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Chaining MapReduce jobs
• Many complex tasks need to be broken down into 

simpler subtasks, each accomplished by an 
individual MapReduce job.  

• You can chain MapReduce jobs to run sequentially, 
with the output of one MapReduce job being the 
input to the next, similarly to Unix pipes.  

• As JobClient.runJob() blocks until the end of 
a job, chaining MapReduce jobs involves calling 
the driver of one MapReduce job after another. 



         

      
         

      

Complex dependencies
• We may have a job that depends on the outcomes of two other 

preceding jobs. We can’t use simple chaining 

• In addition to holding job configuration information, Job also holds 
dependency information, specified through the 
addDependingJob() method. For Job objects job1 and job2:  
job1.addDependingJob(job2) 

• Whereas Job objects store the configuration and dependency 
information, JobControl objects do the managing and monitoring of 
the job execution. You can add jobs to a JobControl object via the 
addJob() method. After adding all the jobs and dependencies, call 
JobControl’s run() method to spawn a thread to submit and monitor 
jobs for execution. JobControl has methods like allFinished() 
and getFailedJobs() to track the execution of various jobs within 
the batch. 



         

      
         

      

Chaining pre/post-processing  steps
• A lot of data processing tasks involve record-oriented 

preprocessing and postprocessing.  

• For example, in processing documents for information retrieval, 
you may have one step to remove stop words, and another 
step for stemming. Chaining MapReduce jobs where the 
reducer is an identity and chaining everything is impractical. 

• It is better to write the mapper to call all the preprocessing steps 
beforehand and the reducer to call all the postprocessing steps 
afterward  

• Hadoop has the ChainMapper and the ChainReducer classes 
to simplify the composition of pre- and postprocessing.  

• We can have this processing flow: MAP+ | REDUCE | MAP*
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reducer is an identity and chaining everything is impractical. 

• It is better to write the mapper to call all the preprocessing steps 
beforehand and the reducer to call all the postprocessing steps 
afterward  

• Hadoop has the ChainMapper and the ChainReducer classes 
to simplify the composition of pre- and postprocessing.  

• We can have this processing flow: MAP+ | REDUCE | MAP*

The job runs multiple mappers in sequence to preprocess the data, and after running reduce 
it can optionally run multiple mappers in sequence to postprocess the data. 



         

      
         

      

ChainMapper and ChainReducer 
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
                      true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
                      true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
                        Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
                       true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
                       true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by 
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps. 
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing 
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O. 
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public static <K1,V1,K2,V2> void
       addMapper(JobConf job,  
                 Class<? extends Mapper<K1,V1,K2,V2>> klass,
                 Class<? extends K1> inputKeyClass,
                 Class<? extends V1> inputValueClass,
                 Class<? extends K2> outputKeyClass,
                 Class<? extends V2> outputValueClass,
                 boolean byValue,
                 JobConf mapperConf)
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In the standard Mapper model, the output key/value pairs are serialized and written to 
disk, his is considered to be passed by value, as a copy of the key/value pair is sent over.  
 In the current case where we can chain one Mapper to another, we can execute the two 
in the same JVM thread. Therefore, it’s possible for the key/value pairs to be passed by 

reference, where the output of the initial Mapper stays in place in memory and the 
following Mapper refers to it directly in the same memory location.  

If you’re sure that Map1’s map() method doesn’t use the content of k and v after output, or 
that Map2 doesn’t change the value of its k and v input, you can achieve some 

performance gains by setting byValue to false. If you’re not sure of the Mapper’s 
internal code, it’s best to play safe and let byValue be true, maintaining the pass-by-

value model 



         

      

         

      

Joining data 
from different 

sources



         

      
         

      

Joins
• It may happen the necessity to pull in data from different 

sources.  

• MapReduce can perform joins between large datasets, but 
writing the code to do joins from scratch is fairly involved.  

• Rather than writing MapReduce programs, you might 
consider using a higher-level framework such as Hive, 
in which join operations are a core part of the 
implementation.  

• If the join is performed by the mapper, it is called a map-
side join, whereas if it is per- formed by the reducer it is 
called a reduce-side join. 



         

      
         

      

Map-side joins
• A map-side join between large inputs works by 

performing the join before the data reaches the map 
function.  

• The inputs to each map must be partitioned and 
sorted in a particular way.  

• Each input dataset must be divided into the same 
number of partitions, and it must be sorted by the 
same key (the join key) in each source.  

• All the records for a particular key must reside in the 
same partition. 



         

      
         

      

Reduce-side joins
• A reduce-side join is more general than a map-side join, 

in that the input datasets don’t have to be structured in 
any particular way, but it is less efficient because both 
datasets have to go through the MapReduce shuffle.  

• The mapper tags each record with its source and uses 
the join key as the map output key, so that the records 
with the same key are brought together in the reducer.  

• We need to use two techniques: 

• Multiple inputs 

• Secondary sort



         

      
         

      

Multiple Inputs

• The input sources for different datasets generally 
have different formats, so it is very convenient to 
use the MultipleInputs class to separate the 
logic for parsing and tagging each source.  

• MultipleInputs class allows you to specify 
which InputFormat and Mapper to use on a per-
path basis. 



         

      
         

      

Secondary sort
• The reducer will see the records from both sources 

that have the same key, but they are not 
guaranteed to be in any particular order. However, 
to perform the join, it is important to have the data 
from one source before another.  

• We do not want to buffer data because it could be 
too big 

• The goal of secondary sort is to perform an 
additional sort of keys, beyond that of Hadoop, that 
follows our criteria



         

      
         

      

Secondary sort
• The reducer will see the records from both sources 

that have the same key, but they are not 
guaranteed to be in any particular order. However, 
to perform the join, it is important to have the data 
from one source before another.  

• We do not want to buffer data because it could be 
too big 

• The goal of secondary sort is to perform an 
additional sort of keys, beyond that of Hadoop, that 
follows our criteria

There is a recipe to perform secondary sort: 
  

 • Make the key a composite of the natural key and a secondary key we need e.g. the 
value.  

 • The sort comparator should order by the composite key, that is, the natural key and 
secondary key.  

 • The partitioner and grouping comparator for the composite key should consider only 
the natural key for partitioning and grouping.  



         

      
         

      

Example

• Let us consider a MapReduce job that joins stock 
symbols of companies with their trade data 

• Let’s assume we have a TextPair class that 
implements WritableComparable and models 
couples of Text strings. 
This class allows secondary sort.



         

      
         

      

Stock symbol mapper
public class JoinStockNMapper  
extends Mapper<LongWritable, Text, TextPair, Text> { 

  private SymbolParser parser = new SymbolParser(); 

  @Override 

  protected void map(LongWritable key, Text value,  
     Context context) throws IOException, InterruptedException { 

    if (parser.parse(value)) { 

      context.write(new TextPair(parser.getSymbolId(), "0"),  
                    new Text(parser.getSymbolName())); 

    } 

  } 

} 



         

      
         

      

Stock symbol mapper
public class JoinStockNMapper  
extends Mapper<LongWritable, Text, TextPair, Text> { 

  private SymbolParser parser = new SymbolParser(); 

  @Override 

  protected void map(LongWritable key, Text value,  
     Context context) throws IOException, InterruptedException { 

    if (parser.parse(value)) { 

      context.write(new TextPair(parser.getSymbolId(), "0"),  
                    new Text(parser.getSymbolName())); 

    } 

  } 

} 
This data comes from table “0”, i.e. trade symbol table



         

      
         

      

Stock symbol mapper
public class JoinStockNMapper  
extends Mapper<LongWritable, Text, TextPair, Text> { 

  private SymbolParser parser = new SymbolParser(); 

  @Override 

  protected void map(LongWritable key, Text value,  
     Context context) throws IOException, InterruptedException { 

    if (parser.parse(value)) { 

      context.write(new TextPair(parser.getSymbolId(), "0"),  
                    new Text(parser.getSymbolName())); 

    } 

  } 

} 
This data comes from table “0”, i.e. trade symbol table

Input: AAPL, Apple 

Output: <AAPL, 0,> , Apple



         

      
         

      

Trade Closing Mapper
public class JoinTradeMapper  
extends Mapper<LongWritable, Text, TextPair, Text> { 

  private TradePriceParser parser = new TradePriceParser(); 

  @Override 

  protected void map(LongWritable key, Text value,  
     Context context) throws IOException, InterruptedException { 

    parser.parse(value);

    context.write(new TextPair(parser.getSymbolId(), "1"),  
                  new Text(parser.getClosingValue()+”\t”+  
                           parser.getTimeStamp()));  
  } 

} 



         

      
         

      

Trade Closing Mapper
public class JoinTradeMapper  
extends Mapper<LongWritable, Text, TextPair, Text> { 

  private TradePriceParser parser = new TradePriceParser(); 

  @Override 

  protected void map(LongWritable key, Text value,  
     Context context) throws IOException, InterruptedException { 

    parser.parse(value);

    context.write(new TextPair(parser.getSymbolId(), "1"),  
                  new Text(parser.getClosingValue()+”\t”+  
                           parser.getTimeStamp()));  
  } 

} 

This data comes from table “1”, i.e. trade prices table



         

      
         

      

Trade Closing Mapper
public class JoinTradeMapper  
extends Mapper<LongWritable, Text, TextPair, Text> { 

  private TradePriceParser parser = new TradePriceParser(); 

  @Override 

  protected void map(LongWritable key, Text value,  
     Context context) throws IOException, InterruptedException { 

    parser.parse(value);

    context.write(new TextPair(parser.getSymbolId(), "1"),  
                  new Text(parser.getClosingValue()+”\t”+  
                           parser.getTimeStamp()));  
  } 

} 

This data comes from table “1”, i.e. trade prices table

Input: AAPL, 100€, 2016-12-01 
Output: <AAPL, 1>, 100€ \t 2016-12-01 



         

      
         

      

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> { 

  @Override 

  protected void reduce(TextPair key, Iterable<Text> values, Context context)  
    throws IOException, InterruptedException { 

    Iterator<Text> iter = values.iterator(); 

    Text symbolName = new Text(iter.next()); 

    while (iter.hasNext()) { 

      Text record = iter.next();  
 
      Text outValue = new Text(symbolName.toString() + "\t" + record.toString()); 

      context.write(key.getFirst(), outValue); 

    } 

  } 

} 



         

      
         

      

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> { 
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    while (iter.hasNext()) { 

      Text record = iter.next();  
 
      Text outValue = new Text(symbolName.toString() + "\t" + record.toString()); 

      context.write(key.getFirst(), outValue); 

    } 

  } 

} 

The reducer knows that it will receive the 
stock symbol record first, so it extracts its 
name from the value and writes it out as a 

part of every output record 



         

      
         

      

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> { 
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      Text record = iter.next();  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      context.write(key.getFirst(), outValue); 

    } 

  } 

} 

The reducer knows that it will receive the 
stock symbol record first, so it extracts its 
name from the value and writes it out as a 

part of every output record 

The code assumes that every trade price ID in the trade records has exactly one matching 
record in the stock names dataset. If this were not the case, we would need to generalize the 

code to put the tag into the value objects, by using another TextPair. The reduce() method 
would then be able to tell which entries were station names and detect (and handle) missing 

or duplicate entries before processing the weather records. 



         

      
         

      

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> { 

  @Override 

  protected void reduce(TextPair key, Iterable<Text> values, Context context)  
    throws IOException, InterruptedException { 

    Iterator<Text> iter = values.iterator(); 

    Text symbolName = new Text(iter.next()); 

    while (iter.hasNext()) { 

      Text record = iter.next();  
 
      Text outValue = new Text(symbolName.toString() + "\t" + record.toString()); 

      context.write(key.getFirst(), outValue); 

    } 

  } 

} 

The reducer knows that it will receive the 
stock symbol record first, so it extracts its 
name from the value and writes it out as a 

part of every output record 

The code assumes that every trade price ID in the trade records has exactly one matching 
record in the stock names dataset. If this were not the case, we would need to generalize the 

code to put the tag into the value objects, by using another TextPair. The reduce() method 
would then be able to tell which entries were station names and detect (and handle) missing 

or duplicate entries before processing the weather records. 

Input: 
 

<AAPL, 0>, Apple 
<AAPL, 1>, 100€ \t 2016-1201 

Output: 
AAPL, Apple \t 100 \t 2016-12-01



         

      
         

      

Driver
public class JoinTradePriceRecordWithTradeName extends Configured implements Tool { 

  public static class KeyPartitioner extends Partitioner<TextPair, Text> {  
    @Override  
    public int getPartition(TextPair key, Text value, int numPartitions) {  
      return (key.getFirst().hashCode() & Integer.MAX_VALUE) % numPartitions;  
    }  
  } 

  @Override  
  public int run(String[] args) throws Exception {  
    Job job = new Job(getConf(), "Join stock name records with trade prices"); job.setJarByClass(getClass());  
    Path stocknInputPath = new Path(args[0]); Path tradepInputPath = new Path(args[1]);  
    Path outputPath = new Path(args[2]); 

    MultipleInputs.addInputPath(job, stocknInputPath, TextInputFormat.class, JoinStockNMapper.class);  
    MultipleInputs.addInputPath(job, tradepInputPath, TextInputFormat.class, JoinTradeMapper.class);  
    FileOutputFormat.setOutputPath(job, outputPath); 

 
    job.setPartitionerClass(KeyPartitioner.class);  
    job.setGroupingComparatorClass(TextPair.FirstComparator.class);  
    job.setMapOutputKeyClass(TextPair.class);  
    job.setReducerClass(JoinReducer.class);  
    job.setOutputKeyClass(Text.class);  
    return job.waitForCompletion(true) ? 0 : 1;  
  } 

  public static void main(String[] args) throws Exception {  
    int exitCode = ToolRunner.run(new JoinRecordWithStationName(), args);  
    System.exit(exitCode);  
  }  
} 
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    MultipleInputs.addInputPath(job, tradepInputPath, TextInputFormat.class, JoinTradeMapper.class);  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    job.setReducerClass(JoinReducer.class);  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  } 

  public static void main(String[] args) throws Exception {  
    int exitCode = ToolRunner.run(new JoinRecordWithStationName(), args);  
    System.exit(exitCode);  
  }  
} 

The essential point is that we partition and group on the first part of the key, the station ID, 
which we do with a custom Partitioner (KeyPartitioner) and a custom group comparator, 

FirstComparator (from TextPair). 



         

      
         

      

Books

• Learning Hadoop 2, Garry Turkington and Gabriele 
Modena, Packt Publishing - Chapt. 2 

• Hadoop The Definitive Guide, Tom White, O’Reilly - 
Chapt. 8 

• Hadoop in Action, Chuck Lam, Manning - Chapt. 5


