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Historical trends in CPU 
performance 

From ‘Data processing in exascale class computer systems’, C. Moore  

http://www.lanl.gov/orgs/hpc/salishan/salishan2011/3moore.pdf 



         

      
         

      

Moore’s law

• Still works for # of transistors, not for clock speed.

Year



         

      
         

      

Memory / Caches
• There’s need of hundreds of CPU cycles to access RAM. To 

avoid to wait too much for data the solution is to use: 

• Several layers of cache memory; 

• Prefetch data: even if we write a dumb loop that reads and 
operates on a large block of 64-bit (8-byte) values, the 
CPU is smart enough to prefetch the correct data before 
it’s needed. E.g. it may be possible to process at about 22 
GB/s on a 3Ghz processor.  

• A calculation that can consume 8 bytes every cycle at 
3Ghz only works out to 24GB/s (we’re losing just ~8% 
performance by having to go to main memory)



         

      
         

      

Out of Order Execution
• Since several years x86 chips have been able to 

speculatively execute and re-order execution (to avoid 
blocking on a single stalled resource).  

• But a x86 CPU is required to update externally visible states, 
like registers and memory, as if everything were executed in 
order.  

• The implementation of this involves making sure that, for any 
pair of instructions with a dependency, those instructions 
execute in the correct order with respect to each other. 

• This implies also that loads and stores to the same location 
can’t be reordered with respect to each other.



         

      
         

      

Memory / Concurrency
• x86 loads and stores have some other restrictions: 

• In particular, for a single CPU, stores are never 
reordered with other stores, and… 

• …stores are never reordered with earlier loads, 

• regardless of whether or not they’re to the same 
location. 

• However, loads can be reordered with earlier stores.In this example, and all the following, will be used the AT&T 
assembler style: OP src, dst 

Intel uses the OP dst, src format. 



         

      
         

      

Memory / Concurrency
• x86 loads and stores have some other restrictions: 

• In particular, for a single CPU, stores are never 
reordered with other stores, and… 

• …stores are never reordered with earlier loads, 

• regardless of whether or not they’re to the same 
location. 

• However, loads can be reordered with earlier stores.In this example, and all the following, will be used the AT&T 
assembler style: OP src, dst 

Intel uses the OP dst, src format. 

mov 1, [%esp]
mov [%ebx], %eax

can be executed as 

mov [%ebx], %eax
mov 1, [%esp]

but not vice-versa.



         

      
         

      

Memory / Concurrency
• The fact that loads may be reordered with older stores has an 

effect in multi-core systems: 

• Let us have x and y are in shared memory, both initialized to 
zero, while r1 and r2 are processor registers. 

• When the two threads execute on different cores, the non-
intuitive result r1 == 0 and r2 == 0 is allowed.  

• Notice that such result is consistent with the processor 
executing the loads before the stores (which access 
different locations).

Thread 0 
mov 1, [_x]
mov [_y], r1

Thread 1 
mov 1, [_y]
mov [_x], r2



         

      
         

      

Memory / Concurrency
• The fact that loads may be reordered with older stores has an 

effect in multi-core systems: 

• Let us have x and y are in shared memory, both initialized to 
zero, while r1 and r2 are processor registers. 

• When the two threads execute on different cores, the non-
intuitive result r1 == 0 and r2 == 0 is allowed.  

• Notice that such result is consistent with the processor 
executing the loads before the stores (which access 
different locations).

Thread 0 
mov 1, [_x]
mov [_y], r1

Thread 1 
mov 1, [_y]
mov [_x], r2

This may even break algorithms like the Peterson
lock that is used to perform mutual exclusion for two
threads.

The solution is to use appropriate additional x86
instructions that force the ordering of the instructions,
i.e. memory carries (aka fences)



         

      
         

      

Memory / Concurrency
• There’s also multi-core ordering. The previous restrictions all apply; if core0 is observing core1, it will see that all of the 

single core rules apply to core1’s loads and stores.  

• However, if core0 and core1 interact, there’s no guarantee that their interaction is ordered: 

• For example, say that core0 and core1 start with eax and edx set to 0, [_foo] and [_bar] in shared memory set to 
0, and core0 executes 

mov 1, [_foo] ; move 1 to the bytes in memory at address _foo

mov [_foo], %eax ; move the content of he memory addressed by _foo in EAX

mov [_bar], %edx ; move the content of he memory addressed by _bar in EDX

• while core1 executes 

mov 1, [_bar] ; move 1 to the bytes in memory at address _bar

mov [_bar], %eax ; move the content of the memory addressed by _bar in EAX

mov [_foo], %edx ; move the content of the memory addressed by _foo in EDX

• For both cores, eax has to be 1 because of the within-core dependency between the first instruction and the second 
instruction. However, it’s possible for edx to be 0 in both cores because line 3 of core0 can execute before core0 sees 
anything from core1, and vice-versa.



         

      
         

      

Locking
• In modern x86 CPUs locking is cheaper than 

memory barriers. 

• It is possible to lock some instructions using the 
lock prefix 

• In addition to making a memory transaction atomic, 
locks are globally ordered with respect to each 
other, and loads and stores aren’t re-ordered with 
respect to locks.



         

      
         

      

Memory architecture
• The importance of the memory architecture has 

increased with the advances in performance and 
architecture in CPU.  

• The CPU performance plateau is due to the 
introduction of multi-core architectures.

Source: Computer Architecture, A quantitative Approach by Hennessy and Patterson



         

      
         

      

Memory/ UMA
• Shared Memory Architecture is split up in two types: 

Uniform Memory Access (UMA), and Non-Uniform Memory 
Access (NUMA). 

• UMA: memory is shared across all CPUs. To access 
memory, the CPUs have to access a Memory Controller 
Hub (MCH). This type of architecture is limited on 
scalability, bandwidth and latency. 



         

      
         

      

Memory / NUMA
• With NUMA memory is directly attached to the CPU and 

this is considered to be local.  

• Memory connected to another CPU socket is considered 
to be remote. To access it there is need to traverse the 
interconnect and connect to the remote memory controller.  

• As a result of the different locations memory can exists, 
this system experiences “non-uniform” memory access 
time.



         

      
         

      

Memory / NUMA

• Non-uniform memory access, where memory 
latencies and bandwidth are different for different 
processors, is so common that we can we assume 
it as default. 

• Threads that share memory should be on the same 
socket, and a memory-mapped I/O heavy thread 
should make sure it’s on the socket that’s closest to 
the I/O device it’s talking to.



         

      
         

      

Memory / NUMA
• It’s hard to sync more than 4 CPUs and their caches w.r.t. memory: each 

one has to warn the others about the memory that it’s going to touch… the 
bus would saturate. 

• Multi-core CPUs have a directory to reduce the N-way peer-to-peer 
broadcast, but the problem with CPUs is still valid. 

• The simplest solution is to have each socket to control some region of 
memory. You pay e penalty performance when trying to access memory 
assigned to other chips. 

• Typically <128 CPUs system have a ring-like bus: you 1) pay the 
latency/bandwidth penalty for walking through a bunch of extra hops to 
get to memory, 2) use a finite resource (the ring-like bus) and 3) slow 
down other cross-socket accesses. 

• All this is handled by the O.S.



         

      
         

      

Context Switches / Syscalls

• A side effect of all the caching that modern cores 
have is that context switches are expensive. In 
HPC it is better to: 

• use a thread-per-core rather than thread-per-
logical-task 

• use userspace I/O stacks for very high 
performance I/O.



         

      
         

      

SIMD
• all modern x86 CPUs support SSE, 128-bit wide vector registers 

and instructions.  

• Since it’s common to want to do the same operation multiple 
times, Intel added instructions that will let you operate on  

• a 128-bit chunk of data as 2 64-bit chunks,  

• 4 32-bit chunks,  

• 8 16-bit chunks,  

• etc.  

• ARM supports the same thing with a different name (NEON).



         

      
         

      

Example: SIMD
Let us suppose to have v1 and v2 that are 4-dim float vectors, and 
we want to sum them with SSE instructions: 

movaps [v1], xmm0 ;xmm0 = v1.w | v1.z | v1.y | v1.x 

addps  [v2], xmm0 ;xmm0 = v1.w+v2.w | v1.z+v2.z    
                  ;     | v1.y+v2.y | v1.x+v2.x               

movaps xmm0, [vec_res]

it’s faster than performing 4 fadd on the single components of the 
vectors



         

      
         

      

SIMD
• Compilers are good enough at recognizing common 

patterns that can be vectorized in simple code. 

• E.g. the following code, will automatically use vector 
instructions with modern compilers: 

for (int i = 0; i < n; ++i) {

  sum += a[i];

}



         

      
         

      

SIMD
• It is possible to use directly SIMD instructions like 

SSE in C/C++, using “intrinsic” / “builtin” functions, 
that are directly mapped to CPU instructions. 

• Include the required header and ask the compiler 
to activate the required SSE level

• <mmintrin.h>  MMX 

• <xmmintrin.h> SSE 

• <emmintrin.h> SSE2 

• <pmmintrin.h> SSE3 

• <tmmintrin.h> SSSE3 

• <smmintrin.h> SSE4.1 

• <nmmintrin.h> SSE4.2 

• <ammintrin.h> SSE4A 

• <wmmintrin.h> AES 

• <immintrin.h> AVX



         

      
         

      

Simultaneous Multi Threading / 
Hyper-Threading

• Hyper-Threading Technology is a form of 
simultaneous multithreading. 

• Architecturally, a processor with HT consists of two 
logical processors per core, each of which has its 
own processor architectural state.  

• Each logical processor can be individually halted, 
interrupted or directed to execute a specified 
thread, independently from the other logical 
processor sharing the same physical core.



         

      
         

      

Simultaneous Multi Threading / 
Hyper-Threading

• The logical processors in a hyper-threaded core share the execution 
resources.  

• These resources include: 

• the execution engine 

• caches 

• system bus interface;  

• the sharing of resources allows two logical processors to work with each 
other more efficiently. 

• This works by duplicating certain sections of the processor (5% more die 
area) - those that store the architectural state - but not duplicating the main 
execution resources.



         

      
         

      

Simultaneous Multi Threading / 
Hyper-Threading

• Performance improvements are very application-dependent 

• high clock CPUs have long pipelines. The CPU scheduler may be 
optimistic to fill the pipeline with instructions, but they may not be 
executable (e.g. because of missing data) 

• a specific part of the CPU (replay system in Pentium4) catches those 
instructions that can not be executed and reissues them until they 
execute successfully, occupying the execution units 

• if the execution units sit idly (typically 66% time) it’s not a problem, but in 
HTT this interferes with the execution of the instructions of the other 
thread. 

• CPUs with a replay queue, that check if the data can be retrieved 
from the various cache levels or waits for it from memory, suffer less 
from this.



         

      
         

      

Intel Turbo-Boost
• It’s dynamic over-clocking of some Intel CPUs 

• It is activated when the operating system requests the 
highest performance state of the processor. These 
performance states are defined by the open standard 
Advanced Configuration and Power Interface (ACPI) 
specification, supported by all major operating systems. 

• The increased clock rate is limited by the processor's 
power, current and thermal limits, as well as the 
number of cores currently in use and the maximum 
frequency of the active cores 



         

      
         

      

Credits

• These slides report material from: 

• Dan Luu (Microsoft)


