

Parallel
Computing

Prof. Marco Bertini

Shared
memory:
threads

Threads: motivations
• Software Portability

• run on serial and parallel machines

• Latency Hiding

• While one thread has to wait, others can utilize CPU

• For example: file reading, message reading, reading data from higher-
level memory

• Scheduling and Load Balancing

• Large number of concurrent tasks System-level dynamic mapping to
processors

• Ease of Programming

• APIs and libraries in many different languages

Multi thread latency
C M C M C M

C M C M C M

C M C M C M
C M C M C M

C M C M C M

C M C M C M
C M C M C M

C M C M C M

C M C M C M
C M C M C M

C M C M C M

C M C M C M
C M C M C M

C M C M C M

C

M

Compute cycle

Memory access
wait cycle

Single (faster)
core

Single core

Core 1

Core 2

Core 3

Core 4

}

}

}

}

latency hiding: 3x

latency hiding: 3x

latency hiding: 3x

latency hiding: 3x

}
time

CPUs

CPUs

CPUs

time

time

Processes and threads
• Parallel programming models are often based on processors or threads.

• A process is defined as a program in execution.

• The process comprises the executable program along with all information that is
necessary for the execution of the program:

• program data on the runtime stack or the heap, the current values of the registers,
as well as the content of the program counter

• Each process has its own address space, i.e., the process has exclusive access to its
data. When two processes want to exchange data, this has to be done by explicit
communication.

• In the thread model, each process may consist of multiple independent control flows which
are called threads

• In the thread model, each process may consist of multiple independent control flows which
are called threads.

• Threads of one process share the address space of the process, i.e., they have a
common address space.

Processes and threads
• Parallel programming models are often based on processors or threads.

• A process is defined as a program in execution.

• The process comprises the executable program along with all information that is
necessary for the execution of the program:

• program data on the runtime stack or the heap, the current values of the registers,
as well as the content of the program counter

• Each process has its own address space, i.e., the process has exclusive access to its
data. When two processes want to exchange data, this has to be done by explicit
communication.

• In the thread model, each process may consist of multiple independent control flows which
are called threads

• In the thread model, each process may consist of multiple independent control flows which
are called threads.

• Threads of one process share the address space of the process, i.e., they have a
common address space.

Threads are also called light-weight processes. The term thread
comes from the concept of “thread of control”, i.e. a sequence of

statement in a program.

Process vs. Thread

PC

Stack

Code

Heap PC

Stack

Code

Heap

PC

Stack

Thread 2

Process Process with 2 threads

There are several thread APIs: Windows, Java, Linux…  
There’s also a standard: POSIX (Pthreads)

Threads: H/W and S/W
• Software threads: scheduling and context switching

performed by O.S. or library

• Hardware threads: scheduling and context switching
performed by hardware

• H/W must support separate registers and logic for each
thread

• cheap context switching

• e.g. Intel Hyperthreading: each thread appears as logical
processor.

• Common in GPUs

Threads
• When a thread stores a value in the shared address space,

another thread of the same process can access this value
afterwards.

• Very practical in multi-core programming: fast information
exchange.

• Fast to create: no need to create a new context, therefore
reduced cost for context switch.

• Threads can be provided by the runtime system as user-
level threads or by the operating system as kernel threads.

• O.S. is aware and manages kernel threads, optimizing
their allocation to cores/CPUs

Threads: states
• A thread can be in one of the following states:

• newly generated: the thread has just been generated, but has not yet per- formed any
operation;  

• executable: the thread is ready for execution, but is currently not assigned to any execution
resources;  

• running: the thread is currently being executed by an execution resource;  

• waiting: the thread is waiting for an external event to occur; the thread cannot  
be executed before the external event happens;  

• finished: the thread has terminated all its operations.  

• The transitions between the states executable and running are determined by the scheduler.
Waiting is entered because of blocking operations (e.g. I/O) or synchronization operation. The
transition from the state waiting to executable may be caused by conclusion of blocking operation
or release (by another thread) of a required resource.

Threads: states
• A thread can be in one of the following states:

• newly generated: the thread has just been generated, but has not yet per- formed any
operation;  

• executable: the thread is ready for execution, but is currently not assigned to any execution
resources;  

• running: the thread is currently being executed by an execution resource;  

• waiting: the thread is waiting for an external event to occur; the thread cannot  
be executed before the external event happens;  

• finished: the thread has terminated all its operations.  

• The transitions between the states executable and running are determined by the scheduler.
Waiting is entered because of blocking operations (e.g. I/O) or synchronization operation. The
transition from the state waiting to executable may be caused by conclusion of blocking operation
or release (by another thread) of a required resource.

Threads: data
• Different threads share a common

address space of the process they
belong to: static and dynamically
allocated data can be accessed by
all threads

• Each thread has also a private
runtime stack for controlling function
calls of this thread and to store the
local variables of these functions.

• It exists only as long as the
thread is active: it’s freed as soon
as the thread is terminated.

Threads: synchronization
• Execution of threads must be coordinated to avoid

race conditions:

• The term race condition describes the effect that
the result of a parallel execution of a program part
by multiple execution units depends on the order
in which the statements of the program part are
executed by the different units.  
In the presence of a race condition it may happen
that the computation of a program part leads to
different results, depending on whether thread T1
executes the program part before T2 or vice
versa.

Threads: synchronization
• Execution of threads must be coordinated to avoid

race conditions:

• The term race condition describes the effect that
the result of a parallel execution of a program part
by multiple execution units depends on the order
in which the statements of the program part are
executed by the different units.  
In the presence of a race condition it may happen
that the computation of a program part leads to
different results, depending on whether thread T1
executes the program part before T2 or vice
versa.

Remind: when 2 threads run simultaneously, we cannot
determine which one is first or which one is faster...

Threads: synchronization
• Program parts in which concurrent accesses to shared variables

by multiple threads may occur, thus holding the danger of the
occurrence of inconsistent values, are called critical sections.

• An error-free execution can be ensured by letting only one
thread at a time execute a critical section. This is called mutual
exclusion.

• The programmer identifies critical sections in the program and
protects them with a synchronization mechanism that is locked
when the critical section is entered and locked when the critical
section is left.

• This lock mechanism guarantees that the critical section is
entered by one thread at a time, leading to mutual exclusion.

Threads: synchronization
• Program parts in which concurrent accesses to shared variables

by multiple threads may occur, thus holding the danger of the
occurrence of inconsistent values, are called critical sections.

• An error-free execution can be ensured by letting only one
thread at a time execute a critical section. This is called mutual
exclusion.

• The programmer identifies critical sections in the program and
protects them with a synchronization mechanism that is locked
when the critical section is entered and locked when the critical
section is left.

• This lock mechanism guarantees that the critical section is
entered by one thread at a time, leading to mutual exclusion.

Lock/unlock operations must be atomic instructions,
like test-and-set, fetch-and-add or compare-and-

swap.
Intel processors can run atomically with a lock

prefix, several instructions. The lock will perform a
cache lock, and if required also a bus lock.

Threads: synchronization
• Synchronization mechanisms are provided to:

• enable a coordination, e.g., to ensure a certain
execution order of the threads or to control
access to shared data structures;

• avoid a concurrent manipulation of the same
(shared) variable by different threads, which may
lead to non-deterministic behavior.

• Different synchronization mechanisms are provided
for different situations.

Lock synchronization: lock
• Lock / mutex variables: a lock variable l can be in one of two states:

locked or unlocked.  
Two operations are provided to influence this state: lock(l) and unlock(l).  
The execution of lock(l) locks l such that it cannot be locked by another
thread; after the execution, l is in the locked state and the thread that
has executed lock(l) is the owner of l.  
The execution of unlock(l) unlocks a previously locked lock variable l;
after the execution, l is in the unlocked state and has no owner.

• To avoid race conditions for the execution of a program part, a lock
variable l is assigned to this program part and each thread executes
lock(l) before entering the program part and unlock(l) after leaving the
program part. To avoid race conditions, each of the threads must obey
this programming rule.

• Using this lock mechanism leads to sequentialization of the execution: a
lock can allow only one thread to execute a part of a program.

Lock synchronization: lock
• Lock / mutex variables: a lock variable l can be in one of two states:

locked or unlocked.  
Two operations are provided to influence this state: lock(l) and unlock(l).  
The execution of lock(l) locks l such that it cannot be locked by another
thread; after the execution, l is in the locked state and the thread that
has executed lock(l) is the owner of l.  
The execution of unlock(l) unlocks a previously locked lock variable l;
after the execution, l is in the unlocked state and has no owner.

• To avoid race conditions for the execution of a program part, a lock
variable l is assigned to this program part and each thread executes
lock(l) before entering the program part and unlock(l) after leaving the
program part. To avoid race conditions, each of the threads must obey
this programming rule.

• Using this lock mechanism leads to sequentialization of the execution: a
lock can allow only one thread to execute a part of a program.

// Note: edx register contains address of lock variable.  
// Lock variable is free if it’s 0

// move 1 into eax register
mov 1, eax

// xchg 1 with value contained in dereferenced edx
lock xchg eax, [edx] ; xchg is atomic on Intel CPU

// test if zero: it’s bitwise AND so the zero flag ZF is 0 only if eax is 0
test eax, eax

// jump if not zero (i.e. if [edx] was not 0)
jne Target

Lock synchronization: semaphore
• A semaphore is a data structure which contains an

integer counter s and to which two atomic
operations P(s) and V(s) can be applied.  
A binary semaphore s can only have values 0 or 1.
For a counting semaphore, s can have any positive
integer value.  
The operation P(s), also denoted as wait(s), waits
until the value of s is larger than 0. When this is the
case, the value of s is decreased by 1, and
execution can continue with the subsequent
instructions.  
The operation V(s), also denoted as signal(s),
increments the value of s by 1.

Lock synchronization: semaphore
• A semaphore is a data structure which contains an

integer counter s and to which two atomic
operations P(s) and V(s) can be applied.  
A binary semaphore s can only have values 0 or 1.
For a counting semaphore, s can have any positive
integer value.  
The operation P(s), also denoted as wait(s), waits
until the value of s is larger than 0. When this is the
case, the value of s is decreased by 1, and
execution can continue with the subsequent
instructions.  
The operation V(s), also denoted as signal(s),
increments the value of s by 1.

wait(s)
 critical section

signal(s).

Lock synchronization: monitor

• A monitor is a language construct which allows the
definition of data structures and access operations.

• These operations are the only means by which the
data of a monitor can be accessed.

• The monitor ensures that the access operations are
executed with mutual exclusion, i.e., at each point
in time, only one thread is allowed to execute any
of the access methods provided.

Execution control: barrier
• A barrier synchronization defines a synchronization point

where each thread must wait until all other threads have
also reached this synchronization point.

• No thread executes any statement after the
synchronization point until all other threads have also
arrived at this point.

• A barrier synchronization also has the effect that it defines
a global state of the shared address space in which all
operations specified before the synchronization point have
been executed.

• Statements after the synchronization point can be sure
that this global state has been established.

Execution control: condition

• In this approach a thread T1 is blocked until a given
condition has been established (condition
synchronization).

• Condition synchronization can be supported by
condition variables. Could/must be used together
with a lock variable to avoid race condition when
evaluating the condition.

threads and sequentialization

• A parallel program should create a sufficiently large
number of threads to provide enough work for all
cores of an execution platform, but if the number is
too large we pay an overhead for thread creation,
management, termination and access to shared
resources (e.g. cache).

• We need to use synchronization to ensure correct
behaviour, but too many synchronizations result in
sequentialization, i.e. we do not achieve
parallelism.

Deadlock
• Another possible issue with locks is deadlock: when program execution comes

into a state where each thread waits for an event that can only be caused by
another thread, but this thread is also waiting.

• Dining philosophers problem 
 
Five silent philosophers sit at a round table with bowls of rice. 
Chopsticks are placed between each pair of adjacent philosophers. 
Each philosopher must alternately think and eat.  
A philosopher can only eat when he has both  
left and right chopsticks. Each chopstick can be held by  
only one philosopher, a philosopher can use the 
chopstick only if it is not being used by another one.  
After he finishes eating, he needs to put down both  
chopsticks so they become available to others.  
A philosopher can take the chopstick on his right or the 
one on his left as they become available, but cannot  
start eating before getting both of them. 
The philosophers do not speak to each other and there is  
no arbiter organizing the resources.

Deadlock
• Another possible issue with locks is deadlock: when program execution comes

into a state where each thread waits for an event that can only be caused by
another thread, but this thread is also waiting.

• Dining philosophers problem 
 
Five silent philosophers sit at a round table with bowls of rice. 
Chopsticks are placed between each pair of adjacent philosophers. 
Each philosopher must alternately think and eat.  
A philosopher can only eat when he has both  
left and right chopsticks. Each chopstick can be held by  
only one philosopher, a philosopher can use the 
chopstick only if it is not being used by another one.  
After he finishes eating, he needs to put down both  
chopsticks so they become available to others.  
A philosopher can take the chopstick on his right or the 
one on his left as they become available, but cannot  
start eating before getting both of them. 
The philosophers do not speak to each other and there is  
no arbiter organizing the resources.

Another example of deadlock  
(similar in spirit):

Thread T1  
lock(s1);  
lock(s2);  

do work();  
unlock(s2);  
unlock(s1);

Thread T2  
lock(s2);  
lock(s1);  

do work();  
unlock(s1);  
unlock(s2);

Deadlocks
• There are four conditions associated to the creation

of deadlocks:

1. Mutual exclusion

2. Hold and wait: threads hold some resources and
request other

3. No preemption: resource can only be released by
the thread that holds it

4. Circular wait: cycle in waiting of a thread for a
resource of another

Livelock
• Similar to a deadlock, except that the states of the

processes involved in the livelock constantly
change with regard to one another, none
progressing.

• Real-world example: two people meet in a narrow
corridor, each moves aside to let the other pass,
but they end up swaying from side to side

• A risk with algorithms that detect and recover from
deadlock.

Memory access
• The transfer within the memory hierarchy can be

captured by dependencies between the memory
accesses issued by different cores. These dependencies
can be categorized as read–read dependency, read–
write dependency, and write–write dependency.

• Depending on the specific pattern of read and write
operations, not only is there a transfer from main
memory to the local caches of the cores, but there may
also be a transfer between the local caches of the cores.
Several copies of same data may reside in caches. 
The exact behavior is controlled by hardware, and the
programmer has no direct influence on this behavior.

Memory access
• The transfer within the memory hierarchy can be

captured by dependencies between the memory
accesses issued by different cores. These dependencies
can be categorized as read–read dependency, read–
write dependency, and write–write dependency.

• Depending on the specific pattern of read and write
operations, not only is there a transfer from main
memory to the local caches of the cores, but there may
also be a transfer between the local caches of the cores.
Several copies of same data may reside in caches. 
The exact behavior is controlled by hardware, and the
programmer has no direct influence on this behavior.
A cache coherence mechanism updates the copies.

False sharing
• It is an issue that arises when threads use different

objects but those objects happen to be close
enough in memory that they fall on the same cache
line, and the cache system treats them as a single
lump that is effectively protected by a hardware
write lock that only one core can hold at a time.

• This causes real but invisible performance
contention: the parallel version of the code may
become slower than the sequential version.

False sharing
• It is an issue that arises when threads use different

objects but those objects happen to be close
enough in memory that they fall on the same cache
line, and the cache system treats them as a single
lump that is effectively protected by a hardware
write lock that only one core can hold at a time.

• This causes real but invisible performance
contention: the parallel version of the code may
become slower than the sequential version.

The program becomes serial since the thread that currently has exclusive ownership, so
that it can physically perform an update to the cache line, will silently throttle other

threads that are trying to use different data that sits on the same line.

False sharing
• It is an issue that arises when threads use different

objects but those objects happen to be close
enough in memory that they fall on the same cache
line, and the cache system treats them as a single
lump that is effectively protected by a hardware
write lock that only one core can hold at a time.

• This causes real but invisible performance
contention: the parallel version of the code may
become slower than the sequential version.

The program becomes serial since the thread that currently has exclusive ownership, so
that it can physically perform an update to the cache line, will silently throttle other

threads that are trying to use different data that sits on the same line.

False sharing
• It is an issue that arises when threads use different

objects but those objects happen to be close
enough in memory that they fall on the same cache
line, and the cache system treats them as a single
lump that is effectively protected by a hardware
write lock that only one core can hold at a time.

• This causes real but invisible performance
contention: the parallel version of the code may
become slower than the sequential version.

The program becomes serial since the thread that currently has exclusive ownership, so
that it can physically perform an update to the cache line, will silently throttle other

threads that are trying to use different data that sits on the same line.

Avoiding false sharing may require aligning variables or objects in memory on cache
line boundaries. There are a variety of ways to force alignment. Some compilers

support alignment pragmas.

False sharing: what to look for
• The general case to watch out for is when you have two objects or fields

that are frequently accessed (either read or written) by different threads,
at least one of the threads is doing writes, and the objects are so close
in memory that they're on the same cache line because they are:

• objects nearby in the same array;

• fields nearby in the same object;

• objects allocated close together in time (C++, Java) or by the same
thread (Java);

• static or global objects that the linker decided to lay out close
together in memory;

• objects that become close in memory dynamically, as when during
compacting garbage collection

False sharing: what to do
1. Reduce the number of writes to the cache line. For example, writer

threads can write intermediate results to a scratch variable most of the
time, then update the variable in the popular cache line only
occasionally as needed.

2. Separate the variables so that they aren't on the same cache line.
Typically the easiest way to do this is to ensure an object has a cache
line to itself that it doesn't share with any other data. To achieve that,
you need to do two things:

• Ensure that no other object can precede your data in the same cache
line by aligning it o begin at the start of the cache line or adding
sufficient padding bytes before the object. E.g. Some compilers
support alignment pragmas.

• Ensure that no other object can follow your data in the same cache
line by adding sufficient padding bytes after the object to fill up the
line.

False sharing: what to do
1. Reduce the number of writes to the cache line. For example, writer

threads can write intermediate results to a scratch variable most of the
time, then update the variable in the popular cache line only
occasionally as needed.

2. Separate the variables so that they aren't on the same cache line.
Typically the easiest way to do this is to ensure an object has a cache
line to itself that it doesn't share with any other data. To achieve that,
you need to do two things:

• Ensure that no other object can precede your data in the same cache
line by aligning it o begin at the start of the cache line or adding
sufficient padding bytes before the object. E.g. Some compilers
support alignment pragmas.

• Ensure that no other object can follow your data in the same cache
line by adding sufficient padding bytes after the object to fill up the
line.

// C++ (using C++11 alignment syntax)
template<typename T>
struct alignas(CACHE_LINE_SIZE) cache_line_storage {

alignas(CACHE_LINE_SIZE) T data;
char pad[CACHE_LINE_SIZE > sizeof(T)
? CACHE_LINE_SIZE - sizeof(T)
: 1];

};

Credits

• These slides report material from:

• Prof. Robert van Engelen (Florida State
University)

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)

Books

• Principles of Parallel Programming, Calvin Lyn and
Lawrence Snyder, Pearson - Chapt. 6

