
         

      

         

      

Parallel 
Computing

Prof. Marco Bertini



         

      

         

      

Shared 
memory:  

Java threads



         

      
         

      

Introduction

• Java provides built-in multithreading 

• Low level primitives: 

• Class Thread / Interface Runnable 

• High level framework: 

• Java Concurrency Utilities



         

      

         

      

Low level 
primitives



         

      
         

      

Class Thread
• Class Thread constructors 
public Thread( String threadName )  
public Thread() 

• Code for thread in thread’s run method 

• Method sleep makes thread inactive 

• Method yield hints the scheduler that the thread is willing to yield its 
current use of processor 

• Method interrupt interrupts a running thread 

• Method isAlive checks status of a thread 

• Method setName sets a thread’s name 

• Method join waits for thread to finish and continues from current thread



         

      
         

      

Thread states
• Born state 

• Thread was just created 

• Ready state 

• Thread’s start method invoked 

• Thread can now execute 

• Running state 

• Thread is assigned a processor and 
running 

• Dead state 

• Thread has completed or exited 

• Eventually disposed of by system

read y

running

wa it ing slee ping de ad blocked

born

start

d isp atch
(a ssig n a 
p roce ssor)

q uantum 
exp irat io n

issue  I/ O request

sl
ee
pwai

t

slee p inte rval 
expires

I/O
 com

p le tio nn
ot
if
y

co m
ple te

or
 n
ot
if
y
Al
l yield

inte rrup t



         

      
         

      

Hello world
public class ThreadHelloWorld {  
 
    public static void main(String[] args) throws  
                                           InterruptedException {  
        Thread myThread = new Thread() {  
            public void run() {  
                System.out.println("Hello from new thread");  
            }  
        };  
 
        myThread.start();  
        Thread.yield(); // gives the thread a chance to run first  
        System.out.println("Hello from main thread");  
        myThread.join();  
    }  
}

The order of the output will change… 
Remind: make no assumptions regarding execution order



         

      
         

      

Thread synchronization
• Java uses monitors for thread synchronization 

• The synchronized keyword uses the lock that is built into 
every Java Object 

• Every synchronized method of an object has a monitor 

• we can synchronize any statement acquiring the lock 
on an object 

• One thread inside a synchronized method at a time 

• All other threads block until method finishes 

• Next highest priority thread runs when method finishes



         

      
         

      

Thread synchronization
public synchronized void method() {  
   // statements  
}

• is syntactic sugar for 

public void method() {  
   synchronized(this) {  
       // statements  
   }  
}

synchronizing statements allows a finer granularity in parallelism



         

      
         

      

Sync example
public class RaceCondition {  
  public static void main(String[] args) 
throws InterruptedException {  
     class Counter {  
        private int count = 0;  
 
        public void increment() {  
                ++count;  
        }  
 
        public int getCount() {  
                return count;  
        }  
     }  
     final Counter counter = new Counter();  
 
     class CountingThread extends Thread {  
        public void run() {  
          for (int x = 0; x < 10000; ++x)  
              counter.increment();  
          }  
     }  
     

class ReadingThread extends Thread {  
    public void run() {  
                
System.out.println(counter.getCount());  
    }  
}  
 
  CountingThread t1 = new CountingThread();  
  CountingThread t2 = new CountingThread();  
  ReadingThread t3 = new ReadingThread();  
  t1.start();  
  t2.start();  
  t3.start();  
  t1.join();  
  t2.join();  
  t3.join();  
           
System.out.println(counter.getCount());  
  }  
}



         

      
         

      

Sync example
public class RaceCondition {  
  public static void main(String[] args) 
throws InterruptedException {  
     class Counter {  
        private int count = 0;  
 
        public void increment() {  
                ++count;  
        }  
 
        public int getCount() {  
                return count;  
        }  
     }  
     final Counter counter = new Counter();  
 
     class CountingThread extends Thread {  
        public void run() {  
          for (int x = 0; x < 10000; ++x)  
              counter.increment();  
          }  
     }  
     

class ReadingThread extends Thread {  
    public void run() {  
                
System.out.println(counter.getCount());  
    }  
}  
 
  CountingThread t1 = new CountingThread();  
  CountingThread t2 = new CountingThread();  
  ReadingThread t3 = new ReadingThread();  
  t1.start();  
  t2.start();  
  t3.start();  
  t1.join();  
  t2.join();  
  t3.join();  
           
System.out.println(counter.getCount());  
  }  
}

public class RaceCondition {  
  public static void main(String[] args) 
throws InterruptedException {  
     class Counter {  
        private int count = 0;  
 
        public synchronized void increment() 
{  
                ++count;  
        }  
 
        public synchronized int getCount() {  
                return count;  
        }  
     }  
     final Counter counter = new Counter();  
 
     class CountingThread extends Thread {  
        public void run() {  
          for (int x = 0; x < 10000; ++x)  
              counter.increment();  
          }  
     }  
     

class ReadingThread extends Thread {  
    public void run() {  
                
System.out.println(counter.getCount());  
    }  
}  
 
  CountingThread t1 = new CountingThread();  
  CountingThread t2 = new CountingThread();  
  ReadingThread t3 = new ReadingThread();  
  t1.start();  
  t2.start();  
  t3.start();  
  t1.join();  
  t2.join();  
  t3.join();  
           
System.out.println(counter.getCount());  
  }  
}



         

      
         

      

Sync using objects
import java.util.Random;  
class Philosopher extends Thread {  
  private Chopstick first, second;  
  private Random random;  
  private int thinkCount;

  public Philosopher(Chopstick left, Chopstick right) {  
    if(left.getId() < right.getId()) {  
      first = left; second = right;  
    } else {  
      first = right; second = left;  
    }  
    random = new Random();  
  }  
 public void run() {  
    try {  
      while(true) {  
        ++thinkCount;  
        if (thinkCount % 10 == 0)  
          System.out.println("Philosopher " + this + " has thought " + thinkCount + " times");  
        Thread.sleep(random.nextInt(1000));     // Think for a while  
        synchronized(first) {                   // Grab first chopstick  
          synchronized(second) {                // Grab second chopstick  
            Thread.sleep(random.nextInt(1000)); // Eat for a while  
          }  
       }  
     }  
   } catch(InterruptedException e) {}  
 }  
}

class Chopstick {  
private int id;  
public Chopstick(int id) { this.id = 

id; }  
  public int getId() { return id; }  
}

The objects act as mutexes



         

      
         

      

Sync using objects
import java.util.Random;  
class Philosopher extends Thread {  
  private Chopstick first, second;  
  private Random random;  
  private int thinkCount;

  public Philosopher(Chopstick left, Chopstick right) {  
    if(left.getId() < right.getId()) {  
      first = left; second = right;  
    } else {  
      first = right; second = left;  
    }  
    random = new Random();  
  }  
 public void run() {  
    try {  
      while(true) {  
        ++thinkCount;  
        if (thinkCount % 10 == 0)  
          System.out.println("Philosopher " + this + " has thought " + thinkCount + " times");  
        Thread.sleep(random.nextInt(1000));     // Think for a while  
        synchronized(first) {                   // Grab first chopstick  
          synchronized(second) {                // Grab second chopstick  
            Thread.sleep(random.nextInt(1000)); // Eat for a while  
          }  
       }  
     }  
   } catch(InterruptedException e) {}  
 }  
}

class Chopstick {  
private int id;  
public Chopstick(int id) { this.id = 

id; }  
  public int getId() { return id; }  
}

The objects act as mutexes

public static void main(String[] args) throws InterruptedException {
    Philosopher[] philosophers = new Philosopher[5];
    Chopstick[] chopsticks = new Chopstick[5];
    
    for (int i = 0; i < 5; ++i)
      chopsticks[i] = new Chopstick(i);
    for (int i = 0; i < 5; ++i) {
      philosophers[i] = new Philosopher(chopsticks[i], chopsticks[(i + 1) % 5]);
      philosophers[i].start();
    }
    for (int i = 0; i < 5; ++i)
      philosophers[i].join();
  }



         

      
         

      

Sync using objects
import java.util.Random;  
class Philosopher extends Thread {  
  private Chopstick first, second;  
  private Random random;  
  private int thinkCount;

  public Philosopher(Chopstick left, Chopstick right) {  
    if(left.getId() < right.getId()) {  
      first = left; second = right;  
    } else {  
      first = right; second = left;  
    }  
    random = new Random();  
  }  
 public void run() {  
    try {  
      while(true) {  
        ++thinkCount;  
        if (thinkCount % 10 == 0)  
          System.out.println("Philosopher " + this + " has thought " + thinkCount + " times");  
        Thread.sleep(random.nextInt(1000));     // Think for a while  
        synchronized(first) {                   // Grab first chopstick  
          synchronized(second) {                // Grab second chopstick  
            Thread.sleep(random.nextInt(1000)); // Eat for a while  
          }  
       }  
     }  
   } catch(InterruptedException e) {}  
 }  
}

class Chopstick {  
private int id;  
public Chopstick(int id) { this.id = 

id; }  
  public int getId() { return id; }  
}

The objects act as mutexes

public static void main(String[] args) throws InterruptedException {
    Philosopher[] philosophers = new Philosopher[5];
    Chopstick[] chopsticks = new Chopstick[5];
    
    for (int i = 0; i < 5; ++i)
      chopsticks[i] = new Chopstick(i);
    for (int i = 0; i < 5; ++i) {
      philosophers[i] = new Philosopher(chopsticks[i], chopsticks[(i + 1) % 5]);
      philosophers[i].start();
    }
    for (int i = 0; i < 5; ++i)
      philosophers[i].join();
  }

This is the solution provided by Dijkstra: relative ordering of resources and ordered acquisition



         

      
         

      

Alien methods

• A synchronized method should not call a method it 
knows nothing about - an alien method - since it 
may acquire a second lock without respecting the 
correct order, thus risking deadlock. 

• Solution: reduce synchronization to statements and 
do not call the alien method in that synchronized 
section.



         

      
         

      

Alien method example
class Downloader extends Thread {

  private InputStream in;  
  private OutputStream out;  
  private ArrayList<ProgressListener> 
listeners;

  public Downloader(URL url, String 
outputFilename) throws IOException {  
    in = 
url.openConnection().getInputStream();  
    out = new 
FileOutputStream(outputFilename);  
    listeners = new 
ArrayList<ProgressListener>();

  }

  public synchronized void 
addListener(ProgressListener listener) {  
   listeners.add(listener);  
 }

  public synchronized void 
removeListener(ProgressListener listener) 
{  
   listeners.remove(listener);  
 }

  private synchronized void 
updateProgress(int n) {  
   for (ProgressListener listener: 
listeners)  
     listener.onProgress(n);  
 }

  public void run() {  
   int n = 0, total = 0;  
   byte[] buffer = new byte[1024];  
   try {  
     while((n = in.read(buffer)) != -1) {  
       out.write(buffer, 0, n);  
       total += n;  
       updateProgress(total);  
     }  
     out.flush();  
   } catch (IOException e) { }  
 }  
}



         

      
         

      

Alien method example
class Downloader extends Thread {

  private InputStream in;  
  private OutputStream out;  
  private ArrayList<ProgressListener> 
listeners;

  public Downloader(URL url, String 
outputFilename) throws IOException {  
    in = 
url.openConnection().getInputStream();  
    out = new 
FileOutputStream(outputFilename);  
    listeners = new 
ArrayList<ProgressListener>();

  }

  public synchronized void 
addListener(ProgressListener listener) {  
   listeners.add(listener);  
 }

  public synchronized void 
removeListener(ProgressListener listener) 
{  
   listeners.remove(listener);  
 }

  private synchronized void 
updateProgress(int n) {  
   for (ProgressListener listener: 
listeners)  
     listener.onProgress(n);  
 }

  public void run() {  
   int n = 0, total = 0;  
   byte[] buffer = new byte[1024];  
   try {  
     while((n = in.read(buffer)) != -1) {  
       out.write(buffer, 0, n);  
       total += n;  
       updateProgress(total);  
     }  
     out.flush();  
   } catch (IOException e) { }  
 }  
}

The methods of the Subject are synchronized but the notification 
method class an alien method in the observer



         

      
         

      

Alien method example
class Downloader extends Thread {

  private InputStream in;  
  private OutputStream out;  
  private ArrayList<ProgressListener> 
listeners;

  public Downloader(URL url, String 
outputFilename) throws IOException {  
    in = 
url.openConnection().getInputStream();  
    out = new 
FileOutputStream(outputFilename);  
    listeners = new 
ArrayList<ProgressListener>();

  }

  public synchronized void 
addListener(ProgressListener listener) {  
   listeners.add(listener);  
 }

  public synchronized void 
removeListener(ProgressListener listener) 
{  
   listeners.remove(listener);  
 }

  private synchronized void 
updateProgress(int n) {  
   for (ProgressListener listener: 
listeners)  
     listener.onProgress(n);  
 }

  public void run() {  
   int n = 0, total = 0;  
   byte[] buffer = new byte[1024];  
   try {  
     while((n = in.read(buffer)) != -1) {  
       out.write(buffer, 0, n);  
       total += n;  
       updateProgress(total);  
     }  
     out.flush();  
   } catch (IOException e) { }  
 }  
}

The methods of the Subject are synchronized but the notification 
method class an alien method in the observer

Solution  
 
private void updateProgress(int n) {
    ArrayList<ProgressListener> listenersCopy;
    synchronized(this) {
      listenersCopy = (ArrayList<ProgressListener>)listeners.clone();
    }
    for (ProgressListener listener: listenersCopy)
      listener.onProgress(n);
  }



         

      
         

      

wait/notify
• The Object class provides other means to synchronize threads, acting as monitors of a queue 

whose access is controlled by wait/notify methods: 

• public final void wait() throws InterruptedException 

• public final void wait(long timeout, int nanos) throws 
InterruptedException

• Causes the current thread to wait until another thread invokes the notify() method or the 
notifyAll()

• The current thread must own this object's monitor. The thread releases ownership of this 
monitor  

• public final void notify() 

• public final void notifyAll()

• Wakes up a single thread that is waiting on this object's monitor / wake up all threads waiting. 

• The awakened thread will not be able to proceed until the current thread relinquishes the lock 
on this object. 



         

      
         

      

wait/notify
• A thread can call wait() on an object that has locked: 

• the lock is released 

• the thread goes into waiting state 

• Other threads may obtain that released lock, then they perform 
the required operations and call: 

• notify() to awaken a waiting thread 

• notifyAll() to awaken all the threads waiting the object 

• The awakened threads have to acquire the lock 

• notifications are not cumulated



         

      
         

      

wait/notify
• A thread can call wait() on an object that has locked: 

• the lock is released 

• the thread goes into waiting state 

• Other threads may obtain that released lock, then they perform 
the required operations and call: 

• notify() to awaken a waiting thread 

• notifyAll() to awaken all the threads waiting the object 

• The awakened threads have to acquire the lock 

• notifications are not cumulated

Producer  

synchronized void put() {
  while buffer=full
     wait()
  Put in buffer 
  notify() 
} 

Consumer

synchronized void get() {
  while buffer=empty
     wait()
  Get from buffer
  notify() 
} 



         

      
         

      

wait/notify example
public class Monitor {  
    private boolean full = false;  
    private boolean stop = false;  
    private String buffer;  
 
    synchronized void send(String msg) {  
        if (full) {  
            try {  
                wait(); // if full wait until  
                        // it becomes empty  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
        }  
        // if empty becomes full  
        // and receive the msg  
        full = true;  
        notify();  
        buffer = msg;  
    }  
 
    synchronized void endMessages() {  
        stop = true; // no more messages  
                     // from the producer  
    }  

 
    synchronized String receive() {  
        if (!full) {  
            try {  
                wait();  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
        }  
        full = false;  
        notify();  
        return buffer;  
    }  
 
    synchronized boolean isEndCommunications() 
{  
        return stop & !full; // true if there  
     // are no more messages to consume and  
     // the producer said it was going to stop  
    }  
}

Use this monitor to communicate between threads



         

      

         

      

High level 
framework



         

      
         

      

Beyond intrinsic locks
• Locking on an object with synchronized, as with low 

level APIs has some limitations: 

• lock acquisition and release are only in the same 
method or start/end of statements 

• a thread may have to wait a long time before 
acquiring it 

• no timeout while waiting for the lock



         

      
         

      

java.util.concurrent.locks.ReentrantLock
• It is a more powerful alternative to intrinsic lock: 

• can be created with a fairness parameter to give 
precedence to threads that have been waiting a long 
time 

• lower throughput but less variances in time to obtain 
locks 

• can be acquired and released in different methods 

• interruptible lock waits that support time-out 

• immediate acquisition of lock, independently of how 
many other threads were waiting for it



         

      
         

      

java.util.concurrent.locks.ReentrantLock
• It is a more powerful alternative to intrinsic lock: 

• can be created with a fairness parameter to give 
precedence to threads that have been waiting a long 
time 

• lower throughput but less variances in time to obtain 
locks 

• can be acquired and released in different methods 

• interruptible lock waits that support time-out 

• immediate acquisition of lock, independently of how 
many other threads were waiting for it

Lock lock = new ReentrantLock(); 
lock.lock();  
try {  
  // use shared resources  
} finally { 
  lock.unlock();  
}  

Use the finally to be sure to release the lock!



         

      
         

      

java.util.concurrent.locks.ReentrantLock
• It is a more powerful alternative to intrinsic lock: 

• can be created with a fairness parameter to give 
precedence to threads that have been waiting a long 
time 

• lower throughput but less variances in time to obtain 
locks 

• can be acquired and released in different methods 

• interruptible lock waits that support time-out 

• immediate acquisition of lock, independently of how 
many other threads were waiting for it

private ReentrantLock lock;

public void foo() {
  ...
  lock.lock();
  ...
}

public void bar() {
  ...
  lock.unlock();
  ...
}

Lock lock = new ReentrantLock(); 
lock.lock();  
try {  
  // use shared resources  
} finally { 
  lock.unlock();  
}  

Use the finally to be sure to release the lock!



         

      
         

      

java.util.concurrent.locks.ReentrantLock
• It is a more powerful alternative to intrinsic lock: 

• can be created with a fairness parameter to give 
precedence to threads that have been waiting a long 
time 

• lower throughput but less variances in time to obtain 
locks 

• can be acquired and released in different methods 

• interruptible lock waits that support time-out 

• immediate acquisition of lock, independently of how 
many other threads were waiting for it

private ReentrantLock lock;

public void foo() {
  ...
  lock.lock();
  ...
}

public void bar() {
  ...
  lock.unlock();
  ...
}

public boolean tryLock(long timeout, TimeUnit unit)

Lock lock = new ReentrantLock(); 
lock.lock();  
try {  
  // use shared resources  
} finally { 
  lock.unlock();  
}  

Use the finally to be sure to release the lock!



         

      
         

      

java.util.concurrent.locks.ReentrantLock
• It is a more powerful alternative to intrinsic lock: 

• can be created with a fairness parameter to give 
precedence to threads that have been waiting a long 
time 

• lower throughput but less variances in time to obtain 
locks 

• can be acquired and released in different methods 

• interruptible lock waits that support time-out 

• immediate acquisition of lock, independently of how 
many other threads were waiting for it

private ReentrantLock lock;

public void foo() {
  ...
  lock.lock();
  ...
}

public void bar() {
  ...
  lock.unlock();
  ...
}

public boolean tryLock(long timeout, TimeUnit unit)

public boolean tryLock()

Lock lock = new ReentrantLock(); 
lock.lock();  
try {  
  // use shared resources  
} finally { 
  lock.unlock();  
}  

Use the finally to be sure to release the lock!



         

      
         

      

Interruptible locking

• A lock due to intrinsic locking is not interruptible 
(i.e. Thread interrupt method does not stop it) 

• therefore a deadlock can be stopped only by 
killing the JVM ! 

• ReentrantLock is interruptible



         

      
         

      

Interruptible locking

• A lock due to intrinsic locking is not interruptible 
(i.e. Thread interrupt method does not stop it) 

• therefore a deadlock can be stopped only by 
killing the JVM ! 

• ReentrantLock is interruptible

final Object lock1 = new Object();  
final Object lock2 = new Object(); 

Thread t1 = new Thread() { public void run() { 
  try {  
    synchronized(lock1) { 
      Thread.sleep(1000); 
        synchronized(lock2) {}  
    } 
  } catch (InterruptedException e) {  
    System.out.println("t1 interrupted"); 
  }  
} 

If another thread acquires o1 and o2 in the opposite order we have a deadlock!



         

      
         

      

Interruptible locking

• A lock due to intrinsic locking is not interruptible 
(i.e. Thread interrupt method does not stop it) 

• therefore a deadlock can be stopped only by 
killing the JVM ! 

• ReentrantLock is interruptible

final Object lock1 = new Object();  
final Object lock2 = new Object(); 

Thread t1 = new Thread() { public void run() { 
  try {  
    synchronized(lock1) { 
      Thread.sleep(1000); 
        synchronized(lock2) {}  
    } 
  } catch (InterruptedException e) {  
    System.out.println("t1 interrupted"); 
  }  
} 

If another thread acquires o1 and o2 in the opposite order we have a deadlock!

final ReentrantLock lock1 = new ReentrantLock();  
final ReentrantLock lock2 = new ReentrantLock(); 
 
Thread t1 = new Thread() { 
  public void run() {  
    try {  
      lock1.lockInterruptibly();  
      Thread.sleep(1000); 
      lock2.lockInterruptibly(); 
    } catch (InterruptedException e {  
      System.out.println("t1 interrupted");  
    }  
  } 
}; 

a t1.interrupt() now stops the deadlock (if another thread acquires the two 
locks with a different order…)



         

      
         

      

Interruptible locking

• A lock due to intrinsic locking is not interruptible 
(i.e. Thread interrupt method does not stop it) 

• therefore a deadlock can be stopped only by 
killing the JVM ! 

• ReentrantLock is interruptible

final Object lock1 = new Object();  
final Object lock2 = new Object(); 

Thread t1 = new Thread() { public void run() { 
  try {  
    synchronized(lock1) { 
      Thread.sleep(1000); 
        synchronized(lock2) {}  
    } 
  } catch (InterruptedException e) {  
    System.out.println("t1 interrupted"); 
  }  
} 

If another thread acquires o1 and o2 in the opposite order we have a deadlock!

final ReentrantLock lock1 = new ReentrantLock();  
final ReentrantLock lock2 = new ReentrantLock(); 
 
Thread t1 = new Thread() { 
  public void run() {  
    try {  
      lock1.lockInterruptibly();  
      Thread.sleep(1000); 
      lock2.lockInterruptibly(); 
    } catch (InterruptedException e {  
      System.out.println("t1 interrupted");  
    }  
  } 
}; 

a t1.interrupt() now stops the deadlock (if another thread acquires the two 
locks with a different order…)

Note: reentrant is a term that indicates a block of code that can be entered by 
another actor before an earlier invocation has finished, without affecting the path that 
the first actor would have taken through the code. That is, it is possible to re-enter the 
code while it's already running and still produce correct results. E.g. some code that 
can be interrupted in the middle of its execution and then safely called again.



         

      
         

      

tryLock and livelocks
• It may be temping to use a tryLock with timeout to 

solve a deadlock, since there’s no need to acquire 
resources in the required order but… 

• … we are not avoiding deadlock, just recovering 
from them 

• … we are risking a livelock: if multiple threads 
timeout at the same time they may have 
immediately another deadlock. 
Threads are not really progressing, unless we 
randomize the timeout.



         

      
         

      

Hand-over-hand locking
• It’s a fine-grained locking, where multiple locks are 

used to lock the smallest possible part of a data 
structure that the current thread needs to operate 
on. 

• As we acquire new locks we unlock the older 
ones. 

• Can be implemented with ReentrantLock, that 
allows to lock/unlock whenever we need.



         

      
         

      

Concurrent Linked List
• Locking the whole method that inserts/searches an element does 

not scale: access becomes too much sequential… we need fine 
grained lock. 

• Solution: lock only the position we are examining for the insertion: 
hand-over-hand lock. 

• Each node needs a ReentrantLock

To insert a node, we need to lock the two 
nodes on either side of the point we’re 
going to insert. We start by locking the 
first two nodes of the list. If this isn’t the 
right place to insert the new node, we 
unlock the first node and lock the third… 
Th is cont inues unt i l we find the 
appropriate place, insert the new node, 
and finally unlock the nodes on either 
side. 



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }

Lock head of list



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }

Lock next node



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }

If this is not the right position 
unlock current node and loop



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }

If it is the right position the new node is added and locks are 
unlocked in the two finally statements



         

      
         

      

Concurrent Sorted List: example
public void insert(int value) {  
   Node current = head;  
   current.lock.lock();  
   Node next = current.next;

    try {  
     while (true) {  
       next.lock.lock();  
       try {  
         if (next == tail || 
next.value < value) {  
           Node node = new 
Node(value, current, next);  
           next.prev = node;  
           current.next = node;

            return;  
         }  
       } finally {  
     current.lock.unlock();  
       } 

       current = next;  
       next = current.next;  
     }  
   } finally {  
      next.lock.unlock();  
   }  
 }



         

      
         

      

Concurrent Sorted List: example
public int size() {  
   Node current = tail;  
   int count = 0;

    while (current.prev != head) {  
     ReentrantLock lock = current.lock;  
     lock.lock();  
     try {  
       ++count;  
       current = current.prev;  
     } finally { lock.unlock(); }  
   }

    return count;  
 }

We can use this method 
concurrently with insertion, if 
working on different areas of 
the list. 
There is no risk of deadlock: 
this method acquires only 1 
lock: there’s no need to follow 
the rule that says to acquire 
locks in a fixed global order 
(i.e. Dijkstra)



         

      
         

      

Semaphore
• java.util.concurrent.Semaphore provides counting semaphores. The 

number of threads that can get a permit to access a critical section is 
decided in the initialization. 

• initializing to one creates a binary semaphore 

static int counter = 0;  
static Semaphore semaphore = new Semaphore(1);  
 
public static void incrementCounter() {  

try {  
semaphore.acquire();  
counter++;  
semaphore.release();  

} catch (InterruptedException ex) {  
}  

}



         

      
         

      

Condition variables
• To use a condition variable effectively, we need to follow a 

very specific pattern:  

ReentrantLock lock = new ReentrantLock(); 
Condition condition = lock.newCondition(); 

lock.lock();  
try {  
    while (! condition_is_true)  
        condition.await();  
    // use shared resources  
} finally {  
    lock.unlock();  
} 



         

      
         

      

Condition variables
• To use a condition variable effectively, we need to follow a 

very specific pattern:  

ReentrantLock lock = new ReentrantLock(); 
Condition condition = lock.newCondition(); 

lock.lock();  
try {  
    while (! condition_is_true)  
        condition.await();  
    // use shared resources  
} finally {  
    lock.unlock();  
} 

• A c o n d i t i o n v a r i a b l e i s 
associated with a lock, and a 
thread must hold that lock 
before being able to wait on the 
condition.  

• Once it holds the lock, it checks 
to see if the condition that it’s 
interested in is already true.  

• If it is, then it continues with 
whatever it wants to do and 
unlocks the lock.  



         

      
         

      

Condition variables
• To use a condition variable effectively, we need to follow a 

very specific pattern:  

ReentrantLock lock = new ReentrantLock(); 
Condition condition = lock.newCondition(); 

lock.lock();  
try {  
    while (! condition_is_true)  
        condition.await();  
    // use shared resources  
} finally {  
    lock.unlock();  
} 



         

      
         

      

Condition variables
• To use a condition variable effectively, we need to follow a 

very specific pattern:  

ReentrantLock lock = new ReentrantLock(); 
Condition condition = lock.newCondition(); 

lock.lock();  
try {  
    while (! condition_is_true)  
        condition.await();  
    // use shared resources  
} finally {  
    lock.unlock();  
} 

• If, however, the condition is not 
true, it calls await(), which 
atomically unlocks the lock and 
b l o c k s o n t h e c o n d i t i o n 
variable.  

• When another thread calls 
signal() or signalAll() to indicate 
that the condition might now be 
true, await() unblocks and 
automatically reacquires the 
lock. When await() returns, it 
only indicates that the condition 
might be true. This is why 
await() is called within a loop—
we need to go back, recheck 
whether the condition is true, 
and potentially block on await() 
again if necessary. 



         

      
         

      

Atomic variables
• java.util.concurrent.atomic provides a set of types that can be 

accessed and modified atomically, without need of 
synchronization or locks. 

• we can not miss locks 

• we can not have a deadlock, since there are no locks 

• we can implement non-blocking, lock-free algorithms 

• Example:  
final AtomicInteger counter = new 
AtomicInteger();  
 
is a good substitute for the counter class that required 
synchronized methods



         

      
         

      

Atomic variables
• java.util.concurrent.atomic provides a set of types that can be 

accessed and modified atomically, without need of 
synchronization or locks. 

• we can not miss locks 

• we can not have a deadlock, since there are no locks 

• we can implement non-blocking, lock-free algorithms 

• Example:  
final AtomicInteger counter = new 
AtomicInteger();  
 
is a good substitute for the counter class that required 
synchronized methods

Atomic types provide methods such as set/get, compareAndSet, getAndSet



         

      
         

      

Executors and Thread pools

• In small applications is OK to manually create and 
start threads, but in more complex cases it is better 
to encapsulate the creation in an Executor: 

• it separates thread management and creation 
from the rest of the application. 

• Threads are created from pools of threads, 
avoiding the creation of an excessive number of 
threads, thus keeping low the overhead



         

      
         

      

Executors
• An executor will take a runnable object and execute it:  

• e.execute(r);  

• versus 

•  (new Thread(r)).start();  

• an importante difference is that the executor will likely 
take an already existing thread to assign the runnable 
object to it. 

• The pool of thread may have a fixed or a dynamic size



         

      
         

      

Executors: example
public class EchoServer {

  public static void main(String[] args) throws 
IOException {

    class ConnectionHandler implements Runnable 
{  
     InputStream in; OutputStream out;  
     ConnectionHandler(Socket socket) throws 
IOException {  
       in = socket.getInputStream();  
       out = socket.getOutputStream();  
     }

      public void run() {  
       try {  
         int n;  
         byte[] buffer = new byte[1024];  
         while((n = in.read(buffer)) != -1) {  
           out.write(buffer, 0, n);  
           out.flush();  
         }  
       } catch (IOException e) {}  
     }  
   }

    ServerSocket server = new 
ServerSocket(4567);  
   int threadPoolSize = 
Runtime.getRuntime().availableProcessors() * 2;  
   ExecutorService executor = 
Executors.newFixedThreadPool(threadPoolSize);  
   while (true) {  
     Socket socket = server.accept();  
     executor.execute(new 
ConnectionHandler(socket));  
   }  
 }  
}



         

      
         

      

Executors: example
public class EchoServer {

  public static void main(String[] args) throws 
IOException {

    class ConnectionHandler implements Runnable 
{  
     InputStream in; OutputStream out;  
     ConnectionHandler(Socket socket) throws 
IOException {  
       in = socket.getInputStream();  
       out = socket.getOutputStream();  
     }

      public void run() {  
       try {  
         int n;  
         byte[] buffer = new byte[1024];  
         while((n = in.read(buffer)) != -1) {  
           out.write(buffer, 0, n);  
           out.flush();  
         }  
       } catch (IOException e) {}  
     }  
   }

    ServerSocket server = new 
ServerSocket(4567);  
   int threadPoolSize = 
Runtime.getRuntime().availableProcessors() * 2;  
   ExecutorService executor = 
Executors.newFixedThreadPool(threadPoolSize);  
   while (true) {  
     Socket socket = server.accept();  
     executor.execute(new 
ConnectionHandler(socket));  
   }  
 }  
}The old approach would have been: 

while (true) {  
    Socket socket = server.accept();  
    Thread handler = new Thread(new ConnectionHandler(socket));  
    handler.start(); 
}



         

      
         

      

Executors: example
public class EchoServer {

  public static void main(String[] args) throws 
IOException {

    class ConnectionHandler implements Runnable 
{  
     InputStream in; OutputStream out;  
     ConnectionHandler(Socket socket) throws 
IOException {  
       in = socket.getInputStream();  
       out = socket.getOutputStream();  
     }

      public void run() {  
       try {  
         int n;  
         byte[] buffer = new byte[1024];  
         while((n = in.read(buffer)) != -1) {  
           out.write(buffer, 0, n);  
           out.flush();  
         }  
       } catch (IOException e) {}  
     }  
   }

    ServerSocket server = new 
ServerSocket(4567);  
   int threadPoolSize = 
Runtime.getRuntime().availableProcessors() * 2;  
   ExecutorService executor = 
Executors.newFixedThreadPool(threadPoolSize);  
   while (true) {  
     Socket socket = server.accept();  
     executor.execute(new 
ConnectionHandler(socket));  
   }  
 }  
}



         

      
         

      

Executors: example
public class EchoServer {

  public static void main(String[] args) throws 
IOException {

    class ConnectionHandler implements Runnable 
{  
     InputStream in; OutputStream out;  
     ConnectionHandler(Socket socket) throws 
IOException {  
       in = socket.getInputStream();  
       out = socket.getOutputStream();  
     }

      public void run() {  
       try {  
         int n;  
         byte[] buffer = new byte[1024];  
         while((n = in.read(buffer)) != -1) {  
           out.write(buffer, 0, n);  
           out.flush();  
         }  
       } catch (IOException e) {}  
     }  
   }

    ServerSocket server = new 
ServerSocket(4567);  
   int threadPoolSize = 
Runtime.getRuntime().availableProcessors() * 2;  
   ExecutorService executor = 
Executors.newFixedThreadPool(threadPoolSize);  
   while (true) {  
     Socket socket = server.accept();  
     executor.execute(new 
ConnectionHandler(socket));  
   }  
 }  
}

How many threads ?
 
A good rule of thumb is that for computation-intensive 
tasks, you probably want to have approximately the same 
number of threads as available cores.  
Larger numbers are appropriate for I/O-intensive tasks. 



         

      
         

      

Synchronized Collections
• It is possible to transform a thread-unsafe collection 

(e.g. ArrayList) into a thread-safe version using 
wrappers like:  
public 
static <T> Collection<T> synchronizedCollection
(Collection<T> c)

• If all access is performed using the returned 
collection, then serial access through synchronized 
code is guaranteed. 
E.g.: List list = 
Collections.synchronizedList(new ArrayList());



         

      
         

      

Concurrent Collections
• The java.util.concurrent package includes several data 

structures design for concurrent access: 

• BlockingQueue defines a FIFO structure that blocks or 
times out when you attempt to add to a full queue, or 
retrieve from an empty queue. 

• ConcurrentMap is a Map with atomic operations. The 
standard implementation is ConcurrentHashMap, which 
is a concurrent analog of HashMap. 

• ConcurrentNavigableMap is a sort of ConcurrentMap 
that supports approximate matches. The standard 
implementation is ConcurrentSkipListMap, which is a 
concurrent analog of TreeMap.



         

      
         

      

Copy-on-write Collections
• Copy-on-write is a strategy to manage local 

identical copies of some information that 
occasionally is modified by some task. 
Each task receives a pointer to the data and a local 
copy is created only when new data is written.  
Other tasks do not see the modified data. 

• CopyOnWriteArrayList<E> is a thread-safe variant 
of ArrayList in which all mutative operations (add, 
set, and so on) are implemented by making a fresh 
copy of the underlying array. 

• There is also CopyOnWriteArraySet<E>



         

      
         

      

Copy-on-write Collections
• Copy-on-write is a strategy to manage local 

identical copies of some information that 
occasionally is modified by some task. 
Each task receives a pointer to the data and a local 
copy is created only when new data is written.  
Other tasks do not see the modified data. 

• CopyOnWriteArrayList<E> is a thread-safe variant 
of ArrayList in which all mutative operations (add, 
set, and so on) are implemented by making a fresh 
copy of the underlying array. 

• There is also CopyOnWriteArraySet<E>

Reconsider the alien method example using a copy-on-write data structure: 

private CopyOnWriteArrayList<ProgressListener> listeners;  
 
public void addListener(ProgressListener listener) {  
    listeners.add(listener); 
}
 
public void removeListener(ProgressListener listener) { 
    listeners.remove(listener);
}

private void updateProgress(int n) {  
    for (ProgressListener listener: listeners) 
        listener.onProgress(n);
}



         

      
         

      

Producer/Consumer: example
class FrameExtractor implements Runnable {  
  private BlockingQueue<FFMpegFrame> queue;  
  private FFMpegVideo video;

  public FrameExtractor(String videoName,  
                        BlockingQueue<FFMpegFrame> queue) {  
    video.open(videoName);  
    this.queue = queue;  
  } 

  public void run() {  
    try {  
      FFMpegFrame frame = video.getNextFrame();  
      queue.put(frame);  
    } catch (Exception e) {  
      e.printStackTrace();  
    }  
  }  
} 



         

      
         

      

Producer/Consumer: example
class FrameProcessor implements Runnable {  
  private BlockingQueue<FFMpegFrame> queue;  
  private ConcurrentMap<Integer, VisualFeature> results;  
  private VisualFeatureProcessor processor = new CNNProcessor();

  public FrameProcessor(BlockingQueue<FFMpegFrame> queue, ConcurrentMap<Integer, 
VisualFeatures> results) {  
    this.queue = queue;  
    this.results = results;  
  }

  public void run() {  
    try {  
      while(true) {  
        FFMpegFrame frame = queue.take();  
        if (frame.isNull())  
          break; 

        VisualFeature features = processor.process(frame);  
        results.put(frame.getFrameNumber(), features);  
      }  
    } catch (Exception e) {  
        e.printStackTrace();  
    }  
  }  
} 



         

      
         

      

Producer/Consumer: example
ArrayBlockingQueue<FFMpegFrame> queue = new     
    ArrayBlockingQueue<FFMpegFrame>(100);  
ConcurrentHashMap<Integer, VisualFeature> results = new  
    ConcurrentHashMap<Integer, VisualFeature>(); 

Thread consumer = new Thread(new FrameProcessor(queue, 
results));  
Thread producer = new Thread(new FrameExtractor(queue)); 

consumer.start();  
producer.start();  
producer.join();  
queue.put(new VideoFrame(Null)); // signal end  
                                 // of processing  
consumer.join(); 

1 producer and 1 consumer



         

      
         

      

Producer/Consumer: example
ArrayBlockingQueue<FFMpegFrame> queue = new     
    ArrayBlockingQueue<FFMpegFrame>(100);  
ConcurrentHashMap<Integer, VisualFeature> results = new  
    ConcurrentHashMap<Integer, VisualFeature>(); 

ExecutorService executor = Executors.newCachedThreadPool();  
for (int i = 0; i < NUM_CONSUMERS; ++i)  
  executor.execute(new FrameProcessor(queue, results));  
Thread producer = new Thread(new FrameExtractor(queue)); 

producer.start();  
producer.join();  
for (int i = 0; i < NUM_CONSUMERS; ++i)  
  queue.put(new VideoFrame(Null));  
executor.shutdown();  
executor.awaitTermination(10L, TimeUnit.MINUTES); 



         

      
         

      

Producer/Consumer: example

• Further speedup can be reached by changing the 
consumers: 

• instead of updating a shared concurrent hash 
map they can update a local hash map then 
merge the results to the global map at the end of 
the while(true) loop. 

• reducing access to shared variables increases 
parallelism…



         

      
         

      

Books

• Parallel Programming for Multicore and Cluster 
Systems, Thomas Dauber and Gudula Rünger, 
Springer - Chapt. 6 

• Principles of Parallel Programming, Calvin Lyn and 
Lawrence Snyder, Pearson - Chapt. 6


