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Threads: motivations
• Software Portability  

• run on serial and parallel machines  

• Latency Hiding  

• While one thread has to wait, others can utilize CPU  

• For example: file reading, message reading, reading data from higher-
level memory  

• Scheduling and Load Balancing  

• Large number of concurrent tasks System-level dynamic mapping to 
processors  

• Ease of Programming  

• APIs and libraries in many different languages
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Processes and threads
• Parallel programming models are often based on processors or threads.  

• A process is defined as a program in execution. 

• The process comprises the executable program along with all information that is 
necessary for the execution of the program: 

• program data on the runtime stack or the heap, the current values of the registers, 
as well as the content of the program counter  

• Each process has its own address space, i.e., the process has exclusive access to its 
data. When two processes want to exchange data, this has to be done by explicit 
communication.  

• In the thread model, each process may consist of multiple independent control flows which 
are called threads  

• In the thread model, each process may consist of multiple independent control flows which 
are called threads. 

• Threads of one process share the address space of the process, i.e., they have a 
common address space. 
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• In the thread model, each process may consist of multiple independent control flows which 
are called threads. 

• Threads of one process share the address space of the process, i.e., they have a 
common address space. 

Threads are also called light-weight processes. The term thread 
comes from the concept of “thread of control”, i.e. a sequence of 

statement in a program.



         

      
         

      

Process vs. Thread
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There are several thread APIs: Windows, Java, Linux…  
There’s also a standard: POSIX (Pthreads)



         

      
         

      

Threads: H/W and S/W
• Software threads: scheduling and context switching 

performed by O.S. or library 

• Hardware threads: scheduling and context switching 
performed by hardware 

• H/W must support separate registers and logic for each 
thread 

• cheap context switching 

• e.g. Intel Hyperthreading: each thread appears as logical 
processor. 

• Common in GPUs



         

      
         

      

Threads
• When a thread stores a value in the shared address space, 

another thread of the same process can access this value 
afterwards.  

• Very practical in multi-core programming: fast information 
exchange. 

• Fast to create: no need to create a new context, therefore 
reduced cost for context switch. 

• Threads can be provided by the runtime system as user-
level threads or by the operating system as kernel threads.  

• O.S. is aware and manages kernel threads, optimizing 
their allocation to cores/CPUs



         

      
         

      

Threads: states
• A thread can be in one of the following states:  

• newly generated: the thread has just been generated, but has not yet per- formed any 
operation;  

• executable: the thread is ready for execution, but is currently not assigned to any execution 
resources;  

• running: the thread is currently being executed by an execution resource;  

• waiting: the thread is waiting for an external event to occur; the thread cannot  
be executed before the external event happens;  

• finished: the thread has terminated all its operations.  

• The transitions between the states executable and running are determined by the scheduler. 
Waiting is entered because of blocking operations (e.g. I/O) or synchronization operation. The 
transition from the state waiting to executable may be caused by conclusion of blocking operation 
or release (by another thread) of a required resource.
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Threads: data
• Different threads share a common 

address space of the process they 
belong to: static and dynamically 
allocated data can be accessed by 
all threads 

• Each thread has also a private 
runtime stack for controlling function 
calls of this thread and to store the 
local variables of these functions. 

• It exists only as long as the 
thread is active: it’s freed as soon 
as the thread is terminated.



         

      
         

      

Threads: synchronization
• Execution of threads must be coordinated to avoid 

race conditions: 

• The term race condition describes the effect that 
the result of a parallel execution of a program part 
by multiple execution units depends on the order 
in which the statements of the program part are 
executed by the different units.  
In the presence of a race condition it may happen 
that the computation of a program part leads to 
different results, depending on whether thread T1 
executes the program part before T2 or vice 
versa. 



         

      
         

      

Threads: synchronization
• Execution of threads must be coordinated to avoid 

race conditions: 

• The term race condition describes the effect that 
the result of a parallel execution of a program part 
by multiple execution units depends on the order 
in which the statements of the program part are 
executed by the different units.  
In the presence of a race condition it may happen 
that the computation of a program part leads to 
different results, depending on whether thread T1 
executes the program part before T2 or vice 
versa. 

Remind: when 2 threads run simultaneously, we cannot 
determine which one is first or which one is faster... 



         

      
         

      

Threads: synchronization
• Program parts in which concurrent accesses to shared variables 

by multiple threads may occur, thus holding the danger of the 
occurrence of inconsistent values, are called critical sections.  

• An error-free execution can be ensured by letting only one 
thread at a time execute a critical section. This is called mutual 
exclusion.  

• The programmer identifies critical sections in the program and 
protects them with a synchronization mechanism that is locked 
when the critical section is entered and locked when the critical 
section is left.  

• This lock mechanism guarantees that the critical section is 
entered by one thread at a time, leading to mutual exclusion. 



         

      
         

      

Threads: synchronization
• Program parts in which concurrent accesses to shared variables 

by multiple threads may occur, thus holding the danger of the 
occurrence of inconsistent values, are called critical sections.  

• An error-free execution can be ensured by letting only one 
thread at a time execute a critical section. This is called mutual 
exclusion.  

• The programmer identifies critical sections in the program and 
protects them with a synchronization mechanism that is locked 
when the critical section is entered and locked when the critical 
section is left.  

• This lock mechanism guarantees that the critical section is 
entered by one thread at a time, leading to mutual exclusion. 

Lock/unlock operations must be atomic instructions,
like test-and-set, fetch-and-add or compare-and-

swap.
Intel processors can run atomically with a lock

prefix, several instructions. The lock will perform a
cache lock, and if required also a bus lock.



         

      
         

      

Threads: synchronization
• Synchronization mechanisms are provided to: 

• enable a coordination, e.g., to ensure a certain 
execution order of the threads or to control 
access to shared data structures; 

• avoid a concurrent manipulation of the same 
(shared) variable by different threads, which may 
lead to non-deterministic behavior.  

• Different synchronization mechanisms are provided 
for different situations. 



         

      
         

      

Lock synchronization: lock
• Lock / mutex variables: a lock variable l can be in one of two states: 

locked or unlocked.  
Two operations are provided to influence this state: lock(l) and unlock(l).  
The execution of lock(l) locks l such that it cannot be locked by another 
thread; after the execution, l is in the locked state and the thread that 
has executed lock(l) is the owner of l.  
The execution of unlock(l) unlocks a previously locked lock variable l; 
after the execution, l is in the unlocked state and has no owner.  

• To avoid race conditions for the execution of a program part, a lock 
variable l is assigned to this program part and each thread executes 
lock(l) before entering the program part and unlock(l) after leaving the 
program part. To avoid race conditions, each of the threads must obey 
this programming rule.  

• Using this lock mechanism leads to sequentialization of the execution: a 
lock can allow only one thread to execute a part of a program.
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variable l is assigned to this program part and each thread executes 
lock(l) before entering the program part and unlock(l) after leaving the 
program part. To avoid race conditions, each of the threads must obey 
this programming rule.  

• Using this lock mechanism leads to sequentialization of the execution: a 
lock can allow only one thread to execute a part of a program.

// Note: edx register contains address of lock variable.  
// Lock variable is free if it’s 0 

// move 1 into eax register 
mov 1, eax

// xchg 1 with value contained in dereferenced edx 
lock xchg eax, [edx] ; xchg is atomic on Intel CPU   

// test if zero: it’s bitwise AND so the zero flag ZF is 0 only if eax is 0   
test eax, eax

// jump if not zero (i.e. if [edx] was not 0) 
jne Target



         

      
         

      

Lock synchronization: semaphore
• A semaphore is a data structure which contains an 

integer counter s and to which two atomic 
operations P(s) and V(s) can be applied.  
A binary semaphore s can only have values 0 or 1. 
For a counting semaphore, s can have any positive 
integer value.  
The operation P(s), also denoted as wait(s), waits 
until the value of s is larger than 0. When this is the 
case, the value of s is decreased by 1, and 
execution can continue with the subsequent 
instructions.  
The operation V(s), also denoted as signal(s), 
increments the value of s by 1. 
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• A semaphore is a data structure which contains an 

integer counter s and to which two atomic 
operations P(s) and V(s) can be applied.  
A binary semaphore s can only have values 0 or 1. 
For a counting semaphore, s can have any positive 
integer value.  
The operation P(s), also denoted as wait(s), waits 
until the value of s is larger than 0. When this is the 
case, the value of s is decreased by 1, and 
execution can continue with the subsequent 
instructions.  
The operation V(s), also denoted as signal(s), 
increments the value of s by 1. 

wait(s)  
  critical section 

signal(s). 



         

      
         

      

Lock synchronization: monitor

• A monitor is a language construct which allows the 
definition of data structures and access operations. 

• These operations are the only means by which the 
data of a monitor can be accessed.  

• The monitor ensures that the access operations are 
executed with mutual exclusion, i.e., at each point 
in time, only one thread is allowed to execute any 
of the access methods provided. 



         

      
         

      

Execution control: barrier
• A barrier synchronization defines a synchronization point 

where each thread must wait until all other threads have 
also reached this synchronization point.  

• No thread executes any statement after the 
synchronization point until all other threads have also 
arrived at this point.  

• A barrier synchronization also has the effect that it defines 
a global state of the shared address space in which all 
operations specified before the synchronization point have 
been executed.  

• Statements after the synchronization point can be sure 
that this global state has been established. 



         

      
         

      

Execution control: condition

• In this approach a thread T1 is blocked until a given 
condition has been established (condition 
synchronization).  

• Condition synchronization can be supported by 
condition variables. Could/must be used together 
with a lock variable to avoid race condition when 
evaluating the condition.



         

      
         

      

# threads and sequentialization

• A parallel program should create a sufficiently large 
number of threads to provide enough work for all 
cores of an execution platform, but if the number is 
too large we pay an overhead for thread creation, 
management, termination and access to shared 
resources (e.g. cache).  

• We need to use synchronization to ensure correct 
behaviour, but too many synchronizations result in 
sequentialization, i.e. we do not achieve 
parallelism.



         

      
         

      

Deadlock
• Another possible issue with locks is deadlock: when program execution comes 

into a state where each thread waits for an event that can only be caused by 
another thread, but this thread is also waiting.  

• Dining philosophers problem 
 
Five silent philosophers sit at a round table with bowls of rice. 
Chopsticks are placed between each pair of adjacent philosophers. 
Each philosopher must alternately think and eat.  
A philosopher can only eat when he has both  
left and right chopsticks. Each chopstick can be held by  
only one philosopher, a philosopher can use the 
chopstick only if it is not being used by another one.  
After he finishes eating, he needs to put down both  
chopsticks so they become available to others.  
A philosopher can take the chopstick on his right or the 
one on his left as they become available, but cannot  
start eating before getting both of them. 
The philosophers do not speak to each other and there is  
no arbiter organizing the resources. 
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no arbiter organizing the resources. 

Another example of deadlock  
(similar in spirit):

Thread T1  
lock(s1);  
lock(s2);  

do work();  
unlock(s2);  
unlock(s1); 

Thread T2  
lock(s2);  
lock(s1);  

do work();  
unlock(s1);  
unlock(s2);



         

      
         

      

Deadlocks
• There are four conditions associated to the creation 

of deadlocks: 

1. Mutual exclusion  

2. Hold and wait: threads hold some resources and 
request other  

3. No preemption: resource can only be released by 
the thread that holds it  

4. Circular wait: cycle in waiting of a thread for a 
resource of another 



         

      
         

      

Livelock
• Similar to a deadlock, except that the states of the 

processes involved in the livelock constantly 
change with regard to one another, none 
progressing.  

• Real-world example: two people meet in a narrow 
corridor, each moves aside to let the other pass, 
but they end up swaying from side to side  

• A risk with algorithms that detect and recover from 
deadlock. 



         

      
         

      

Memory access
• The transfer within the memory hierarchy can be 

captured by dependencies between the memory 
accesses issued by different cores. These dependencies 
can be categorized as read–read dependency, read–
write dependency, and write–write dependency.  

• Depending on the specific pattern of read and write 
operations, not only is there a transfer from main 
memory to the local caches of the cores, but there may 
also be a transfer between the local caches of the cores. 
Several copies of same data may reside in caches. 
The exact behavior is controlled by hardware, and the 
programmer has no direct influence on this behavior. 



         

      
         

      

Memory access
• The transfer within the memory hierarchy can be 

captured by dependencies between the memory 
accesses issued by different cores. These dependencies 
can be categorized as read–read dependency, read–
write dependency, and write–write dependency.  

• Depending on the specific pattern of read and write 
operations, not only is there a transfer from main 
memory to the local caches of the cores, but there may 
also be a transfer between the local caches of the cores. 
Several copies of same data may reside in caches. 
The exact behavior is controlled by hardware, and the 
programmer has no direct influence on this behavior. 
A cache coherence mechanism updates the copies.



         

      
         

      

False sharing
• It is an issue that arises when threads use different 

objects but those objects happen to be close 
enough in memory that they fall on the same cache 
line, and the cache system treats them as a single 
lump that is effectively protected by a hardware 
write lock that only one core can hold at a time. 

• This causes real but invisible performance 
contention: the parallel version of the code may 
become slower than the sequential version.
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False sharing
• It is an issue that arises when threads use different 

objects but those objects happen to be close 
enough in memory that they fall on the same cache 
line, and the cache system treats them as a single 
lump that is effectively protected by a hardware 
write lock that only one core can hold at a time. 

• This causes real but invisible performance 
contention: the parallel version of the code may 
become slower than the sequential version.

The program becomes serial since the thread that currently has exclusive ownership, so 
that it can physically perform an update to the cache line, will silently throttle other 

threads that are trying to use different data that sits on the same line. 

Avoiding false sharing may require aligning variables or objects in memory on cache 
line boundaries. There are a variety of ways to force alignment. Some compilers 

support alignment pragmas.



         

      
         

      

False sharing: what to look for
• The general case to watch out for is when you have two objects or fields 

that are frequently accessed (either read or written) by different threads, 
at least one of the threads is doing writes, and the objects are so close 
in memory that they're on the same cache line because they are: 

• objects nearby in the same array; 

• fields nearby in the same object; 

• objects allocated close together in time (C++, Java) or by the same 
thread (Java); 

• static or global objects that the linker decided to lay out close 
together in memory; 

• objects that become close in memory dynamically, as when during 
compacting garbage collection 



         

      
         

      

False sharing: what to do
1. Reduce the number of writes to the cache line. For example, writer 

threads can write intermediate results to a scratch variable most of the 
time, then update the variable in the popular cache line only 
occasionally as needed. 

2. Separate the variables so that they aren't on the same cache line. 
Typically the easiest way to do this is to ensure an object has a cache 
line to itself that it doesn't share with any other data. To achieve that, 
you need to do two things: 

• Ensure that no other object can precede your data in the same cache 
line by aligning it o begin at the start of the cache line or adding 
sufficient padding bytes before the object. E.g. Some compilers 
support alignment pragmas. 

• Ensure that no other object can follow your data in the same cache 
line by adding sufficient padding bytes after the object to fill up the 
line.
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you need to do two things: 

• Ensure that no other object can precede your data in the same cache 
line by aligning it o begin at the start of the cache line or adding 
sufficient padding bytes before the object. E.g. Some compilers 
support alignment pragmas. 

• Ensure that no other object can follow your data in the same cache 
line by adding sufficient padding bytes after the object to fill up the 
line.

// C++ (using C++11 alignment syntax)
template<typename T>
struct alignas(CACHE_LINE_SIZE) cache_line_storage {

alignas(CACHE_LINE_SIZE) T data;
char pad[ CACHE_LINE_SIZE > sizeof(T)
? CACHE_LINE_SIZE - sizeof(T)
: 1 ];

};



         

      
         

      

Credits

• These slides report material from: 

• Prof. Robert van Engelen (Florida State 
University) 

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)



         

      
         

      

Books

• Principles of Parallel Programming, Calvin Lyn and 
Lawrence Snyder, Pearson - Chapt. 6


