

Parallel
Computing

Prof. Marco Bertini

Data
parallelism:

GPU computing

2D
convolution:

tile boundaries

2D Image Matrix with Automated Padding
• It is sometimes desirable to pad each row of a 2D matrix to multiples

of DRAM bursts

• So each row starts at the DRAM burst boundary

• Effectively adding columns

• This is usually done automatically by matrix allocation function

• Pitch can be different for different hardware

• Example: a 3X3 matrix padded into a 3X4 matrix 
 
Height is 3  
Width is 3  
Channels is 1 (e.g. gray level image) 
Pitch is 4

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2
height

width

pitch

Padded	
elements

Row-Major Layout with Pitch

M0,2

M1,1

M0,1M0,0

M1,0 M1,2

M0,2M0,1M0,0 M1,1M1,0 M1,2 M2,1M2,0 M2,2

M2,1M2,0 M2,2

M

Row*Pitch+Col	=	2*4+1	=	9	
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11

M

Padded	
elements

Sample image struct
// Image Matrix Structure declaration

//

typedef struct {

 int width;

 int height;

 int pitch;

 int channels;

 float* data;

} Image_t;

Setting Block Size
#define O_TILE_WIDTH 12

#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,BLOCK_WIDTH);

dim3 dimGrid((Image_Width-1)/O_TILE_WIDTH+1,
(Image_Height-1)/O_TILE_WIDTH+1, 1)

• In general, BLOCK_WIDTH should be

• O_TILE_WIDTH + (MASK_WIDTH-1)

Using constant memory and caching for Mask
• Mask is used by all threads but not modified in the convolution kernel

• All threads in a warp access the same locations at each point in time

• CUDA devices provide constant memory whose contents are aggressively
cached

• Cached values are broadcast to all threads in a warp

• Effectively magnifies memory bandwidth without consuming shared
memory

• Use of const __restrict__ qualifiers for the mask parameter informs
the compiler that it is eligible for constant caching, for example: 
 
__global__ void convolution_2D_kernel(float *P, float
*N, int height, int width, int channels,  
const float __restrict__ *M);

Shifting from output coordinates to input

coordinate
int tx = threadIdx.x;

int ty = threadIdx.y;

int row_o = blockIdx.y*O_TILE_WIDTH + ty;

int col_o = blockIdx.x*O_TILE_WIDTH + tx;

int row_i = row_o - mask_radius;

int col_i = col_o - mask_radius;

row_o for	
Thread	(0,0)

row_i for	
Thread	(0,0)

Taking Care of Boundaries (1 channel example)

if((row_i >= 0) && (row_i < height) &&

 (col_i >= 0) && (col_i < width)) {

 Ns[ty][tx] = data[row_i * width + col_i];

} else{

 Ns[ty][tx] = 0.0f;

}

• Use of width here is OK if pitch is set to width (no padding)

Calculating output
Some threads do not participate in calculating output 
 
float output = 0.0f;

if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH){

 for(i = 0; i < MASK_WIDTH; i++) {

 for(j = 0; j < MASK_WIDTH; j++) {

 output += M[i][j] * Ns[i+ty][j+tx];

 }

}

Writing output

• Some threads do not write output (1 channel
example) 
 
if(row_o < height && col_o < width)

 data[row_o*width + col_o] =  
 output;

Credits

• These slides report material from:

• NVIDIA GPU Teaching Kit

Books

• Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufman - Chapt. 8

