string from the file created by the
previous program:

24 C++ A Beginner’s Guide by Herbert Schildt

Keep in mind that when the >> operator is used for reading text files, certain character translations
occur. For example, whitespace characters are omitted. If you want to prevent any character
translations, you must open a file for binary access. Also remember that when >> is used to read a
string, input stops when the first whitespace character is encountered.

Ask the Expert

Q: As you explained in Module 1, C++ is a superset of C. I know that C defines an I/O system of its

own. Is the C I/O system available to C++ programmers? If so, should it be used in C++ programs?

A: The answer to the first question is yes. The C I/O system is available to C++ programmers. The

answer to the second question is a qualified no. The C I/O system is not object-oriented. Thus, you will
nearly always find the C++ I/O system more compatible with C++ programs. However, the C I/O system
is still widely used and is quite streamlined, carrying little overhead. Thus, for some highly specialized
programs, the C I/O system might be a good choice. Information on the C I/O system can be found in my
book C++: The Complete Reference (Osborne/McGraw-Hill).

25 C++ A Beginner’s Guide by Herbert Schildt

1. What class creates an input file?

2. What function opens a file?

3. Can you read and write to a file using << and >>?

CRITICAL SKILL 11.9: Unformatted and Binary I/O

While reading and writing formatted text files is very easy, it is not always the most efficient way to
handle files. Also, there will be times when you need to store unformatted (raw) binary data, not text.
The functions that allow you to do this are described here.

When performing binary operations on a file, be sure to open it using the ios::binary mode specifier.
Although the unformatted file functions will work on files opened for text mode, some character
translations may occur. Character translations negate the purpose of binary file operations.

In general, there are two ways to write and read unformatted binary data to or from a file. First, you can
write a byte using the member function put(), and read a byte using the member function get(). The
second way uses the block I/O functions: read() and write(). Each is examined here.

Using get() and put()

The get() function has many forms, but the most commonly used version is shown next, along with that
of put():

istream &get(char &ch); ostream &put(char ch);

The get() function reads a single character from the associated stream and puts that value in ch. It
returns a reference to the stream. This value will be null if the end of the file is reached. The put()
function writes ch to the stream and returns a reference to the stream.

The following program will display the contents of any file on the screen. It uses the get() function:

26 C++ A Beginner’s Guide by Herbert Schildt

Look closely at the while loop. When in reaches the end of the file, it will be false, causing the while loop
to stop.

There is actually a more compact way to code the loop that reads and displays a file, as shown here:

while(in.get(ch)) cout << ch;

This form works because get() returns the stream in, and in will be false when the end of the file is
encountered. This program uses put() to write a string to a file.

27 C++ A Beginner’s Guide by Herbert Schildt

After this program executes, the file test will contain the string “hello there” followed by a newline
character. No character translations will have taken place.

Reading and Writing Blocks of Data

To read and write blocks of binary data, use the read() and write() member functions. Their prototypes
are shown here:

istream &read(char *buf, streamsize num); ostream &write(const char *buf, streamsize num);

The read() function reads num bytes from the associated stream and puts them in the buffer pointed to
by buf. The write() function writes num bytes to the associated stream from the buffer pointed to by
buf. As mentioned earlier, streamsize is some form of integer defined by the C++ library. It is capable of
holding the largest number of bytes that can be transferred in any one I/O operation.

The following program writes and then reads an array of integers:

28 C++ A Beginner’s Guide by Herbert Schildt

Note that the type casts inside the calls to read() and write() are necessary when operating on a buffer
that is not defined as a character array.

If the end of the file is reached before num characters have been read, then read() simply stops, and the
buffer will contain as many characters as were available. You can find out how many characters have
been read using another member function, called gcount(), which has this prototype:

streamsize gcount();

gcount() returns the number of characters read by the last input operation.

29 C++ A Beginner’s Guide by Herbert Schildt

1. To read or write binary data, you open a file using what mode specifier?

2. What does get() do? What does put() do?

3. What function reads a block of data?

CRITICAL SKILL 11.10: More I/O Functions

The C++ I/O system defines other I/O related functions, several of which you will find useful. They are
discussed here.

More Versions of get()

In addition to the form shown earlier, the get() function is overloaded in several different ways. The
prototypes for the three most commonly used overloaded forms are shown here:

istream &get(char *buf, streamsize num); istream &get(char *buf, streamsize num, char delim); int get(
);

The first form reads characters into the array pointed to by buf until either num–1 characters have been
read, a newline is found, or the end of the file has been encountered. The array pointed to by buf will be
null-terminated by get(). If the newline character is encountered in the input stream, it is not extracted.
Instead, it remains in the stream until the next input operation.

The second form reads characters into the array pointed to by buf until either num–1 characters have
been read, the character specified by delim has been found, or the end of the file has been
encountered. The array pointed to by buf will be null-terminated by get(). If the delimiter character is
encountered in the input stream, it is not extracted. Instead, it remains in the stream until the next input
operation.

The third overloaded form of get() returns the next character from the stream. It returns EOF (a value
that indicates end-of-file) if the end of the file is encountered. EOF is defined by <iostream>.

One good use for get() is to read a string that contains spaces. As you know, when you use >> to read a
string, it stops reading when the first whitespace character is encountered. This makes >> useless for
reading a string containing spaces. However, you can overcome this problem by using get(buf, num), as
illustrated in this program:

30 C++ A Beginner’s Guide by Herbert Schildt

Here, the delimiter to get() is allowed to default to a newline. This makes get() act much like the
standard gets() function.

getline()

Another function that performs input is getline(). It is a member of each input stream class. Its
prototypes are shown here:

istream &getline(char *buf, streamsize num); istream &getline(char *buf, streamsize num, char delim);

The first form reads characters into the array pointed to by buf until either num–1 characters have been
read, a newline character has been found, or the end of the file has been encountered.

The array pointed to by buf will be null-terminated by getline(). If the newline character is encountered
in the input stream, it is extracted, but is not put into buf.

The second form reads characters into the array pointed to by buf until either num–1 characters have
been read, the character specified by delim has been found, or the end of the file has been
encountered. The array pointed to by buf will be null-terminated by getline(). If the delimiter character
is encountered in the input stream, it is extracted, but is not put into buf.

As you can see, the two versions of getline() are virtually identical to the get(buf, num) and get(buf,
num, delim) versions of get(). Both read characters from input and put them into the array pointed to
by buf until either num–1 characters have been read or until the delimiter character is encountered. The
difference between get() and getline() is that getline() reads and removes the delimiter from the input
stream; get() does not.

Detecting EOF

31 C++ A Beginner’s Guide by Herbert Schildt

You can detect when the end of the file is reached by using the member function eof(), which has this
prototype:

bool eof();

It returns true when the end of the file has been reached; otherwise it returns false.

peek() and putback()

You can obtain the next character in the input stream without removing it from that stream by using
peek(). It has this prototype:

int peek();

peek() returns the next character in the stream, or EOF if the end of the file is encountered. The
character is contained in the low-order byte of the return value. You can return the last character read
from a stream to that stream by using putback(). Its prototype is shown here:

istream &putback(char c);

where c is the last character read.

flush()

When output is performed, data is not immediately written to the physical device linked to the stream.
Instead, information is stored in an internal buffer until the buffer is full. Only then are the contents of
that buffer written to disk. However, you can force the information to be physically written to disk
before the buffer is full by calling flush(). Its prototype is shown here:

ostream &flush();

Calls to flush() might be warranted when a program is going to be used in adverse environments (in
situations where power outages occur frequently, for example).

NOTE: Closing a file or terminating a program also flushes all buffers.

This project develops a simple, yet useful file comparison utility. It works

by opening both files to be compared and then reading and comparing each corresponding set of bytes.
If a mismatch is found, the files differ. If the end of each file is reached at the same time and if no
mismatches have been found, then the files are the same.

Step by Step

32 C++ A Beginner’s Guide by Herbert Schildt

1. Create a file called CompFiles.cpp.

2. Begin by adding these lines to CompFiles.cpp:

Notice that the names of the files to compare are specified on the command line.

3. Add the code that opens the files for binary input operations, as shown here:

The files are opened for binary operations to prevent the character translations that might occur in
text mode.

4. Add the code that actually compares the files, as shown next:

33 C++ A Beginner’s Guide by Herbert Schildt

This code reads one buffer at a time from each of the files using the read() function. It then
compares the contents of the buffers. If the contents differ, the files are closed, the “Files differ.”
message is displayed, and the program terminates. Otherwise, buffers continue to be read and
compared until the end of one (or both) files is reached. Because less than a full buffer may be read
at the end of a file, the program uses the gcount() function to determine precisely how many
characters are in the buffers. If one of the files is shorter than the other, the values returned by
gcount() will differ when the end of one of the files is reached. In this case, the message “Files are of
differing sizes.” will be displayed. Finally, if the files are the same, then when the end of one file is
reached, the other will also have been reached. This is confirmed by calling eof() on each stream. If
the files compare equal in all regards, then they are reported as equal.

5. Finish the program by closing the files, as shown here:
f1.close();
f2.close();
return 0; }

6. The entire FileComp.cpp program is shown here:

34 C++ A Beginner’s Guide by Herbert Schildt

35 C++ A Beginner’s Guide by Herbert Schildt

7. To try CompFiles, first copy CompFiles.cpp to a file called temp.txt. Then, try this command line:

CompFiles CompFiles.temp txt
The program will report that the files are the same. Next, compare CompFiles.cpp to a different file,
such as one of the other program files from this module. You will see that CompFiles reports that
the files differ.

8. On your own, try enhancing CompFiles with various options. For example, add an option that
ignores the case of letters. Another idea is to have CompFiles display the position within the file
where the files differ.

CRITICAL SKILL 11.11: Random Access

So far, files have been read or written sequentially, but you can also access a file in random order. In
C++’s I/O system, you perform random access using the seekg() and seekp() functions. Their most
common forms are shown here:

Here,

off_type is an integer type defined by ios that is capable of containing the largest valid value that offset
can have. seekdir is an enumeration that has these values:

The C++ I/O system manages two pointers associated with a file. One is the get pointer, which specifies
where in the file the next input operation will occur. The other is the put pointer, which specifies where
in the file the next output operation will occur. Each time an input or an output operation takes place,
the appropriate pointer is automatically advanced. Using the seekg() and seekp() functions, it is
possible to move this pointer and access the file in a non-sequential fashion.
The seekg() function moves the associated file’s current get pointer offset number of bytes from the
specified origin. The seekp() function moves the associated file’s current put pointer offset number of
bytes from the specified origin.
Generally, random access I/O should be performed only on those files opened for binary operations. The
character translations that may occur on text files could cause a position request to be out of sync with
the actual contents of the file.

Value Meaning

ios::beg Beginning of file

ios::cur Current location

ios::end End of file

36 C++ A Beginner’s Guide by Herbert Schildt

The following program demonstrates the seekp() function. It allows you to specify a filename on the
command line, followed by the specific byte that you want to change in the file. The program then
writes an X at the specified location. Notice that the file must be opened for read/write operations.

The next program uses seekg(). It displays the contents of a file, beginning with the location you specify
on the command line.

37 C++ A Beginner’s Guide by Herbert Schildt

You can determine the current position of each file pointer using these functions:
pos_type tellg(); pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value that either function
can return. There are overloaded versions of seekg() and seekp() that move the file pointers to the
location specified by the return values of tellg() and tellp(). Their prototypes are shown here:

istream &seekg(pos_type position); ostream &seekp(pos_type position);

1. What function detects the end of the file?

2. What does getline() do?

3. What functions handle random access position requests?

CRITICAL SKILL 11.12: Checking I/O Status

38 C++ A Beginner’s Guide by Herbert Schildt

The C++ I/O system maintains status information about the outcome of each I/O operation. The current
status of an I/O stream is described in an object of type iostate, which is an enumeration defined by ios
that includes these members.

There are two ways in which you can obtain I/O status information. First, you can call the rdstate()
function. It has this prototype:

iostate rdstate();

It returns the current status of the error flags. As you can probably guess from looking at the preceding
list of flags, rdstate() returns goodbit when no error has occurred. Otherwise, an error flag is turned on.

The other way you can determine if an error has occurred is by using one or more of these ios member
functions:

bool bad(); bool eof();

bool fail(); bool good();

The eof() function was discussed earlier. The bad() function returns true if badbit is set. The fail()
function returns true if failbit is set. The good() function returns true if there are no errors. Otherwise
they return false.

Once an error has occurred, it may need to be cleared before your program continues. To do this, use
the ios member function clear(), whose prototype is shown here:

void clear(iostate flags = ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags to the settings you
desire.

Before moving on, you might want to experiment with using these status-reporting functions to add
extended error-checking to the preceding file examples.

Module 11 Mastery Check
1. What are the four predefined streams called?

Name Meaning

ios::goodbit No error bits set

ios::eofbit 1 when end-of-file is encountered; 0 otherwise

ios::failbit 1 when a (possibly) nonfatal I/O error has occurred; 0 otherwise

ios::badbit 1 when a fatal I/O error has occurred; 0 otherwise

39 C++ A Beginner’s Guide by Herbert Schildt

2. Does C++ define both 8-bit and wide-character streams?

3. Show the general form for overloading an inserter.

4. What does ios::scientific do?

5. What does width() do?

6. An I/O manipulator is used within an I/O expression. True or false?

7. Show how to open a file for reading text input.

8. Show how to open a file for writing text output.

9. What does ios::binary do?

10. When the end of the file is reached, the stream variable will evaluate as false. True or false?

11. Assuming a file is associated with an input stream called strm, show how to read to the end of the
file.

12. Write a program that copies a file. Allow the user to specify the name of the input and output file on
the command line. Make sure that your program can copy both text and binary files.

13. Write a program that merges two text files. Have the user specify the names of the two files on the
command line in the order they should appear in the output file. Also, have the user specify the name of
the output file. Thus, if the program is called merge, then the following command line will merge the
files MyFile1.txt and MyFile2.txt into Target.txt:

merge MyFile1.txt MyFile2.txt Target.txt

14. Show how the seekg() statement will seek to the 300th byte in a stream called MyStrm.

1 C++ A Beginner’s Guide by Herbert Schildt

Module12

Exceptions, Templates, and Other
Advanced Topics

Table of Contents

CRITICAL SKILL 12.1: Exception Handling .. 2

CRITICAL SKILL 12.2: Generic Functions .. 14

CRITICAL SKILL 12.3: Generic Classes .. 19

CRITICAL SKILL 12.4: Dynamic Allocation .. 26

CRITICAL SKILL 12.5: Namespaces ... 35

CRITICAL SKILL 12.6: static Class Members ... 42

CRITICAL SKILL 12.7: Runtime Type Identification (RTTI) .. 46

CRITICAL SKILL 12.8: The Casting Operators ... 49

You have come a long way since the start of this book. In this, the final module, you will examine several
important, advanced C++ topics, including exception handling, templates, dynamic allocation, and
namespaces. Runtime type ID and the casting operators are also covered. Keep in mind that C++ is a
large, sophisticated, professional programming language, and it is not possible to cover every advanced
feature, specialized technique, or programming nuance in this beginner’s guide. When you finish this
module, however, you will have mastered the core elements of the language and will be able to begin
writing real-world programs.

2 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 12.1: Exception Handling
An exception is an error that occurs at runtime. Using C++’s exception handling subsystem, you can, in a
structured and controlled manner, handle runtime errors. When exception handling is employed, your
program automatically invokes an error-handling routine when an exception occurs. The principal
advantage of exception handling is that it automates much of the error-handling code that previously
had to be entered “by hand” into any large program.

Exception Handling Fundamentals

C++ exception handling is built upon three keywords: try, catch, and throw. In the most general terms,
program statements that you want to monitor for exceptions are contained in a try block. If an
exception (that is, an error) occurs within the try block, it is thrown (using throw). The exception is
caught, using catch, and processed. The following discussion elaborates upon this general description.

Code that you want to monitor for exceptions must have been executed from within a try block. (A
function called from within a try block is also monitored.) Exceptions that can be thrown by the
monitored code are caught by a catch statement that immediately follows the try statement in which
the exception was thrown. The general forms of try and catch are shown here:

The try block must contain the portion of your program that you want to monitor for errors. This section
can be as short as a few statements within one function, or as all-encompassing as a try block that
encloses the main() function code (which would, in effect, cause the entire program to be monitored).

When an exception is thrown, it is caught by its corresponding catch statement, which then processes
the exception. There can be more than one catch statement associated with a try. The type of the
exception determines which catch statement is used. That is, if the data type specified by a catch
statement matches that of the exception, then that catch statement is executed (and all others are
bypassed). When an exception is caught, arg will receive its value. Any type of data can be caught,
including classes that you create.

3 C++ A Beginner’s Guide by Herbert Schildt

The general form of the throw statement is shown here:

throw exception;

throw generates the exception specified by exception. If this exception is to be caught,

Exceptions, Templates, and Other Advanced Topics

then throw must be executed either from within a try block itself, or from any function called from
within the try block (directly or indirectly).

If an exception is thrown for which there is no applicable catch statement, an abnormal program
termination will occur. That is, your program will stop abruptly in an uncontrolled manner. Thus, you will
want to catch all exceptions that will be thrown.

Here is a simple example that shows how C++ exception handling operates:

This program displays the following output:

start Inside
try block
Caught an exception -- value is: 99
end

Look carefully at this program. As you can see, there is a try block containing three statements and a
catch(int i) statement that processes an integer exception. Within the try block, only two of the three
statements will execute: the first cout statement and the throw. Once an exception has been thrown,
control passes to the catch expression, and the try block is terminated. That is, catch is not called.

4 C++ A Beginner’s Guide by Herbert Schildt

Rather, program execution is transferred to it. (The program’s stack is automatically reset, as necessary,
to accomplish this.) Thus, the cout statement following the throw will never execute.

Usually, the code within a catch statement attempts to remedy an error by taking appropriate action. If
the error can be fixed, then execution will continue with the statements following the catch. Otherwise,
program execution should be terminated in a controlled manner.

As mentioned earlier, the type of the exception must match the type specified in a catch statement. For
example, in the preceding program, if you change the type in the catch statement to double, then the
exception will not be caught and abnormal termination will occur. This change is shown here:

This program produces the following output because the integer exception will not be caught by the
catch(double i) statement. Of course, the final message indicating abnormal termination will vary from
compiler to compiler.

start Inside
try block
Abnormal program termination

An exception thrown by a function called from within a try block can be handled by that try block. For
example, this is a valid program:

5 C++ A Beginner’s Guide by Herbert Schildt

This program produces the following output:

As the output confirms, the exception thrown in Xtest() was caught by the exception handler in main().
A try block can be localized to a function. When this is the case, each time the function is entered, the
exception handling relative to that function is reset. Examine this sample program:

6 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

start

7 C++ A Beginner’s Guide by Herbert Schildt

Caught One! Ex. #: 1
Caught One! Ex. #: 2
Caught One! Ex. #: 3
end

In this example, three exceptions are thrown. After each exception, the function returns. When the
function is called again, the exception handling is reset. In general, a try block is reset each time it is
entered. Thus, a try block that is part of a loop will be reset each time the loop repeats.

1. In the language of C++, what is an exception?

2. Exception handling is based on what three keywords?

3. An exception is caught based on its type. True or false?

Using Multiple catch Statements

As stated earlier, you can associate more than one catch statement with a try. In fact, it is common to do
so. However, each catch must catch a different type of exception. For example, the program shown next
catches both integers and character pointers.

8 C++ A Beginner’s Guide by Herbert Schildt

In general, catch expressions are checked in the order in which they occur in a program. Only a matching
statement is executed. All other catch blocks are ignored.

Catching Base Class Exceptions

There is one important point about multiple catch statements that relates to derived classes. A catch
clause for a base class will also match any class derived from that base. Thus, if you want to catch
exceptions of both a base class type and a derived class type, put the derived class first in the catch
sequence. If you don’t, the base class catch will also catch all derived classes. For example, consider the
following program:

9 C++ A Beginner’s Guide by Herbert Schildt

Here, because derived is an object that has B as a base class, it will be caught by the first catch clause,
and the second clause will never execute. Some compilers will flag this condition with a warning
message. Others may issue an error message and stop compilation. Either way, to fix this condition,
reverse the order of the catch clauses.

Catching All Exceptions

In some circumstances, you will want an exception handler to catch all exceptions instead of just a
certain type. To do this, use this form of catch:

catch(...) { // process all exceptions }

Here, the ellipsis matches any type of data. The following program illustrates catch(...):

10 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

start
Caught One!
Caught One!
Caught One!
end
Xhandler() throws three types of exceptions: int, char, and double. All are caught using the catch(...)
statement.

One very good use for catch(...) is as the last catch of a cluster of catches. In this capacity, it provides a
useful default or “catch all” statement. Using catch(...) as a default is a good way to catch all exceptions
that you don’t want to handle explicitly. Also, by catching all exceptions, you prevent an unhandled
exception from causing an abnormal program termination.

Specifying Exceptions Thrown by a Function

You can specify the type of exceptions that a function can throw outside of itself. In fact, you can also
prevent a function from throwing any exceptions whatsoever. To accomplish these restrictions, you
must add a throw clause to a function definition. The general form of this clause is

11 C++ A Beginner’s Guide by Herbert Schildt

ret-type func-name(arg-list) throw(type-list) { // ... }

Here, only those data types contained in the comma-separated type-list can be thrown by the function.
Throwing any other type of expression will cause abnormal program termination. If you don’t want a
function to be able to throw any exceptions, then use an empty list.

NOTE: At the time of this writing, Visual C++ does not actually prevent a function from throwing an exception

type that is not specified in the throw clause. This is nonstandard behavior. You can still specify a throw clause, but
such a clause is informational only.

The following program shows how to specify the types of exceptions that can be thrown from a
function:

12 C++ A Beginner’s Guide by Herbert Schildt

In this program, the function Xhandler() can only throw integer, character, and double exceptions. If it
attempts to throw any other type of exception, then an abnormal program termination will occur. To
see an example of this, remove int from the list and retry the program. An error will result. (As
mentioned, currently Visual C++ does not restrict the exceptions that a function can throw.)

It is important to understand that a function can only be restricted in what types of exceptions it throws
back to the try block that has called it. That is, a try block within a function can throw any type of
exception, as long as the exception is caught within that function. The restriction applies only when
throwing an exception outside of the function.

Rethrowing an Exception

You can rethrow an exception from within an exception handler by calling throw by itself, with no
exception. This causes the current exception to be passed on to an outer try/catch sequence. The most
likely reason for calling throw this way is to allow multiple handlers access to the exception. For
example, perhaps one exception handler manages one aspect of an exception, and a second handler
copes with another aspect. An exception can only be rethrown from within a catch block (or from any
function called from within that block). When you rethrow an exception, it will not be recaught by the
same catch statement. It will propagate to the next catch statement. The following program illustrates
rethrowing an exception. It rethrows a char * exception.

13 C++ A Beginner’s Guide by Herbert Schildt

This program displays the following output:

start
Caught char * inside Xhandler
Caught char * inside main
End

1. Show how to catch all exceptions.

2. How do you specify the type of exceptions that can be thrown out of a function?

3. How do you rethrow an exception?

Templates

The template is one of C++’s most sophisticated and high-powered features. Although not part of the
original specification for C++, it was added several years ago and is supported by all modern C++
compilers. Templates help you achieve one of the most elusive goals in programming: the creation of
reusable code.

14 C++ A Beginner’s Guide by Herbert Schildt

Using templates, it is possible to create generic functions and classes. In a generic function or class, the
type of data upon which the function or class operates is specified as a parameter. Thus, you can use
one function or class with several different types of data without having to explicitly recode specific
versions for each data type. Both generic functions and generic classes are introduced here.

Ask the Expert

Q: It seems that there are two ways for a function to report an error: to throw an exception or to

return an error code. In general, when should I use each approach?

A: You are correct, there are two general approaches to reporting errors: throwing exceptions and

returning error codes. Today, language experts favor exceptions rather than error codes. For example,
both the Java and C# languages rely heavily on exceptions, using them to report most types of common
errors, such as an error opening a file or an arithmetic overflow. Because C++ is derived from C, it uses a
blend of error codes and exceptions to report errors. Thus, many error conditions that relate to C++
library functions are reported using error return codes. However, in new code that you write, you should
consider using exceptions to report errors. It is the way modern code is being written.

CRITICAL SKILL 12.2: Generic Functions
A generic function defines a general set of operations that will be applied to various types of data. The
type of data that the function will operate upon is passed to it as a parameter. Through a generic
function, a single general procedure can be applied to a wide range of data. As you probably know,
many algorithms are logically the same no matter what type of data is being operated upon. For
example, the Quicksort sorting algorithm is the same whether it is applied to an array of integers or an
array of floats. It is just that the type of data being sorted is different. By creating a generic function, you
can define the nature of the algorithm, independent of any data. Once you have done this, the compiler
will automatically generate the correct code for the type of data that is actually used when you execute
the function. In essence, when you create a generic function, you are creating a function that can
automatically overload itself.

A generic function is created using the keyword template. The normal meaning of the word “template”
accurately reflects its use in C++. It is used to create a template (or framework) that describes what a
function will do, leaving it to the compiler to fill in the details as needed. The general form of a generic
function definition is shown here:

template <class Ttype> ret-type func-name(parameter list) { // body of function }

Here, Ttype is a placeholder name for a data type. This name is then used within the function definition
to declare the type of data upon which the function operates. The compiler will automatically replace
Ttype with an actual data type when it creates a specific version of the function. Although the use of the
keyword class to specify a generic type in a template declaration is traditional, you may also use the
keyword typename.

15 C++ A Beginner’s Guide by Herbert Schildt

The following example creates a generic function that swaps the values of the two variables with which
it is called. Because the process of exchanging two values is independent of the type of the variables, it
is a good candidate for being made into a generic function.

Let’s look closely at this program. The line

template <class X> void swapargs(X &a, X &b)

tells the compiler two things: that a template is being created and that a generic definition is beginning.
Here, X is a generic type that is used as a placeholder. After the template portion, the function
swapargs() is declared, using X as the data type of the values that will be swapped. In main(), the
swapargs() function is called using three different types of data: ints, floats, and chars. Because
swapargs() is a generic function, the compiler automatically creates three versions of swapargs(): one
that will exchange integer values, one that will exchange floating-point values, and one that will swap

16 C++ A Beginner’s Guide by Herbert Schildt

characters. Thus, the same generic swap() function can be used to exchange arguments of any type of
data.

Here are some important terms related to templates. First, a generic function (that is, a function
definition preceded by a template statement) is also called a template function. Both terms are used
interchangeably in this book. When the compiler creates a specific version of this function, it is said to
have created a specialization. This is also called a generated function. The act of generating a function is
referred to as instantiating it. Put differently, a generated function is a specific instance of a template
function.

A Function with Two Generic Types

You can define more than one generic data type in the template statement by using a comma-separated
list. For example, this program creates a template function that has two generic types:

In this example, the placeholder types Type1 and Type2 are replaced by the compiler with the data
types int and char *, and double and long, respectively, when the compiler generates the specific
instances of myfunc() within main().

Explicitly Overloading a Generic Function

Even though a generic function overloads itself as needed, you can explicitly overload one, too. This is
formally called explicit specialization. If you overload a generic function, then that overloaded function
overrides (or “hides”) the generic function relative to that specific version. For example, consider the
following, revised version of the argument-swapping example shown earlier:

17 C++ A Beginner’s Guide by Herbert Schildt

18 C++ A Beginner’s Guide by Herbert Schildt

19 C++ A Beginner’s Guide by Herbert Schildt

As the comments inside the program indicate, when swapargs(i, j) is called, it invokes the explicitly
overloaded version of swapargs() defined in the program. Thus, the compiler does not generate this
version of the generic swapargs() function, because the generic function is overridden by the explicit
overloading.

Relatively recently, an alternative syntax was introduced to denote the explicit specialization of a
function. This newer approach uses the template keyword. For example, using the newer specialization
syntax, the overloaded swapargs() function from the preceding program looks like this:

As you can see, the new-style syntax uses the template<> construct to indicate specialization. The type
of data for which the specialization is being created is placed inside the angle brackets following the
function name. This same syntax is used to specialize any type of generic function. While there is no
advantage to using one specialization syntax over the other at this time, the new-style syntax is probably
a better approach for the long term.

Explicit specialization of a template allows you to tailor a version of a generic function to accommodate
a unique situation—perhaps to take advantage of some performance boost that applies to only one type
of data, for example. However, as a general rule, if you need to have different versions of a function for
different data types, you should use overloaded functions rather than templates.

CRITICAL SKILL 12.3: Generic Classes
In addition to using generic functions, you can also define a generic class. When you do this, you create
a class that defines all the algorithms used by that class; however, the actual type of data being
manipulated will be specified as a parameter when objects of that class are created.

Generic classes are useful when a class uses logic that can be generalized. For example, the same
algorithm that maintains a queue of integers will also work for a queue of characters, and the same
mechanism that maintains a linked list of mailing addresses will also maintain a linked list of auto-part
information. When you create a generic class, it can perform the operation you define, such as
maintaining a queue or a linked list, for any type of data. The compiler will automatically generate the
correct type of object, based upon the type you specify when the object is created.

The general form of a generic class declaration is shown here:

20 C++ A Beginner’s Guide by Herbert Schildt

template <class Ttype> class class-name {

// body of class }

Here, Ttype is the placeholder type name, which will be specified when a class is instantiated. If
necessary, you can define more than one generic data type using a comma-separated list.

Once you have created a generic class, you create a specific instance of that class using the following
general form:

class-name <type> ob;

Here, type is the type name of the data that the class will be operating upon. Member functions of a
generic class are, themselves, automatically generic. You need not use template to explicitly specify
them as such.

Here is a simple example of a generic class:

The output is shown here:

double division: 3.33333

21 C++ A Beginner’s Guide by Herbert Schildt

integer division: 3

As the output shows, the double object performed a floating-point division, and the int object
performed an integer division.

When a specific instance of MyClass is declared, the compiler automatically generates versions of the
div() function, and x and y variables necessary for handling the actual data. In this example, two
different types of objects are declared. The first, d_ob, operates on double data. This means that x and y
are double values, and the outcome of the division—and the return type of div()—is double. The
second, i_ob, operates on type int. Thus, x, y, and the return type of div() are int. Pay special attention
to these declarations:

Exceptions, Templates, and Other Advanced Topics

MyClass<double> d_ob(10.0, 3.0); MyClass<int> i_ob(10, 3);

Notice how the desired data type is passed inside the angle brackets. By changing the type of data
specified when MyClass objects are created, you can change the type of data operated upon by MyClass.

A template class can have more than one generic data type. Simply declare all the data types required
by the class in a comma-separated list within the template specification. For instance, the following
example creates a class that uses two generic data types:

This program produces the following output:

22 C++ A Beginner’s Guide by Herbert Schildt

10 0.23
X This is a test
The program declares two types of objects. ob1 uses int and double data. ob2 uses a character and a
character pointer. For both cases, the compiler automatically generates the appropriate data and
functions to accommodate the way the objects are created.

Explicit Class Specializations

As with template functions, you can create a specialization of a generic class. To do so, use the
template<> construct as you did when creating explicit function specializations. For example:

This program displays the following output:

23 C++ A Beginner’s Guide by Herbert Schildt

Inside generic MyClass
double: 10.1
Inside MyClass<int> specialization
int: 25

In the program, pay close attention to this line:

template <> class MyClass<int> {

It tells the compiler that an explicit integer specialization of MyClass is being created. This same general
syntax is used for any type of class specialization.

Explicit class specialization expands the utility of generic classes because it lets you easily handle one or
two special cases while allowing all others to be automatically processed by the compiler. Of course, if
you find that you are creating too many specializations, then you are probably better off not using a
template class in the first place.

1. What keyword is used to declare a generic function or class?

2. Can a generic function be explicitly overloaded?

3. In a generic class, are all of its member functions also automatically generic?

In Project 8-2, you created a Queue class that maintained a queue of characters. In this project, you will
convert Queue into a generic class that can operate on any type of data. Queue is a good choice for
conversion to a generic class, because its logic is separate from the data upon which it functions. The
same mechanism that stores integers, for example, can also store floating-point values, or even objects
of classes that you create. Once you have defined a generic Queue class, you can use it whenever you
need a queue.

Step by Step

1. Begin by copying the Queue class from Project 8-2 into a file called GenericQ.cpp.

2. Change the Queue declaration into a template, as shown here:

template <class QType> class Queue {
Here, the generic data type is called QType.

3. Change the data type of the q array to QType, as shown next:

24 C++ A Beginner’s Guide by Herbert Schildt

QType q[maxQsize]; // this array holds the queue
Because q is now generic, it can be used to hold whatever type of data an object of
Queue declares.

4. Change the data type of the parameter to the put() function to QType, as shown here:

5. Change the return type of get() to QType, as shown next:

6. The entire generic Queue class is shown here along with a main() function to demonstrate its

use:

25 C++ A Beginner’s Guide by Herbert Schildt

26 C++ A Beginner’s Guide by Herbert Schildt

7. As the Queue class illustrates, generic functions and classes are powerful tools that you can use
to maximize your programming efforts, because they allow you to define the general form of an
object that can then be used with any type of data. You are saved from the tedium of creating
separate implementations for each data type for which you want the algorithm to work. The
compiler automatically creates the specific versions of the class for you.

CRITICAL SKILL 12.4: Dynamic Allocation
There are two primary ways in which a C++ program can store information in the main memory of the
computer. The first is through the use of variables. The storage provided by variables is fixed at compile

27 C++ A Beginner’s Guide by Herbert Schildt

time and cannot be altered during the execution of a program. The second way information can be
stored is through the use of C++’s dynamic allocation system. In this method, storage for data is
allocated as needed from the free memory area that lies between your program (and its permanent
storage area) and the stack. This region is called the heap. (Figure 12-1 shows conceptually how a C++
program appears in memory.)

Dynamically allocated storage is determined at runtime. Thus, dynamic allocation makes it possible for
your program to create variables that it needs during its execution. It can create as many or as few
variables as required, depending upon the situation. Dynamic allocation is often used to support such
data structures as linked lists, binary trees, and sparse arrays. Of course, you are free to use dynamic
allocation wherever you determine it to be of value. Dynamic allocation for one purpose or another is an
important part of nearly all real-world programs.

Memory to satisfy a dynamic allocation request is taken from the heap. As you might guess, it is
possible, under fairly extreme cases, for free memory to become exhausted. Therefore, while dynamic
allocation offers greater flexibility, it too is finite.

C++ provides two dynamic allocation operators: new and delete. The new operator allocates memory
and returns a pointer to the start of it. The delete operator frees memory previously allocated using
new. The general forms of new and delete are shown here:

p_var = new type; delete p_var;

Here, p_var is a pointer variable that receives a pointer to memory that is large enough to hold an item
of type type.

Since the heap is finite, it can become exhausted. If there is insufficient available memory to fill an
allocation request, then new will fail and a bad_alloc exception will be generated. This exception is

28 C++ A Beginner’s Guide by Herbert Schildt

defined in the header <new>. Your program should handle this exception and take appropriate action if
a failure occurs. If this exception is not handled by your program, then your program will be terminated.

The actions of new on failure as just described are specified by Standard C++. The trouble is that some
older compilers will implement new in a different way. When C++ was first invented, new returned a
null pointer on failure. Later, this was changed so that new throws an exception on failure, as just
described. If you are using an older compiler, check your compiler’s documentation to see precisely how
it implements new.

Since Standard C++ specifies that new generates an exception on failure, this is the way the code in this
book is written. If your compiler handles an allocation failure differently, then you will need to make the
appropriate changes.

Here is a program that allocates memory to hold an integer:

This program assigns to p an address in the heap that is large enough to hold an integer. It then assigns
that memory the value 100 and displays the contents of the memory on the screen. Finally, it frees the
dynamically allocated memory.

The delete operator must be used only with a valid pointer previously allocated by using new. Using any
other type of pointer with delete is undefined and will almost certainly cause serious problems, such as
a system crash.

29 C++ A Beginner’s Guide by Herbert Schildt

Initializing Allocated Memory

You can initialize allocated memory to some known value by putting an initializer after the type name in
the new statement. Here is the general form of new when an initialization is included:

p_var = new var_type (initializer);

Of course, the type of the initializer must be compatible with the type of data for which memory is being
allocated.

Ask the Expert

Q: I have seen some C++ code that uses the functions malloc() and free() to handle dynamic

allocation. What are these functions?

A: The C language does not support the new and delete operators. Instead, C uses the functions

malloc() and free() for dynamic allocation. malloc() allocates memory and free() releases it. C++ also
supports these functions, and you will sometimes see malloc() and free() used in C++ code. This is
especially true if that code has been updated from older C code. However, you should use new and
delete in your code. Not only do new and delete offer a more convenient method of handling dynamic
allocation, but they also prevent several types of errors that are common when working with malloc()
and free(). One other point: Although there is no formal rule that states this, it is best not to mix new
and delete with malloc() and free() in the same program. There is no guarantee that they are mutually
compatible.

This program gives the allocated integer an initial value of 87:

30 C++ A Beginner’s Guide by Herbert Schildt

Allocating Arrays

You can allocate arrays using new by using this general form:

p_var = new array_type [size];

Here, size specifies the number of elements in the array. To free an array, use this form of delete:

delete [] p_var;

Here, the [] informs delete that an array is being released. For example, the next program allocates a
ten-element integer array:

31 C++ A Beginner’s Guide by Herbert Schildt

Notice the delete statement. As just mentioned, when an array allocated by new is released, delete
must be made aware that an array is being freed by using the []. (As you will see in the next section, this
is especially important when you are allocating arrays of objects.)

One restriction applies to allocating arrays: They may not be given initial values. That is, you may not
specify an initializer when allocating arrays.

Allocating Objects

You can allocate objects dynamically by using new. When you do this, an object is created, and a pointer
is returned to it. The dynamically created object acts just like any other object. When it is created, its
constructor (if it has one) is called. When the object is freed, its destructor is executed.

Here is a program that creates a class called Rectangle that encapsulates the width and height of a
rectangle. Inside main(), an object of type Rectangle is created dynamically. This object is destroyed
when the program ends.

32 C++ A Beginner’s Guide by Herbert Schildt

The output is shown here:

Constructing 10 by 8 rectangle.
Area is 80
Destructing 10 by 8 rectangle.

33 C++ A Beginner’s Guide by Herbert Schildt

Notice that the arguments to the object’s constructor are specified after the type name, just as in other
sorts of initializations. Also, because p contains a pointer to an object, the arrow operator (rather than
the dot operator) is used to call area().

You can allocate arrays of objects, but there is one catch. Since no array allocated by new can have an
initializer, you must make sure that if the class defines constructors, one will be parameterless. If you
don’t, the C++ compiler will not find a matching constructor when you attempt to allocate the array and
will not compile your program.

In this version of the preceding program, a parameterless constructor is added so that an array of
Rectangle objects can be allocated. Also added is the function set(), which sets the dimensions of each
rectangle.

34 C++ A Beginner’s Guide by Herbert Schildt

35 C++ A Beginner’s Guide by Herbert Schildt

Because the pointer p is released using delete [], the destructor for each object in the array is executed,
as the output shows. Also, notice that because p is indexed as an array, the dot operator is used to
access members of Rectangle.

1. What operator allocates memory? What operator releases memory?

2. What happens if an allocation request cannot be fulfilled?

3. Can memory be initialized when it is allocated?

CRITICAL SKILL 12.5: Namespaces
Namespaces were briefly described in Module 1. Here they are examined in detail. The purpose of a
namespace is to localize the names of identifiers to avoid name collisions. In the C++ programming
environment, there has been an explosion of variable, function, and class names. Prior to the invention
of namespaces, all of these names competed for slots in the global namespace and many conflicts arose.
For example, if your program defined a function called toupper(), it could (depending upon its
parameter list) override the standard library function toupper(), because both names would be stored
in the global namespace. Name collision problems were compounded when two or more third-party
libraries were used by the same program. In this case, it was possible—even likely—that a name defined
by one library would conflict with the same name defined by the other library. The situation can be
particularly troublesome for class names. For example, if your program defines a class call Stack and a
library used by your program defines a class by the same name, a conflict will arise.

The creation of the namespace keyword was a response to these problems. Because it localizes the
visibility of names declared within it, a namespace allows the same name to be used in different
contexts without conflicts arising. Perhaps the most noticeable beneficiary of namespace is the C++
standard library. Prior to namespace, the entire C++ library was defined within the global namespace
(which was, of course, the only namespace). Since the addition of namespace, the C++ library is now
defined within its own namespace, called std, which reduces the chance of name collisions. You can also
create your own namespaces within your program to localize the visibility of any names that you think
may cause conflicts. This is especially important if you are creating class or function libraries.

Namespace Fundamentals

The namespace keyword allows you to partition the global namespace by creating a declarative region.
In essence, a namespace defines a scope. The general form of namespace is shown here:

namespace name { // declarations }

36 C++ A Beginner’s Guide by Herbert Schildt

Anything defined within a namespace statement is within the scope of that namespace.

Here is an example of a namespace. It localizes the names used to implement a simple countdown
counter class. In the namespace are defined the counter class, which implements the counter, and the
variables upperbound and lowerbound, which contain the upper and

Here, upperbound, lowerbound, and the class counter are part of the scope defined by the
CounterNameSpace namespace.

Inside a namespace, identifiers declared within that namespace can be referred to directly, without any
namespace qualification. For example, within CounterNameSpace, the run() function can refer directly
to lowerbound in the statement

if(count > lowerbound) return count--;

However, since namespace defines a scope, you need to use the scope resolution operator to refer to
objects declared within a namespace from outside that namespace. For example, to assign the value 10
to upperbound from code outside CounterNameSpace, you must use this statement:

CounterNameSpace::upperbound = 10;

Or, to declare an object of type counter from outside CounterNameSpace, you will use a statement like
this:

CounterNameSpace::counter ob;

37 C++ A Beginner’s Guide by Herbert Schildt

In general, to access a member of a namespace from outside its namespace, precede the member’s
name with the name of the namespace followed by the scope resolution operator.

Here is a program that demonstrates the use of the CounterNameSpace:

38 C++ A Beginner’s Guide by Herbert Schildt

Notice that the declaration of a counter object and the references to upperbound and lowerbound are
qualified by CounterNameSpace. However, once an object of type counter has been declared, it is not
necessary to further qualify it or any of its members. Thus, ob1.run() can be called directly; the
namespace has already been resolved.

There can be more than one namespace declaration of the same name. In this case, the

namespaces are additive. This allows a namespace to be split over several files or even

separated within the same file. For example:

namespace NS { int i;

}

// ...

namespace NS { int j;

}

Here, NS is split into two pieces, but the contents of each piece are still within the same namespace,
that is, NS. One last point: Namespaces can be nested. That is, one namespace can be declared within
another.

using

If your program includes frequent references to the members of a namespace, having to specify the
namespace and the scope resolution operator each time you need to refer to one quickly becomes

39 C++ A Beginner’s Guide by Herbert Schildt

tedious. The using statement was invented to alleviate this problem. The using statement has these two
general forms:

using namespace name;

using name::member;

In the first form, name specifies the name of the namespace you want to access. All of the members
defined within the specified namespace are brought into view (that is, they become part of the current
namespace) and may be used without qualification. In the second form, only a specific member of the
namespace is made visible. For example, assuming CounterNameSpace as just shown, the following
using statements and assignments are valid:

using CounterNameSpace::lowerbound; // only lowerbound is visible
lowerbound = 10; // OK because lowerbound is visible
using namespace CounterNameSpace; // all members are visible
upperbound = 100; // OK because all members are now visible

The following program illustrates using by reworking the counter example from the

40 C++ A Beginner’s Guide by Herbert Schildt

The program illustrates one other important point: using one namespace does not override another.
When you bring a namespace into view, it simply adds its names to whatever other namespaces are
currently in effect. Thus, by the end of the program, both std and CounterNameSpace have been added
to the global namespace.

Unnamed Namespaces

There is a special type of namespace, called an unnamed namespace, that allows you to create
identifiers that are unique within a file. It has this general form:

41 C++ A Beginner’s Guide by Herbert Schildt

namespace {

// declarations }

Unnamed namespaces allow you to establish unique identifiers that are known only within the scope of
a single file. That is, within the file that contains the unnamed namespace, the members of that
namespace may be used directly, without qualification. But outside the file, the identifiers are unknown.
As mentioned earlier in this book, one way to restrict the scope of a global name to the file in which it is
declared, is to declare it as static. While the use of static global declarations is still allowed in C++, a
better way to accomplish this is to use an unnamed namespace.

The std Namespace

Standard C++ defines its entire library in its own namespace called std. This is the reason that most of
the programs in this book have included the following statement:

using namespace std;

This causes the std namespace to be brought into the current namespace, which gives you direct access
to the names of the functions and classes defined within the library without having to qualify each one
with std::.

Of course, you can explicitly qualify each name with std:: if you like. For example, you could explicitly
qualify cout like this:

std::cout << "Explicitly qualify cout with std.";

You may not want to bring the standard C++ library into the global namespace if your program will be
making only limited use of it, or if doing so will cause name conflicts. However, if your program contains
hundreds of references to library names, then including std in the current namespace is far easier than
qualifying each name individually.

1. What is a namespace? What keyword creates one?

2. Are namespaces additive?

3. What does using do?

42 C++ A Beginner’s Guide by Herbert Schildt

CRITICAL SKILL 12.6: static Class Members
You learned about the keyword static in Module 7 when it was used to modify local and global variable
declarations. In addition to those uses, static can be applied to members of a class. Both variables and
function members can be declared static. Each is described here.

static Member Variables

When you precede a member variable’s declaration with static, you are telling the compiler that only
one copy of that variable will exist and that all objects of the class will share that variable. Unlike regular
data members, individual copies of a static member variable are not made for each object. No matter
how many objects of a class are created, only one copy of a static data member exists. Thus, all objects
of that class use that same variable. All static variables are initialized to zero if no other initialization is
specified. When you declare a static data member within a class, you are not defining it. Instead, you
must provide a global definition for it elsewhere, outside the class. This is done by redeclaring the static
variable using the scope resolution operator to identify which class it belongs to. This causes storage to
be allocated for the static variable. Here is an example that uses a static member:

43 C++ A Beginner’s Guide by Herbert Schildt

In the program, notice that the static integer num is both declared inside the ShareVar class and defined
as a global variable. As stated earlier, this is necessary because the declaration of num inside ShareVar
does not allocate storage for the variable. C++ initializes num to 0 since no other initialization is given.
This is why the first calls to shownum() both display 0. Next, object a sets num to 10. Then both a and b
use shownum() to display its value. Because there is only one copy of num shared by a and b, both calls
to shownum() display 10.

When a static variable is public, it can be referred to directly through its class name, without reference
to any specific object. It can also be referred to through an object. For example:

44 C++ A Beginner’s Guide by Herbert Schildt

Notice how the value of num is set using its class name in this line:

Test::num = 100;

It is also accessible through an object, as in this line:

a.num = 200;

Either approach is valid.

static Member Functions

It is also possible for a member function to be declared as static, but this usage is not common. A
member function declared as static can access only other static members of its class. (Of course, a static
member function may access non-static global data and functions.) A static member function does not
have a this pointer. Virtual static member functions are not allowed. Also, it cannot be declared as const
or volatile. A static member function can be invoked by an object of its class, or it can be called
independent of any object, using the class name and the scope resolution operator. For example,
consider this program. It defines a static variable called count that keeps count of the number of objects
currently in existence.

45 C++ A Beginner’s Guide by Herbert Schildt

The output from the program is shown here:

46 C++ A Beginner’s Guide by Herbert Schildt

In the program, notice how the static function numObjects() is called. In the first two calls, it is called
through its class name using this syntax:

Test::numObjects()

In the third call, it is invoked using the normal, dot operator syntax on an object.

CRITICAL SKILL 12.7: Runtime Type Identification (RTTI)
Runtime type information may be new to you because it is not found in non-polymorphic languages,
such as C or traditional BASIC. In non-polymorphic languages there is no need for runtime type
information, because the type of each object is known at compile time (that is, when the program is
written). However, in polymorphic languages such as C++, there can be situations in which the type of an
object is unknown at compile time because the precise nature of that object is not determined until the
program is executed. As you know, C++ implements polymorphism through the use of class hierarchies,
virtual functions, and base class pointers. A base class pointer can be used to point to objects of the
base class or to any object derived from that base. Thus, it is not always possible to know in advance
what type of object will be pointed to by a base pointer at any given moment. This determination must
be made at runtime, using runtime type identification.

To obtain an object’s type, use typeid. You must include the header <typeinfo> in order to use typeid. Its
most commonly used form is shown here:

typeid(object)

Here, object is the object whose type you will be obtaining. It may be of any type, including the built-in
types and class types that you create. typeid returns a reference to an object of type type_info that
describes the type of object.

The type_info class defines the following public members:

bool operator==(const type_info &ob); bool operator!=(const type_info &ob); bool before(const
type_info &ob); const char *name();

The overloaded == and != provide for the comparison of types. The before() function returns true if the
invoking object is before the object used as a parameter in collation order. (This function is mostly for
internal use only. Its return value has nothing to do with inheritance or class hierarchies.) The name()
function returns a pointer to the name of the type.

Here is a simple example that uses typeid:

47 C++ A Beginner’s Guide by Herbert Schildt

Perhaps the most important use of typeid occurs when it is applied through a pointer of a polymorphic
base class (that is, a class that includes at least one virtual function). In this case, it will automatically
return the type of the actual object being pointed to, which may be a base class object or an object
derived from that base. (Remember, a base class pointer can point to objects of the base class or of any
class derived from that base.) Thus, using typeid, you can determine at runtime the type of the object
that is being pointed to by a base class pointer. The following program demonstrates this principle:

48 C++ A Beginner’s Guide by Herbert Schildt

The output produced by this program is shown here:

p is pointing to an object of type class Base
p is pointing to an object of type class Derived1
p is pointing to an object of type class Derived2

When typeid is applied to a base class pointer of a polymorphic type, the type of object pointed to will
be determined at runtime, as the output shows.

49 C++ A Beginner’s Guide by Herbert Schildt

In all cases, when typeid is applied to a pointer of a non-polymorphic class hierarchy, then the base type
of the pointer is obtained. That is, no determination of what that pointer is actually pointing to is made.
As an experiment, comment-out the virtual function f() in Base and observe the results. As you will see,
the type of each object will be Base because that is the type of the pointer.

Since typeid is commonly applied to a dereferenced pointer (that is, one to which the * operator has
been applied), a special exception has been created to handle the situation in which the pointer being
dereferenced is null. In this case, typeid throws a bad_typeid exception.

References to an object of a polymorphic class hierarchy work the same as pointers. When typeid is
applied to a reference to an object of a polymorphic class, it will return the type of the object actually
being referred to, which may be of a derived type. The circumstance where you will most often make
use of this feature is when objects are passed to functions by reference.

There is a second form of typeid that takes a type name as its argument. This form is shown here:

typeid(type-name)

For example, the following statement is perfectly acceptable:

cout << typeid(int).name();

The main use of this form of typeid is to obtain a type_info object that describes the specified type so
that it can be used in a type comparison statement.

1. What makes a static member variable unique?

2. What does typeid do?

3. What type of object does typeid return?

CRITICAL SKILL 12.8: The Casting Operators
C++ defines five casting operators. The first is the traditional-style cast described earlier in this book. It
has been part of C++ from the start. The remaining four were added a few years ago. They are
dynamic_cast, const_cast, reinterpret_cast, and static_cast. These operators give you additional control
over how casting takes place. Each is examined briefly here.

dynamic_cast

50 C++ A Beginner’s Guide by Herbert Schildt

Perhaps the most important of the additional casting operators is the dynamic_cast. The dynamic_cast
performs a runtime cast that verifies the validity of a cast. If at the time dynamic_cast is executed, the
cast is invalid, then the cast fails. The general form of dynamic_cast is shown here:

dynamic_cast<target-type> (expr)

Here, target-type specifies the target type of the cast, and expr is the expression being cast into the new
type. The target type must be a pointer or reference type, and the expression being cast must evaluate
to a pointer or reference. Thus, dynamic_cast can be used to cast one type of pointer into another or
one type of reference into another.

The purpose of dynamic_cast is to perform casts on polymorphic types. For example, given two
polymorphic classes B and D, with D derived from B, a dynamic_cast can always cast a D* pointer into a
B* pointer. This is because a base pointer can always point to a derived object. But a dynamic_cast can
cast a B* pointer into a D* pointer only if the object being pointed to actually is a D object. In general,
dynamic_cast will succeed if the pointer (or reference) being cast is pointing to (or referring to) either an
object of the target type or an object derived from the target type. Otherwise, the cast will fail. If the
cast fails, then dynamic_cast evaluates to null if the cast involves pointers. If a dynamic_cast on
reference types fails, a bad_cast exception is thrown.

Here is a simple example. Assume that Base is a polymorphic class and that Derived is derived from
Base.

Here, the cast from the base pointer bp to the derived pointer dp works because bp is actually pointing
to a Derived object. Thus, this fragment displays Cast OK. But in the next fragment, the cast fails because
bp is pointing to a Base object, and it is illegal to cast a base object into a derived object.

Because the cast fails, this fragment displays Cast Fails.

const_cast

The const_cast operator is used to explicitly override const and/or volatile in a cast. The target type
must be the same as the source type, except for the alteration of its const or volatile attributes. The
most common use of const_cast is to remove const-ness. The general form of const_cast is shown here:

const_cast<type> (expr)

51 C++ A Beginner’s Guide by Herbert Schildt

Here, type specifies the target type of the cast, and expr is the expression being cast into the new type.
It must be stressed that the use of const_cast to cast away const-ness is a potentially dangerous feature.
Use it with care.

One other point: Only const_cast can cast away const-ness. That is, dynamic_cast, static_cast, and
reinterpret_cast cannot alter the const-ness of an object.

static_cast

The static_cast operator performs a non-polymorphic cast. It can be used for any standard conversion.
No runtime checks are performed. Thus, the static_cast operator is essentially a substitute for the
original cast operator. Its general form is

static_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast into the new type.

reinterpret_cast

The reinterpret_cast operator converts one type into a fundamentally different type. For example, it can
change a pointer into an integer and an integer into a pointer. It can also be used for casting inherently
incompatible pointer types. Its general form is

reinterpret_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast into the new type.

What Next?

The purpose of this book is to teach the core elements of the language. These are the features and
techniques of C++ that are used in everyday programming. With the knowledge you now have, you can
begin writing real-world, professional-quality programs. However, C++ is a very rich language, and it
contains many advanced features that you will still want to master, including:

• The Standard Template Library (STL)

• Explicit constructors

• Conversion functions

• const member functions and the mutable keyword

• The asm keyword

• Overloading the array indexing operator [], the function call operator (), and the dynamic allocation
operators, new and delete

Of the preceding, perhaps the most important is the Standard Template Library. It is a library of
template classes that provide off-the-shelf solutions to a variety of common data-storage tasks. For

52 C++ A Beginner’s Guide by Herbert Schildt

example, the STL defines generic data structures, such as queues, stacks, and lists, which you can use in
your programs.

You will also want to study the C++ function library. It contains a wide array of routines that will simplify
the creation of your programs.

To continue your study of C++, I suggest reading my book C++: The Complete Reference, published by
Osborne/McGraw-Hill, Berkeley, California. It covers all of the preceding, and much, much more. You
now have sufficient knowledge to make full use of this in-depth C++ guide.

Module 12 Mastery Check

1. Explain how try, catch, and throw work together to support exception handling.

2. How must the catch list be organized when catching exceptions of both base and derived classes?

3. Show how to specify that a MyExcpt exception can be thrown out of a function called func() that

returns void.

4. Define an exception for the generic Queue class shown in Project 12-1. Have Queue throw this

exception when an overflow or underflow occurs. Demonstrate its use.

5. What is a generic function, and what keyword is used to create one?

6. Create generic versions of the quicksort() and qs() functions shown in Project 5-1. Demonstrate

their use.

7. Using the Sample class shown here, create a queue of three Sample objects using the generic Queue

shown in Project 12-1:

8. Rework your answer to question 7 so that the Sample objects stored in the queue are dynamically
allocated.

9. Show how to declare a namespace called RobotMotion.

10. What namespace contains the C++ standard library?

11. Can a static member function access the non-static data of a class?

12. What operator obtains the type of an object at runtime?

53 C++ A Beginner’s Guide by Herbert Schildt

13. To determine the validity of a polymorphic cast at runtime, what casting operator do you use?

14. What does const_cast do?

15. On your own, try putting the Queue class from Project 12-1 in its own namespace called

QueueCode, and into its own file called Queue.cpp. Then rework the main() function so that it uses
a using statement to bring QueueCode into view.

16. Continue to learn about C++. It is the most powerful computer language currently available.

Mastering it puts you in an elite league of programmers.

1 C++ A Beginner’s Guide by Herbert Schildt

Answers to Mastery Checks

Module 1: C++ Fundamentals

1. C++ is at the center of modern programming because it was derived from C and is the parent of Java
and C#. These are the four most important programming languages.

2. True, a C++ compiler produces code that can be directly executed by the computer.

3. Encapsulation, polymorphism, and inheritance are the three guiding principles of OOP.

4. C++ programs begin execution at main().

5. A header contains information used by the program.

6. <iostream> is the header the supports I/O. The statement includes the <iostream> header in a
program.

7. A namespace is a declarative region in which various program elements can be placed. Elements
declared in one namespace are separate from elements declared in another.

8. A variable is a named memory location. The contents of a variable can be changed during the
execution of a program.

9. The invalid variables are d and e. Variable names cannot begin with a digit or be the same as a C++
keyword.

10. A single-line comment begins with // and ends at the end of the line. A multiline comment begins
with /* and ends with */.

11. The general form of the if:
if(condition) statement;

The general form of the for:
for(initialization; condition; increment) statement;

12. A block of code is started with a { and ended with a }.

13. // Show a table of Earth to Moon weights.

2 C++ A Beginner’s Guide by Herbert Schildt

14. // Convert Jovian years to Earth years.

15. When a function is called, program control transfers to that function.

16. // Average the absolute values of 5 numbers.

3 C++ A Beginner’s Guide by Herbert Schildt

Module 2: Introducing Data Types and Operators
1. The C++ integer types are

The type char can also be used as an integer type.

2. 12.2 is type double.

3. A bool variable can be either true or false.

4. The long integer type is long int, or just long.

5. The \t sequence represents a tab. The \b rings the bell.

6. True, a string is surrounded by double quotes.

7. The hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

4 C++ A Beginner’s Guide by Herbert Schildt

8. To initialize a variable, use this general form:
type var = value;

9. The % is the modulus operator. It returns the remainder of an integer division. It cannot be used
on floating-point values.

10. When the increment operator precedes its operand, C++ will perform the corresponding
operation prior to obtaining the operand's value for use by the rest of the expression. If the
operator follows its operand, then C++ will obtain the operand's value before incrementing.

11. A, C, and E

12. x += 12;

13. A cast is an explicit type conversion.

14. Here is one way to find the primes between 1 and 100. There are, of course, other solutions.

Module 3: Program Control Statements
1. // Count periods.

5 C++ A Beginner’s Guide by Herbert Schildt

2. Yes. If there is no break statement concluding a case sequence, then execution will continue on
into the next case. A break statement prevents this from happening.

3.

4. The last else associates with the outer if, which is the nearest if at the same level as the else.

5. for(int i = 1000; i >= 0; i -= 2) // ...

6. No. According to the ANSI/ISO C++ Standard, i is not known outside of the for loop in which it is
declared. (Note that some compilers may handle this differently.)

7. A break causes termination of its immediately enclosing loop or switch statement.

6 C++ A Beginner’s Guide by Herbert Schildt

8. After break executes, “after while” is displayed.

9.

10.

11. // Change case.

7 C++ A Beginner’s Guide by Herbert Schildt

12. C++’s unconditional jump statement is the goto.

Module 4: Arrays, Strings, and Pointers

1. short int hightemps[31];

2. zero

3. // Find duplicates

8 C++ A Beginner’s Guide by Herbert Schildt

4. A null-terminated string is an array of characters that ends with a null.

5. // Ignore case when comparing strings.

9 C++ A Beginner’s Guide by Herbert Schildt

6. When using strcat(), the recipient array must be large enough to hold the contents of both
strings.

7. In a multidimensional array, each index is specified within its own set of brackets.

8. int nums[] = {5, 66, 88};

9. An unsized array declaration ensures that an initialized array is always large enough to hold the

initializers being specified.

10. A pointer is an object that contains a memory address. The pointer operators are & and *.

11. Yes, a pointer can be indexed like an array. Yes, an array can be accessed through a pointer.

12. // Count uppercase letters.

10 C++ A Beginner’s Guide by Herbert Schildt

13. Multiple indirection is the term used for the situation in which one pointer points to another.

14. By convention, a null pointer is assumed to be unused.

Module 5: Introducing Functions

1. The general form of a function is

2.

11 C++ A Beginner’s Guide by Herbert Schildt

15. Yes, a function can return a pointer. No, a function cannot return an array.

16. // A custom version of strlen().

5. No, a local variable’s value is lost when its function returns. (Or, more generally, its value is lost
when its block is exited.)

6. The main advantages to global variables are that they are available to all other functions in the
program and that they stay in existence during the entire lifetime of the program. Their main
disadvantages are that they take up memory the entire time the program is executing, using a
global where a local variable will do makes a function less general, and using a large number of
global variables can lead to unanticipated side effects.

7.

12 C++ A Beginner’s Guide by Herbert Schildt

8.

13 C++ A Beginner’s Guide by Herbert Schildt

9. True. A prototype prevents a function from being called with the improper number of
arguments.

10.

Module 6: A Closer Look at Functions
1. An argument can be passed to a subroutine using call-by-value or call-by-reference.

14 C++ A Beginner’s Guide by Herbert Schildt

2. A reference is an implicit pointer. A reference parameter is created by preceding the parameter
name with an &.

3. f(ch, &i);

4.

5.

15 C++ A Beginner’s Guide by Herbert Schildt

6. A function should not return a reference to a local variable, because that variable will go
out-of-scope (that is, cease to exist) when the function returns.

7. Overloaded functions must differ in the type and/or number of their parameters.

16 C++ A Beginner’s Guide by Herbert Schildt

8.

17 C++ A Beginner’s Guide by Herbert Schildt

18 C++ A Beginner’s Guide by Herbert Schildt

19 C++ A Beginner’s Guide by Herbert Schildt

9.

10. Function overloading can introduce ambiguity when the compiler cannot decide which version
of the function to call. This can occur when automatic type conversions are involved and when
default arguments are used.

Module 7: More Data Types and Operators
1. static int test = 100;

2. True. The volatile specifier tells the compiler that a variable might be changed by forces outside

the program.

3. In a multifile project, to tell one file about a global variable declared in another file, use extern.

4. The most important attribute of a static local variable is that it holds its value between function
calls.

5. // Use static to count function invocations.

20 C++ A Beginner’s Guide by Herbert Schildt

6. Specifying x as register will have the most impact on performance, followed by y, and then z.
The reason is that x is accessed most frequently within the loop, y the second most, and z is
used only when the loop is initialized.

7. The & is a bitwise operator that acts on the individual bits within a value. && is a logical

operator that acts on true/false values.

8. The statement multiplies the current value of x by 10 and assigns that result to x. It is the same
as x = x * 10;

9. // Use rotations to encode a message.

21 C++ A Beginner’s Guide by Herbert Schildt

22 C++ A Beginner’s Guide by Herbert Schildt

23 C++ A Beginner’s Guide by Herbert Schildt

Module 8: Classes and Objects

24 C++ A Beginner’s Guide by Herbert Schildt

1. A class is a logical construct that defines the form of an object. An object is an instance of a
class. Thus, an object has physical reality within memory.

2. To define a class, use the class keyword.

3. Each object has its own copy of the member variables of a class.

4.

5. A constructor has the same name as its class. A destructor has the same name as its class except
that it is preceded by a ~.

6. Here are three ways to create an object that initializes i to 10:

7. When a member function is declared within a class, it is automatically inlined, if possible.

8. // Create a Triangle class.

25 C++ A Beginner’s Guide by Herbert Schildt

9.

26 C++ A Beginner’s Guide by Herbert Schildt

27 C++ A Beginner’s Guide by Herbert Schildt

28 C++ A Beginner’s Guide by Herbert Schildt

29 C++ A Beginner’s Guide by Herbert Schildt

Module 9: A Closer Look at Classes

1. A copy constructor makes a copy of an object. It is called when one object initializes another.

Here is the general form:

2. When an object is returned by a function, a temporary object is created as the return value. This
object is destroyed by the object’s destructor after the value has been returned.

3.

4. A structure is a class in which members are public by default. A union is a class in which all data
members share the same memory. Union members are also public by default.

5. *this refers to the object on which the function was called.

6. A friend function is a nonmember function that is granted access to the private members of the
class for which it is a friend.

7.

8. To allow operations between a class type and a built-in type, you must use two friend operator
functions, one with the class type as the first parameter, and one with the built-in type as the
first parameter.

9. No, the ? cannot be overloaded. No, you cannot change the precedence of an operator.

10.

30 C++ A Beginner’s Guide by Herbert Schildt

11.

Module 10: Inheritance, Virtual Functions, and
Polymorphism

1. A class that is inherited is called a base class. The class that does the inheriting is called a derived

class.

2. A base class does not have access to the members of derived classes, because a base class has
no knowledge of derived classes. A derived class does have access to the non-private members
of its base class(es).

3.

31 C++ A Beginner’s Guide by Herbert Schildt

4. To prevent a derived class from having access to a member of a base class, declare that member
as private in the base class.

5. Here is the general form of a derived class constructor that calls a base class constructor:

 derived-class() : base-class() { // ...

6. Constructors are always called in order of derivation. Thus, when a Gamma object is created,
the constructors are called in this order: Alpha, Beta, Gamma.

7. A protected member in a base class can be accessed by its own class and by derived classes. It is
private, otherwise.

8. When a virtual function is called through a base class pointer, it is the type of the object being
pointed to that determines which version of the function will be called.

9. A pure virtual function is a function that has no body inside its base class. Thus, a pure virtual
function must be overridden by derived classes. An abstract class is a class that contains at least
one pure virtual function.

10. No, an abstract class cannot be used to create an object.

11. A pure virtual function represents a generic description that all implementations of that function
must adhere to. Thus, in the phrase “one interface, multiple methods,” the pure virtual function
represents the interface, and the individual implementations represent the methods.

Module 11: The C++ I/O System

1. The predefined streams are cin, cout, cerr, and clog.

2. Yes, C++ defines both 8-bit and wide-character streams.

3. The general form for overloading an inserter is shown here:

32 C++ A Beginner’s Guide by Herbert Schildt

4. ios::scientific causes numeric output to be displayed in scientific notation.

5. The width() function sets the field width.

6. True, an I/O manipulator is used within an I/O expression.

7. Here is one way to open a file for text input:

8. Here is one way to open a file for text output:

9. ios::binary specifies that a file be opened for binary rather than text-based I/O.

10. True, at end-of-file, the stream variable will evaluate as false.

11. while(strm.get(ch)) // ...

12. There are many solutions. The following shows just one way:
// Copy a file.

33 C++ A Beginner’s Guide by Herbert Schildt

13. There are many solutions. The following shows one simple way:

// Merge two files.

34 C++ A Beginner’s Guide by Herbert Schildt

14. MyStrm.seekg(300, ios::beg);

35 C++ A Beginner’s Guide by Herbert Schildt

Module 12: Exceptions, Templates, and Other
Advanced Topics

1. C++ exception handling is built upon three keywords: try, catch, and throw. In the most general
terms, program statements that you want to monitor for exceptions are contained in a try block.
If an exception (that is, an error) occurs within the try block, it is thrown (using throw). The
exception is caught, using catch, and processed.

2. When catching exceptions of both base and derived classes, the derived classes must precede
the base class in a catch list.

3. void func() throw(MyExcpt)

4. Here is one way to add an exception to Queue. It is one of many solutions.

36 C++ A Beginner’s Guide by Herbert Schildt

37 C++ A Beginner’s Guide by Herbert Schildt

5. A generic function defines the general form of a routine, but does not specify the precise type of
data upon which it operates. It is created using the keyword template.

6. Here is one way to make quicksort() and qs() into generic functions:

38 C++ A Beginner’s Guide by Herbert Schildt

39 C++ A Beginner’s Guide by Herbert Schildt

7. Here is one way to store Sample objects in a Queue:

40 C++ A Beginner’s Guide by Herbert Schildt

8. Here, the Sample objects are allocated:

41 C++ A Beginner’s Guide by Herbert Schildt

42 C++ A Beginner’s Guide by Herbert Schildt

43 C++ A Beginner’s Guide by Herbert Schildt

9. To declare a namespace called RobotMotion use:

10. The C++ standard library is contained in the std namespace.

11. No, a static member function cannot access the non-static data of a class.

12. The typeid operator obtains the type of an object at runtime.

13. To determine the validity of a polymorphic cast at runtime, use dynamic_cast.

14. const_cast overrides const or volatile in a cast.

1 C++ A Beginner’s Guide by Herbert Schildt

Appendix A
The Preprocessor

The preprocessor is that part of the compiler that performs various text manipulations on your program
prior to the actual translation of your source code into object code. You can give text manipulation
commands to the preprocessor. These commands are called preprocessor directives, and although not
technically part of the C++ language, they expand the scope of its programming environment.

The preprocessor is a holdover from C and is not as important to C++ as it is to C. Also, some
preprocessor features have been rendered redundant by newer and better C++ language elements.
However, since many programmers still use the preprocessor, and because it is still part of the C++
language environment, it is briefly discussed here.

The C++ preprocessor contains the following directives:

As is apparent, all preprocessor directives begin with a # sign. Each will be examined here in turn.

#define
#define is used to define an identifier and a character sequence that will be substituted for the identifier
each time it is encountered in the source file. The identifier is called a macro name, and the replacement
process is called macro substitution. The general form of the directive is

#define macro-name character-sequence

Notice that there is no semicolon in this statement. There can be any number of spaces between the
identifier and the start of the character sequence, but once the sequence begins, it is terminated only by
a newline.

For example, if you wanted to use the word “UP” for the value 1 and the word “DOWN” for the value 0,
you would declare these two #defines:

#define UP 1 #define DOWN 0

These statements will cause the compiler to substitute a 1 or a 0 each time the name UP or DOWN is
encountered in your source file. For example, the following will print 102 on the screen:

2 C++ A Beginner’s Guide by Herbert Schildt

It is important to understand that the macro substitution is simply the replacing of an identifier with its
associated string. Therefore, if you want to define a standard message, you might write something like
this:

#define GETFILE "Enter File Name" // ... cout << GETFILE;

C++ will substitute the string “Enter File Name” when the macro name GETFILE is encountered. To the
compiler, the cout statement will actually appear to be

cout << "Enter File Name";

No text substitutions will occur if the macro name occurs within a quoted string. For example,

#define GETFILE "Enter File Name"
// ...
cout << "GETFILE is a macro name\n";

will not print

Enter File Name is a macro name

but rather will print

GETFILE is a macro name

If the string is longer than one line, you can continue it on the next by placing a backslash at the end of
the line, as shown in this example:

#define LONG_STRING "this is a very long \ string that is used as an example"

It is common practice among C++ programmers to use capital letters for macro names. This convention
helps anyone reading the program know at a glance that a macro substitution will take place. Also, it is
best to put all #defines at the start of the file, or perhaps in a separate include file, rather than sprinkling
them throughout the program.

One last point: C++ provides a better way of defining constants than by using #define. This is to use the
const specifier. However, many C++ programmers migrated from C, where #define is commonly used for
this purpose. Thus, you will likely see it frequently in C++ code, too.

Function-Like Macros

The #define directive has another feature: The macro name can have arguments. Each time the macro
name is encountered, the arguments associated with it are replaced by the actual arguments found in
the program. This creates a function-like macro. Here is an example:

3 C++ A Beginner’s Guide by Herbert Schildt

When this program is compiled, the expression defined by MIN(a,b) will be substituted, except that x
and y will be used as the operands. That is, the cout statement will be substituted to look like this:

cout << "The minimum is: " << ((x)<(y)) ? x : y);

In essence, the function-like macro is a way to define a function that has its code expanded inline rather
than called.

The apparently redundant parentheses surrounding the MIN macro are necessary to ensure proper
evaluation of the substituted expression because of the relative precedence of the operators. In fact,
the extra parentheses should be applied in virtually all function-like macros. Otherwise, there can be
surprising results. For example, consider this short program, which uses a macro to determine whether a
value is even or odd:

This program will not work correctly because of the way the macro substitution is made. When
compiled, the EVEN(9+1) is expanded to

4 C++ A Beginner’s Guide by Herbert Schildt

9+1%2==0 ? 1 : 0

As you should recall, the % (modulus) operator has higher precedence than the plus operator. This
means that the % operation is first performed on the 1 and that the result is added to 9, which (of
course) does not equal 0. This causes the EVEN macro to improperly report the value of 9+1 as odd. To
fix the problem, there must be parentheses around a in the macro definition of EVEN, as is shown in this
corrected version of the program:

Now, the 9+1 is evaluated prior to the modulus operation and the resulting value is properly reported as
even. In general, it is a good idea to surround macro parameters with parentheses to avoid unforeseen
troubles like the one just described.

The use of macro substitutions in place of real functions has one major benefit: Because macro
substitution code is expanded inline, no overhead of a function call is incurred, so the speed of your
program increases. However, this increased speed might be paid for with an increase in the size of the
program, due to duplicated code.

Although still commonly seen in C++ code, the use of function-like macros has been rendered
completely redundant by the inline specifier, which accomplishes the same goal better and more safely.
(Remember, inline causes a function to be expanded inline rather than called.) Also, inline functions do
not require the extra parentheses needed by most function-like macros. However, function-like macros
will almost certainly continue to be a part of C++ programs for some time to come, because many
former C programmers continue to use them out of habit.

#error

When the #error directive is encountered, it forces the compiler to stop compilation. This directive is
used primarily for debugging. The general form of the directive is

#error error-message

5 C++ A Beginner’s Guide by Herbert Schildt

Notice that the error-message is not between double quotes. When the compiler encounters this
directive, it displays the error message and other information and terminates compilation. Your
implementation determines what information will actually be displayed. (You might want to experiment
with your compiler to see what is displayed.)

#include

The #include preprocessor directive instructs the compiler to include either a standard header or
another source file into the file that contains the #include directive. The name of a standard header
should be enclosed between angle brackets, as shown in the programs throughout this book. For
example,

#include <fstream>

includes the standard header for file I/O.

When including another source file, its name can be enclosed between double quotes or angle brackets.
For example, the following two directives both instruct C++ to read and compile a file called sample.h:

#include <sample.h>
#include "sample.h"

When including a file, whether the filename is enclosed by quotes or angle brackets determines how the
search for the specified file is conducted. If the filename is enclosed between angle brackets, the
compiler searches for it in one or more implementation-defined directories. If the filename is enclosed
between quotes, then the compiler searches for it in some other implementation-defined directory,
which is typically the current working directory. If the file is not found in this directory, the search is
restarted as if the filename had been enclosed between angle brackets. Since the search path is
implementation defined, you will need to check your compiler’s user manual for details.

Conditional Compilation Directives

There are several directives that allow you to selectively compile portions of your program’s source
code. This process, called conditional compilation, is widely used by commercial software houses that
provide and maintain many customized versions of one program.

#if, #else, #elif, and #endif

The general idea behind the #if directive is that if the constant expression following the #if is true, then
the code between it and an #endif will be compiled; otherwise, the code will be skipped over. #endif is
used to mark the end of an #if block. The general form of #if is

#if constant-expression statement sequence

#endif

6 C++ A Beginner’s Guide by Herbert Schildt

If the constant expression is true, the block of code will be compiled; otherwise, it will be skipped. For
example:

This program will display the message on the screen because, as defined in the program, MAX is greater
than 10. This example illustrates an important point. The expression that follows the #if is evaluated at
compile time. Therefore, it must contain only identifiers that have been previously defined and
constants. No variables can be used.

The #else directive works in much the same way as the else statement that forms part of the C++
language: it establishes an alternative if the #if directive fails. The previous example can be expanded to
include the #else directive, as shown here:

7 C++ A Beginner’s Guide by Herbert Schildt

In this program, MAX is defined to be less than 10, so the #if portion of the code is not compiled, but the
#else alternative is. Therefore, the message Current memory OK. is displayed.

Notice that the #else is used to mark both the end of the #if block and the beginning of the #else block.
This is necessary because there can only be one #endif associated with any #if.

The #elif means “else if” and is used to establish an if-else-if ladder for multiple compilation options. The
#elif is followed by a constant expression. If the expression is true, then that block of code is compiled,
and no other #elif expressions are tested or compiled. Otherwise, the next in the series is checked. The
general form is

For example, this fragment uses the value of COMPILED_BY to define who compiled the program:

#ifs and #elifs can be nested. In this case, the #endif, #else, or #elif associate with the nearest #if or #elif.
For example, the following is perfectly valid:

8 C++ A Beginner’s Guide by Herbert Schildt

#ifdef and #ifndef

Another method of conditional compilation uses the directives #ifdef and #ifndef, which mean “if
defined” and “if not defined,” respectively, and refer to macro names. The general form of #ifdef is

#ifdef macro-name
statement sequence

#endif

If macro-name has been previously defined in a #define statement, the statement sequence between
the #ifdef and #endif will be compiled. The general form of #ifndef is

#ifndef macro-name
statement sequence

#endif

If macro-name is currently undefined by a #define statement, then the block of code is compiled. Both
the #ifdef and #ifndef can use an #else or #elif statement. Also, you can nest #ifdefs and #ifndefs in the
same way as #ifs.

#undef

The #undef directive is used to remove a previously defined definition of a macro name. The general
form is

#undef macro-name

Consider this example:

#define TIMEOUT 100
#define WAIT 0
// ...
#undef TIMEOUT
#undef WAIT

Here, both TIMEOUT and WAIT are defined until the #undef statements are encountered. The principal
use of #undef is to allow macro names to be localized to only those sections of code that need them.

9 C++ A Beginner’s Guide by Herbert Schildt

Using defined

In addition to #ifdef, there is a second way to determine if a macro name is defined. You can use the #if
directive in conjunction with the defined compile-time operator. For example, to determine if the macro
MYFILE is defined, you can use either of these two preprocessing commands:

#if defined MYFILE
or
#ifdef MYFILE
You can also precede defined with the ! to reverse the condition. For example, the following fragment is
compiled only if DEBUG is not defined:

#if !defined DEBUG
cout << "Final version!\n";
#endif

#line
The #line directive is used to change the contents of _ _LINE_ _ and _ _FILE_ _, which are predefined
macro names. _ _LINE_ _ contains the line number of the line currently being compiled, and _ _FILE_ _
contains the name of the file being compiled. The basic form of the #line command is

#line number “filename”

Here number is any positive integer, and the optional filename is any valid file identifier. The line
number becomes the number of the current source line, and the filename becomes the name of the
source file. #line is primarily used for debugging purposes and for special applications.

#pragma
The #pragma directive is an implementation-defined directive that allows various instructions, defined
by the compiler’s creator, to be given to the compiler. The general form of the #pragma directive is

#pragma name

Here, name is the name of the #pragma you want. If the name is unrecognized by the compiler, then the
#pragma directive is simply ignored and no error results.

To see what pragmas your compiler supports, check its documentation. You might find some that are
valuable to your programming efforts. Typical #pragmas include those that determine what compiler
warning messages are issued, how code is generated, and what library is linked.

The # and ## Preprocessor Operators
C++ supports two preprocessor operators: # and ##. These operators are used in conjunction with
#define. The # operator causes the argument it precedes to become a quoted string. For example,
consider this program:

10 C++ A Beginner’s Guide by Herbert Schildt

The C++ preprocessor turns the line

cout << mkstr(I like C++);

into

cout << "I like C++";

The ## operator is used to concatenate two tokens. Here is an example:

The preprocessor transforms

cout << concat(x, y);

into

cout << xy;

If these operators seem strange to you, keep in mind that they are not needed or used in most
programs. They exist primarily to allow some special cases to be handled by the preprocessor.

Predefined Macro Names

C++ specifies six built-in predefined macro names. They are

11 C++ A Beginner’s Guide by Herbert Schildt

The _ _LINE_ _ and _ _FILE_ _ macros were described in the discussion of #line. Briefly, they contain the
current line number and filename of the program when it is being compiled.

The _ _DATE_ _ macro contains a string of the form month/day/year that is the date of the translation
of the source file into object code.

The _ _TIME_ _ macro contains the time at which the program was compiled. The time is represented in
a string having the form hour:minute:second.

The meaning of _ _STDC_ _ is implementation-defined. Generally, if _ _STDC_ _ is defined, then the
compiler will accept only standard C/C++ code that does not contain any nonstandard extensions.

A compiler conforming to ANSI/ISO Standard C++ will define _ _cplusplus as a value containing at least
six digits. Nonconforming compilers will use a value with five or fewer digits.

	0072232153
	C++ Beginner's Guide CH01
	C++ Beginner's Guide CH02
	C++ Beginner's Guide CH03
	C++ Beginner's Guide CH04
	C++ Beginner's Guide CH05
	C++ Beginner's Guide CH06
	C++ Beginner's Guide CH07
	C++ Beginner's Guide CH08
	C++ Beginner's Guide CH09
	C++ Beginner's Guide CH10
	C++ Beginner's Guide CH11
	C++ Beginner's Guide CH12
	ANSWERS
	APPENDIXA

