

Parallel
Computing

Prof. Marco Bertini

Apache
Hadoop

Chaining jobs

Chaining MapReduce jobs
• Many complex tasks need to be broken down into

simpler subtasks, each accomplished by an
individual MapReduce job.

• You can chain MapReduce jobs to run sequentially,
with the output of one MapReduce job being the
input to the next, similarly to Unix pipes.

• As JobClient.runJob() blocks until the end of
a job, chaining MapReduce jobs involves calling
the driver of one MapReduce job after another.

Complex dependencies
• We may have a job that depends on the outcomes of two other

preceding jobs. We can’t use simple chaining

• In addition to holding job configuration information, Job also holds
dependency information, specified through the
addDependingJob() method. For Job objects job1 and job2:  
job1.addDependingJob(job2)

• Whereas Job objects store the configuration and dependency
information, JobControl objects do the managing and monitoring of
the job execution. You can add jobs to a JobControl object via the
addJob() method. After adding all the jobs and dependencies, call
JobControl’s run() method to spawn a thread to submit and monitor
jobs for execution. JobControl has methods like allFinished()
and getFailedJobs() to track the execution of various jobs within
the batch.

Chaining pre/post-processing steps
• A lot of data processing tasks involve record-oriented

preprocessing and postprocessing.

• For example, in processing documents for information retrieval,
you may have one step to remove stop words, and another
step for stemming. Chaining MapReduce jobs where the
reducer is an identity and chaining everything is impractical.

• It is better to write the mapper to call all the preprocessing steps
beforehand and the reducer to call all the postprocessing steps
afterward

• Hadoop has the ChainMapper and the ChainReducer classes
to simplify the composition of pre- and postprocessing.

• We can have this processing flow: MAP+ | REDUCE | MAP*

Chaining pre/post-processing steps
• A lot of data processing tasks involve record-oriented

preprocessing and postprocessing.

• For example, in processing documents for information retrieval,
you may have one step to remove stop words, and another
step for stemming. Chaining MapReduce jobs where the
reducer is an identity and chaining everything is impractical.

• It is better to write the mapper to call all the preprocessing steps
beforehand and the reducer to call all the postprocessing steps
afterward

• Hadoop has the ChainMapper and the ChainReducer classes
to simplify the composition of pre- and postprocessing.

• We can have this processing flow: MAP+ | REDUCE | MAP*

The job runs multiple mappers in sequence to preprocess the data, and after running reduce
it can optionally run multiple mappers in sequence to postprocess the data.

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,  
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,  
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

Global JobConf

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,  
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

Global JobConf

Local JobConf

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,  
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

Global JobConf

Local JobConf

Mapper class

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,  
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

Global JobConf

Local JobConf

Mapper class

input/output class
types of the Mapper

class

ChainMapper and ChainReducer
Configuration conf = getConf();  
JobConf job = new JobConf(conf);  
job.setJobName("ChainJob");  
job.setInputFormat(TextInputFormat.class);  
job.setOutputFormat(TextOutputFormat.class);  
FileInputFormat.setInputPaths(job, in);  
FileOutputFormat.setOutputPath(job, out);  
 
JobConf map1Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class, Text.class, Text.class,  
 true, map1Conf);  
JobConf map2Conf = new JobConf(false);  
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map2Conf);  
JobConf reduceConf = new JobConf(false);  
ChainReducer.setReducer(job, Reduce.class, LongWritable.class, Text.class, Text.class,  
 Text.class, true, reduceConf);  
JobConf map3Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map3.class, Text.class, Text.class, LongWritable.class, Text.class,  
 true, map3Conf);  
JobConf map4Conf = new JobConf(false);  
ChainReducer.addMapper(job, Map4.class, LongWritable.class, Text.class, LongWritable.class,Text.class,  
 true, map4Conf);  
JobClient.runJob(job);

The chaining is Map1 | Map2 | Reduce | Map3 | Map4 and we can consider Map2 followed by
Reduce the core of MapReduce job, while the other rappers are pre and post processing steps.
Between Map2 and Reduce there’s the usual shuffling. Running all the pre- and postprocessing
steps in a single job leaves no intermediate file and there’s a dramatic reduction in I/O.

public static <K1,V1,K2,V2> void
 addMapper(JobConf job,  
 Class<? extends Mapper<K1,V1,K2,V2>> klass,
 Class<? extends K1> inputKeyClass,
 Class<? extends V1> inputValueClass,
 Class<? extends K2> outputKeyClass,
 Class<? extends V2> outputValueClass,
 boolean byValue,
 JobConf mapperConf)

Global JobConf

Local JobConf

Mapper class

input/output class
types of the Mapper

class

In the standard Mapper model, the output key/value pairs are serialized and written to
disk, his is considered to be passed by value, as a copy of the key/value pair is sent over.
 In the current case where we can chain one Mapper to another, we can execute the two
in the same JVM thread. Therefore, it’s possible for the key/value pairs to be passed by

reference, where the output of the initial Mapper stays in place in memory and the
following Mapper refers to it directly in the same memory location.

If you’re sure that Map1’s map() method doesn’t use the content of k and v after output, or
that Map2 doesn’t change the value of its k and v input, you can achieve some

performance gains by setting byValue to false. If you’re not sure of the Mapper’s
internal code, it’s best to play safe and let byValue be true, maintaining the pass-by-

value model

Joining data
from different

sources

Joins
• It may happen the necessity to pull in data from different

sources.

• MapReduce can perform joins between large datasets, but
writing the code to do joins from scratch is fairly involved.

• Rather than writing MapReduce programs, you might
consider using a higher-level framework such as Hive,
in which join operations are a core part of the
implementation.

• If the join is performed by the mapper, it is called a map-
side join, whereas if it is per- formed by the reducer it is
called a reduce-side join.

Map-side joins
• A map-side join between large inputs works by

performing the join before the data reaches the map
function.

• The inputs to each map must be partitioned and
sorted in a particular way.

• Each input dataset must be divided into the same
number of partitions, and it must be sorted by the
same key (the join key) in each source.

• All the records for a particular key must reside in the
same partition.

Reduce-side joins
• A reduce-side join is more general than a map-side join,

in that the input datasets don’t have to be structured in
any particular way, but it is less efficient because both
datasets have to go through the MapReduce shuffle.

• The mapper tags each record with its source and uses
the join key as the map output key, so that the records
with the same key are brought together in the reducer.

• We need to use two techniques:

• Multiple inputs

• Secondary sort

Multiple Inputs

• The input sources for different datasets generally
have different formats, so it is very convenient to
use the MultipleInputs class to separate the
logic for parsing and tagging each source.

• MultipleInputs class allows you to specify
which InputFormat and Mapper to use on a per-
path basis.

Secondary sort
• The reducer will see the records from both sources

that have the same key, but they are not
guaranteed to be in any particular order. However,
to perform the join, it is important to have the data
from one source before another.

• We do not want to buffer data because it could be
too big

• The goal of secondary sort is to perform an
additional sort of keys, beyond that of Hadoop, that
follows our criteria

Secondary sort
• The reducer will see the records from both sources

that have the same key, but they are not
guaranteed to be in any particular order. However,
to perform the join, it is important to have the data
from one source before another.

• We do not want to buffer data because it could be
too big

• The goal of secondary sort is to perform an
additional sort of keys, beyond that of Hadoop, that
follows our criteria

There is a recipe to perform secondary sort:

 • Make the key a composite of the natural key and a secondary key we need e.g. the
value.  

 • The sort comparator should order by the composite key, that is, the natural key and
secondary key.  

 • The partitioner and grouping comparator for the composite key should consider only
the natural key for partitioning and grouping.  

Example

• Let us consider a MapReduce job that joins stock
symbols of companies with their trade data

• Let’s assume we have a TextPair class that
implements WritableComparable and models
couples of Text strings. 
This class allows secondary sort.

Stock symbol mapper
public class JoinStockNMapper  
extends Mapper<LongWritable, Text, TextPair, Text> {

 private SymbolParser parser = new SymbolParser();

 @Override

 protected void map(LongWritable key, Text value,  
 Context context) throws IOException, InterruptedException {

 if (parser.parse(value)) {

 context.write(new TextPair(parser.getSymbolId(), "0"),  
 new Text(parser.getSymbolName()));

 }

 }

}

Stock symbol mapper
public class JoinStockNMapper  
extends Mapper<LongWritable, Text, TextPair, Text> {

 private SymbolParser parser = new SymbolParser();

 @Override

 protected void map(LongWritable key, Text value,  
 Context context) throws IOException, InterruptedException {

 if (parser.parse(value)) {

 context.write(new TextPair(parser.getSymbolId(), "0"),  
 new Text(parser.getSymbolName()));

 }

 }

}
This data comes from table “0”, i.e. trade symbol table

Stock symbol mapper
public class JoinStockNMapper  
extends Mapper<LongWritable, Text, TextPair, Text> {

 private SymbolParser parser = new SymbolParser();

 @Override

 protected void map(LongWritable key, Text value,  
 Context context) throws IOException, InterruptedException {

 if (parser.parse(value)) {

 context.write(new TextPair(parser.getSymbolId(), "0"),  
 new Text(parser.getSymbolName()));

 }

 }

}
This data comes from table “0”, i.e. trade symbol table

Input: AAPL, Apple

Output: <AAPL, 0,> , Apple

Trade Closing Mapper
public class JoinTradeMapper  
extends Mapper<LongWritable, Text, TextPair, Text> {

 private TradePriceParser parser = new TradePriceParser();

 @Override

 protected void map(LongWritable key, Text value,  
 Context context) throws IOException, InterruptedException {

 parser.parse(value);

 context.write(new TextPair(parser.getSymbolId(), "1"),  
 new Text(parser.getClosingValue()+”\t”+  
 parser.getTimeStamp()));  
 }

}

Trade Closing Mapper
public class JoinTradeMapper  
extends Mapper<LongWritable, Text, TextPair, Text> {

 private TradePriceParser parser = new TradePriceParser();

 @Override

 protected void map(LongWritable key, Text value,  
 Context context) throws IOException, InterruptedException {

 parser.parse(value);

 context.write(new TextPair(parser.getSymbolId(), "1"),  
 new Text(parser.getClosingValue()+”\t”+  
 parser.getTimeStamp()));  
 }

}

This data comes from table “1”, i.e. trade prices table

Trade Closing Mapper
public class JoinTradeMapper  
extends Mapper<LongWritable, Text, TextPair, Text> {

 private TradePriceParser parser = new TradePriceParser();

 @Override

 protected void map(LongWritable key, Text value,  
 Context context) throws IOException, InterruptedException {

 parser.parse(value);

 context.write(new TextPair(parser.getSymbolId(), "1"),  
 new Text(parser.getClosingValue()+”\t”+  
 parser.getTimeStamp()));  
 }

}

This data comes from table “1”, i.e. trade prices table

Input: AAPL, 100€, 2016-12-01
Output: <AAPL, 1>, 100€ \t 2016-12-01

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> {

 @Override

 protected void reduce(TextPair key, Iterable<Text> values, Context context)  
 throws IOException, InterruptedException {

 Iterator<Text> iter = values.iterator();

 Text symbolName = new Text(iter.next());

 while (iter.hasNext()) {

 Text record = iter.next();  
 
 Text outValue = new Text(symbolName.toString() + "\t" + record.toString());

 context.write(key.getFirst(), outValue);

 }

 }

}

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> {

 @Override

 protected void reduce(TextPair key, Iterable<Text> values, Context context)  
 throws IOException, InterruptedException {

 Iterator<Text> iter = values.iterator();

 Text symbolName = new Text(iter.next());

 while (iter.hasNext()) {

 Text record = iter.next();  
 
 Text outValue = new Text(symbolName.toString() + "\t" + record.toString());

 context.write(key.getFirst(), outValue);

 }

 }

}

The reducer knows that it will receive the
stock symbol record first, so it extracts its
name from the value and writes it out as a

part of every output record

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> {

 @Override

 protected void reduce(TextPair key, Iterable<Text> values, Context context)  
 throws IOException, InterruptedException {

 Iterator<Text> iter = values.iterator();

 Text symbolName = new Text(iter.next());

 while (iter.hasNext()) {

 Text record = iter.next();  
 
 Text outValue = new Text(symbolName.toString() + "\t" + record.toString());

 context.write(key.getFirst(), outValue);

 }

 }

}

The reducer knows that it will receive the
stock symbol record first, so it extracts its
name from the value and writes it out as a

part of every output record

The code assumes that every trade price ID in the trade records has exactly one matching
record in the stock names dataset. If this were not the case, we would need to generalize the

code to put the tag into the value objects, by using another TextPair. The reduce() method
would then be able to tell which entries were station names and detect (and handle) missing

or duplicate entries before processing the weather records.

Join Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> {

 @Override

 protected void reduce(TextPair key, Iterable<Text> values, Context context)  
 throws IOException, InterruptedException {

 Iterator<Text> iter = values.iterator();

 Text symbolName = new Text(iter.next());

 while (iter.hasNext()) {

 Text record = iter.next();  
 
 Text outValue = new Text(symbolName.toString() + "\t" + record.toString());

 context.write(key.getFirst(), outValue);

 }

 }

}

The reducer knows that it will receive the
stock symbol record first, so it extracts its
name from the value and writes it out as a

part of every output record

The code assumes that every trade price ID in the trade records has exactly one matching
record in the stock names dataset. If this were not the case, we would need to generalize the

code to put the tag into the value objects, by using another TextPair. The reduce() method
would then be able to tell which entries were station names and detect (and handle) missing

or duplicate entries before processing the weather records.

Input: 
 

<AAPL, 0>, Apple
<AAPL, 1>, 100€ \t 2016-1201

Output:
AAPL, Apple \t 100 \t 2016-12-01

Driver
public class JoinTradePriceRecordWithTradeName extends Configured implements Tool {

 public static class KeyPartitioner extends Partitioner<TextPair, Text> {  
 @Override  
 public int getPartition(TextPair key, Text value, int numPartitions) {  
 return (key.getFirst().hashCode() & Integer.MAX_VALUE) % numPartitions;  
 }  
 }

 @Override  
 public int run(String[] args) throws Exception {  
 Job job = new Job(getConf(), "Join stock name records with trade prices"); job.setJarByClass(getClass());  
 Path stocknInputPath = new Path(args[0]); Path tradepInputPath = new Path(args[1]);  
 Path outputPath = new Path(args[2]);

 MultipleInputs.addInputPath(job, stocknInputPath, TextInputFormat.class, JoinStockNMapper.class);  
 MultipleInputs.addInputPath(job, tradepInputPath, TextInputFormat.class, JoinTradeMapper.class);  
 FileOutputFormat.setOutputPath(job, outputPath);

 
 job.setPartitionerClass(KeyPartitioner.class);  
 job.setGroupingComparatorClass(TextPair.FirstComparator.class);  
 job.setMapOutputKeyClass(TextPair.class);  
 job.setReducerClass(JoinReducer.class);  
 job.setOutputKeyClass(Text.class);  
 return job.waitForCompletion(true) ? 0 : 1;  
 }

 public static void main(String[] args) throws Exception {  
 int exitCode = ToolRunner.run(new JoinRecordWithStationName(), args);  
 System.exit(exitCode);  
 }  
}

Driver
public class JoinTradePriceRecordWithTradeName extends Configured implements Tool {

 public static class KeyPartitioner extends Partitioner<TextPair, Text> {  
 @Override  
 public int getPartition(TextPair key, Text value, int numPartitions) {  
 return (key.getFirst().hashCode() & Integer.MAX_VALUE) % numPartitions;  
 }  
 }

 @Override  
 public int run(String[] args) throws Exception {  
 Job job = new Job(getConf(), "Join stock name records with trade prices"); job.setJarByClass(getClass());  
 Path stocknInputPath = new Path(args[0]); Path tradepInputPath = new Path(args[1]);  
 Path outputPath = new Path(args[2]);

 MultipleInputs.addInputPath(job, stocknInputPath, TextInputFormat.class, JoinStockNMapper.class);  
 MultipleInputs.addInputPath(job, tradepInputPath, TextInputFormat.class, JoinTradeMapper.class);  
 FileOutputFormat.setOutputPath(job, outputPath);

 
 job.setPartitionerClass(KeyPartitioner.class);  
 job.setGroupingComparatorClass(TextPair.FirstComparator.class);  
 job.setMapOutputKeyClass(TextPair.class);  
 job.setReducerClass(JoinReducer.class);  
 job.setOutputKeyClass(Text.class);  
 return job.waitForCompletion(true) ? 0 : 1;  
 }

 public static void main(String[] args) throws Exception {  
 int exitCode = ToolRunner.run(new JoinRecordWithStationName(), args);  
 System.exit(exitCode);  
 }  
}

The essential point is that we partition and group on the first part of the key, the station ID,
which we do with a custom Partitioner (KeyPartitioner) and a custom group comparator,

FirstComparator (from TextPair).

Books

• Learning Hadoop 2, Garry Turkington and Gabriele
Modena, Packt Publishing - Chapt. 2

• Hadoop The Definitive Guide, Tom White, O’Reilly -
Chapt. 8

• Hadoop in Action, Chuck Lam, Manning - Chapt. 5

