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Implicit threads: motivations
• Implicit threading frameworks and libraries take care of 

much of the minutiae needed to create, manage, and 
(to some extent) synchronize threads.  

• They greatly simplify concurrent programming 
hiding details, at the expense of expressiveness and 
flexibility. 

• So far we have seen explicit threading libraries for Java 
and C/C++ … 

• … in this lecture we are going to see an example of 
implicit threading framework for C/C++ and Fortran: 
OpenMP



         

      
         

      

Implicit threads: motivations

• OpenMP does not require restructuring the 
serial program. The use only needs to add compiler 
directives to reconstruct the serial program into a 
parallel one.  

• If no OpenMP library function is used, i.e. only 
compiler directives are used, then the structure of 
the program remains the same !



         

      
         

      

OpenMP
• OpenMP is an API for shared-memory parallel 

programming.  

• The “MP” in OpenMP stands for “multiprocessing,” a term 
that is synonymous with shared-memory parallel computing.  

• OpenMP is designed for systems in which each thread or 
process can potentially have access to all available memory. 
When using OpenMP, we view our system as a collection of 
cores or CPUs, all of which have access to main memory,  

• It’s not just a library: it’s a set of compiler directives (must be 
supported by the compiler), library routines, and 
environment variables.



         

      
         

      

OpenMP
• Compiler directives: instruct the compiler on how to 

parallelize the code. 

• This is the core of OpenMP. 

• Runtime library functions: modify and check the 
number of threads and check how may processors 
there are in the multiprocessor system. 

• Environment variables to alter the execution of 
OpenMP applications (e.g. the number of max. 
threads to use).



         

      
         

      

OpenMP and compilers
• OpenMP has to be supported by the compiler. 

• Modern C/C++ compilers support OpenMP: 

• Microsoft Visual Studio 

• Intel C/C++ for Windows and Linux 

• GCC 

• Clang 

• notable exception: Apple Clang - when programming under OS X 
install clang or gcc, e.g. using Macports or Homebrew 

• Use the latest version of compilers to use the latest standard. 
Typically Clang was lagging behind gcc but now it’s almost on parity.



         

      
         

      

OpenMP and compilers
• A compiler that support OpenMP defines the 

symbol _OPENMP 

• OpenMP is an active standard: check what version 
is supported by the compiler. 

• E.g. using task directive require support for 
OpenMP 3.0 

• Current version is 4.5



         

      
         

      

Thread model
• The OpenMP implicit threading follows the fork-join model: 

• the programmer indicates the regions of code that can be executed in 
parallel 

• when the compiled program founds those regions the main program 
continues as “main thread” and… 

• … multiple threads are forked, executing the parallel region. 

• Once a thread of this pool finishes it waits the end of the other 
threads (join) 

• When all threads have reached the “barrier” of joins the program 
continues executing the first instruction after the parallel region 

• The parallel execution mode is SPMD, but it is possible to assign 
different tasks to different threads.



         

      
         

      

Thread model
• Master thread executes serial portion of 

the code.  
• Master thread enters a routine with 

parallelized section.  
• Master thread encounters parallel 

directive.  
Creates slave threads. 

• Master and slave threads divide 
iterations of parallel code and execute 
them concurrently.  

• Implicit barrier: Wait for all threads to 
finish their iterations.  

• Master thread resumes execution after 
the parallelized code. Slave threads 
disappear. 



         

      

         

      

Sequential 
consistency



         

      
         

      

Sequential Consistency 

• It has been defined as the property that requires 
that:  
 
"... the result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by its program."



         

      
         

      

Sequential Consistency 
• The result of a parallel program is always the same 

as the sequential program, irrespective of the 
statement interleaving that is a result of parallel 
execution 

Sequential program 
 
a = 5;
x = 1;  
…
y = x+3;
…
z = x+y;

Parallel program 1 
 
a = 5;
x = 1;  
…
y = x+3;
…
z = x+y;

Parallel program n 
 
x = 1;
y = x+3;
…
a = 5;
z = x+y;
…



         

      
         

      

Sequential Consistency 
• The result of a parallel program is always the same 

as the sequential program, irrespective of the 
statement interleaving that is a result of parallel 
execution 

Sequential program 
 
a = 5;
x = 1;  
…
y = x+3;
…
z = x+y;

Parallel program 1 
 
a = 5;
x = 1;  
…
y = x+3;
…
z = x+y;

Parallel program n 
 
x = 1;
y = x+3;
…
a = 5;
z = x+y;
…

Parallel programs have any order of 
permitted statement interleaving



         

      
         

      

Flow dependances
• Flow dependences determine the parallel execution 

schedule: each operation waits until operands are 
produced 



         

      
         

      

Parallel programming constructs

• With the par construct the statements in the body 
are executed concurrently: 
 
par {  
  S1;  
  S2;  
  . . .  
  Sn;  
}



         

      
         

      

Parallel programming constructs
• With the parfor construct (also known as 
forall) the statements in the body are executed 
in serial order by n threads i=0..n-1 in parallel  
 
parfor (i=0; i<n; i++) {  
  S1;  
  S2;  
  . . .  
  Sn;  
}



         

      
         

      

Data flow and dependance
• Considering data flow, we notice that each 

operation requires completion of operands first. 
If data dependancies are preserved the sequential 
consistency is guaranteed.
par {  
  a = 5;  
  x = 1;  
}  
. . .  
y = x+3;  
. . .  
z = x+y;

x = 1;
. . .
par {  
  a = 5;  
  y = x+3;  
}  
. . .  
z = x+y;

x = 1;
. . .
par {  
  a = 5;  
  y = x+3;  
  z = x+y;  
}  
. . .



         

      
         

      

Data flow and dependance
• Considering data flow, we notice that each 

operation requires completion of operands first. 
If data dependancies are preserved the sequential 
consistency is guaranteed.
par {  
  a = 5;  
  x = 1;  
}  
. . .  
y = x+3;  
. . .  
z = x+y;

x = 1;
. . .
par {  
  a = 5;  
  y = x+3;  
}  
. . .  
z = x+y;

x = 1;
. . .
par {  
  a = 5;  
  y = x+3;  
  z = x+y;  
}  
. . .



         

      
         

      

Bernstein’s Conditions 
• Processes cannot execute in parallel if one affects values used by the 

other.  
Nor can they execute in parallel if any subsequent process uses data 
affected by both, i.e. whose value might depend on the order of 
execution. 

• Ii is the set of memory locations read by process Pi 

• Oj is the set of memory locations altered by process Pj  

• Processes P1 and P2 can be executed concurrently if all of the following 
conditions are met  

• I1 ∩ O2 = ∅  

• I2 ∩ O1 = ∅  

• O1 ∩O2 = ∅ 

These three constraints are too rigid if we want to 
share memory; however, if we provide some 

means to enforce a precedence among process 
sharing memory then we can relax them. 



         

      
         

      

Dependence analysis
• Dependence analysis performed by a compiler 

determines that Bernstein’s conditions are not violated 
when optimizing and/or parallelizing a program  
 

independent  
 

P1: A=x+y;  
P2: B=x+z;  

 
I1 ∩O2=∅  

I2 ∩ O1 = ∅  
O1 ∩O2 =∅  

RAW 
 

P1: A=x+y;  
P2: B=x+A;  

 
I1 ∩ O2 = ∅  

I2 ∩ O1 = {A} 
O1 ∩ O2 = ∅  

WAR 
 

P1: A=x+B;  
P2: B=x+z;  

 
I1 ∩ O2 = {B}  
I2 ∩ O1 = ∅  
O1 ∩ O2 = ∅  

WAW 
 

P1: A=x+y;  
P2: A=x+z;  

 
I1 ∩ O2 = ∅  
I2 ∩ O1 = ∅  

O1 ∩ O2 = {A} 



         

      
         

      

Dependence analysis
• Dependence analysis performed by a compiler 

determines that Bernstein’s conditions are not violated 
when optimizing and/or parallelizing a program  
 

independent  
 

P1: A=x+y;  
P2: B=x+z;  

 
I1 ∩O2=∅  

I2 ∩ O1 = ∅  
O1 ∩O2 =∅  

RAW 
 

P1: A=x+y;  
P2: B=x+A;  

 
I1 ∩ O2 = ∅  

I2 ∩ O1 = {A} 
O1 ∩ O2 = ∅  

WAR 
 

P1: A=x+B;  
P2: B=x+z;  

 
I1 ∩ O2 = {B}  
I2 ∩ O1 = ∅  
O1 ∩ O2 = ∅  

WAW 
 

P1: A=x+y;  
P2: A=x+z;  

 
I1 ∩ O2 = ∅  
I2 ∩ O1 = ∅  

O1 ∩ O2 = {A} 

par {  
  A=x+y;  
  B=x+z;  
}



         

      
         

      

Bernstein’s Conditions in Loops 
• A parallel loop is valid when any ordering of its 

parallel body yields the same result  

• parfor (I=4;I<7;I++)  
  S1: A[I] = A[I-3]+B[I]; 

S1(4):  A[4] = A[1]+B[4];  
S1(5):  A[5] = A[2]+B[5];  
S1(6):  A[6] = A[3]+B[6];  

S1(5): A[5] = A[2]+B[5];  
S1(4): A[4] = A[1]+B[4];  
S1(6): A[6] = A[3]+B[6];  

S1(4): A[4] = A[1]+B[4];  
S1(6): A[6] = A[3]+B[6];  
S1(5): A[5] = A[2]+B[5];  

S1(6): A[6] = A[3]+B[6];  
S1(5): A[5] = A[2]+B[5];  
S1(4): A[4] = A[1]+B[4];  

S1(6): A[6] = A[3]+B[6];  
S1(4):  A[4] = A[1]+B[4];  
S1(5):  A[5] = A[2]+B[5];  

S1(5):  A[5] = A[2]+B[5];  
S1(6):  A[6] = A[3]+B[6];  
S1(4): A[4] = A[1]+B[4]; 



         

      
         

      

Loops and parallelization
for(i=1; i<10; i++)  
  A[i] = A[i-1];// S1  

The instances of S1 can be 
executed only in sequential 
order because of flow 
dependance 

for(i=1; i<10; i++)  
  A[i] = A[i+1];// S1  

can be parallelized with: 
 
parfor(i=1;i<10;i++)  
  B[i] = A[i+1]  
 
parfor(i=1;i<10;i++)  
  A[i] = B[i] 

for(i=1; i<10; i++)  
  A[i] = A[i-k];// S1

 
allows a degree k of 
parallelization



         

      

         

      

Overview of 
OpenMP in  

C/C++



         

      
         

      

#pragma

• The #pragma directives offer a way for each 
compiler to offer machine- and operating system-
specific features.  

• If the compiler finds a pragma it does not 
recognize, it issues a warning, but compilation 
continues. 



         

      
         

      

OpenMP directive
• The general form of an OpenMP directive is  
 
#pragma omp directive [clauses [ ] ...] 

• written in a single line. Use \ to split the directive on 
more lines, as usual for preprocessor directives, e.g.: 
 
#pragma omp directive \  
        [clauses [ ] ...]

• The clauses are optional and are different for different 
directives. Clauses are used to influence the behavior 
of a directive. Directives are case sensitive.



         

      
         

      

OpenMP directive
• The general form of an OpenMP directive is  
 
#pragma omp directive [clauses [ ] ...] 

• written in a single line. Use \ to split the directive on 
more lines, as usual for preprocessor directives, e.g.: 
 
#pragma omp directive \  
        [clauses [ ] ...]

• The clauses are optional and are different for different 
directives. Clauses are used to influence the behavior 
of a directive. Directives are case sensitive.

The clause list contains information about: 

• conditional parallelization 
• degree of concurrency 
• data handling between serial/parallel code



         

      
         

      

Parallel region
• Parallel regions are indicated using a #pragma 

pre-processor directive (#pragma omp) 

• Regions are single instructions or block of code 
(indicated with { and }) 

• Example on how to parallelize a region of code: 

#pragma omg parallel  
{  
    // code  
}



         

      
         

      

Compiling with OpenMP
• Tell the compiler to use OpenMP with an 

appropriate switch 

• -fopenmp

• Both clang and gcc require this switch 

• You may need to tell the compiler where are the 
headers and libraries 

• e.g. on OSX you have to manually install them 
with Macports or Homebrew (libomp)



         

      
         

      

Compiling with OpenMP
• Tell the compiler to use OpenMP with an 

appropriate switch 

• -fopenmp

• Both clang and gcc require this switch 

• You may need to tell the compiler where are the 
headers and libraries 

• e.g. on OSX you have to manually install them 
with Macports or Homebrew (libomp)



         

      
         

      

Hello World with OpenMP



         

      
         

      

Hello World with OpenMP

pragma directive



         

      
         

      

Hello World with OpenMP

pragma directive

include directive 
to use OpenMP  
library functions



         

      
         

      

Hello World with OpenMP

pragma directive

include directive 
to use OpenMP  
library functions

OpenMP  
library functions

OpenMP  
library functions



         

      
         

      

Hello World with OpenMP

pragma directive

OpenMP  
library functions

OpenMP  
library functions



         

      
         

      

Hello World with OpenMP

OpenMP  
library functions

OpenMP  
library functions



         

      
         

      

Hello World with OpenMP



         

      
         

      

Hello World with OpenMP

Parallel code



         

      
         

      

Parallel loops
• Loops are good candidates for parallelization. 

• OpenMP has a special construct: parallel for 
to divide loop blocks to the threads of the team 

• It is possible to use dynamic scheduling (blocks 
are assigned to threads once they finish their 
previous block) or static scheduling (predefined # 
of threads each receiving only one block) 

• Use a chunk argument to set the size of each 
block



         

      
         

      

Variables and threads
• By default variables in an OpenMP threaded program are shared 

between threads, except: 

• the loop index variable associated with a loop construct (each thread 
must have its own copy in order to correctly iterate through the 
assigned set of iterations);  

• variables declared within a parallel region or declared within a 
function that is called from within a parallel region;  

• any other variable that is placed on the thread’s stack (e.g., function 
parameters).  

• If you need a local copy use a private clause (as in the previous 
example). A local copy of the variables in the list will be allocated for 
each thread. The initial value of variables that are listed within the 
private clause will be undefined, and you must assign value to them 
before they are read within the region of use. 



         

      
         

      

Synchronization
• A critical construct acts like a lock around a critical region. Only 

one thread may execute within a protected critical region at a time.  

• An atomic construct ensures that statements will be executed in an 
atomic, uninterruptible manner.  
There is a restriction on which types of statements you can use with 
the atomic construct, and you can only protect a single statement. 

• The single and master constructs will control execution of 
statements within a parallel region so that only one thread will 
execute those statements (as opposed to allowing only one thread 
at a time).  
 
- single will use the first thread that encounters the construct,  
- master will allow only the master thread (the thread that executes 
outside of the parallel regions) to execute the protected code. 



         

      
         

      

Synchronization

• A barrier directive defines a point where each 
thread waits for all other threads to arrive. Once all 
the threads arrive at that point, they can all 
continue execution past the barrier.  

• Each thread is therefore guaranteed that all the 
code before the barrier has been completed across 
all other threads. 



         

      
         

      

Reduction
• A reduction clause may help in reducing synchronization issues 

due to critical sections: often there’s need to apply the same 
operation on a shared variable… but we do not want to pay 
sync cost. 

• A reduction operator is a binary operation (such as addition 
or multiplication) and a reduction is a computation that 
repeatedly applies the same reduction operator to a sequence 
of operands in order to get a single result. Furthermore, all of 
the intermediate results of the operation should be stored in the 
same variable: the reduction variable.  

• OpenMP creates a private variable for each thread, and the run-
time system stores each thread’s result in this private variable. 
OpenMP also creates a critical section and the values stored in 
the private variables are added in this critical section. 



         

      

         

      

Overview of 
OpenMP 

directives



         

      
         

      

Parallel
• A team of threads all execute the body statements 

and joins when done  

• Note: is not the same as par  

• #pragma omp parallel  
{  
  S1;  
  S2;  
  ...  
  Sm;  
} 



         

      
         

      

shared / private clauses
• Specific clauses instruct wether variables are 

shared by thread or private, or set the default 
visibility of variables, e.g.: 
 
#pragma omp parallel default(none) \        
    shared(var1, var2) private(var3) 

• means that variables should not be shared by 
default, that var1 and var2 are shared by threads 
while var3 is private in each thread



         

      
         

      

Parallel with reduction clause
• #pragma omp parallel reduction(+:var)  
{  
  var = expr;  
  ...  
}  
... = var; 

• Performs a global reduction operation over privatized 
variable(s) and assigns final value to master’s private 
variable(s) or to the shared variable(s) when shared 



         

      
         

      

Parallel with reduction clause
• #pragma omp parallel reduction(+:var)  
{  
  var = expr;  
  ...  
}  
... = var; 

• Performs a global reduction operation over privatized 
variable(s) and assigns final value to master’s private 
variable(s) or to the shared variable(s) when shared 

+, *, -, &, ^, |, &&, ||



         

      
         

      

for loop
• An existing team of threads is used to execute a loop concurrently  

• Loop iterations are executed concurrently by n threads 
Use nowait clause to remove the implicit barrier. 

#pragma omp parallel  
. . .  
#pragma omp for  
for (i=0; i<k; i++) {  
  S1;  
  S2;  
  . . .  
  Sm;  
} 



         

      
         

      

for loop
• An existing team of threads is used to execute a loop concurrently  

• Loop iterations are executed concurrently by n threads 
Use nowait clause to remove the implicit barrier. 

#pragma omp parallel  
. . .  
#pragma omp for  
for (i=0; i<k; i++) {  
  S1;  
  S2;  
  . . .  
  Sm;  
} 

Simplify with:  
#pragma omp parallel for



         

      
         

      

for loop scheduling
• Assignment of work loads to threads is controlled 

with a schedule clause, e.g.: 

• #pragma omp for schedule(dynamic)

• When k>n, threads execute randomly chosen 
loop iterations until all iterations are completed 



         

      
         

      

for loop scheduling
• Assignment of work loads to threads is controlled 

with a schedule clause, e.g.: 



         

      
         

      

for loop scheduling
• Assignment of work loads to threads is controlled 

with a schedule clause, e.g.: 

• #pragma omp for schedule(static)

• When k>n, threads are assigned to k/n chunks of 
the iteration space  



         

      
         

      

sections
• The sections construct is for work-sharing, where a current team of 

threads is used to execute statements of each section concurrently  

#pragma omp parallel  
. . .  
#pragma omp sections  
{  
  #pragma omp section  
  S1;  
 
  #pragma omp section  
  S2;  
  . . .  
  #pragma omp section  
  Sm;  
} 



         

      
         

      

sections
• The sections construct is for work-sharing, where a current team of 

threads is used to execute statements of each section concurrently  

#pragma omp parallel  
. . .  
#pragma omp sections  
{  
  #pragma omp section  
  S1;  
 
  #pragma omp section  
  S2;  
  . . .  
  #pragma omp section  
  Sm;  
} 

Use a nowait clause to remove 
implicit barrier



         

      
         

      

sections
• The sections construct is for work-sharing, where a current team of 

threads is used to execute statements of each section concurrently  

#pragma omp parallel  
. . .  
#pragma omp sections  
{  
  #pragma omp section  
  S1;  
 
  #pragma omp section  
  S2;  
  . . .  
  #pragma omp section  
  Sm;  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sections
• The sections construct is for work-sharing, where a current team of 

threads is used to execute statements of each section concurrently  

#pragma omp parallel  
. . .  
#pragma omp sections  
{  
  #pragma omp section  
  S1;  
 
  #pragma omp section  
  S2;  
  . . .  
  #pragma omp section  
  Sm;  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sections
• The sections construct is for work-sharing, where a current team of 

threads is used to execute statements of each section concurrently  

#pragma omp parallel  
. . .  
#pragma omp sections  
{  
  #pragma omp section  
  S1;  
 
  #pragma omp section  
  S2;  
  . . .  
  #pragma omp section  
  Sm;  
} 

Simplify with: 
#pragma omp parallel sections



         

      
         

      

single execution
• The single construct selects one thread of the current team of 

threads to execute the body  

#pragma omp parallel  
. . .  
#pragma omp single  
{  
  S1;  
  S2;  
  ...  
  Sm;  
} 



         

      
         

      

master execution
• The master construct selects the master thread of the 

current team of threads to execute the body, no barrier is 
inserted   

#pragma omp parallel  
...  
#pragma omp master  
{  
  S1;  
  S2;  
  ...  
  Sm;  
} 



         

      
         

      

critical section
• The critical construct defines a critical section. Mutual 

exclusion is enforced on the body using a (named) lock  

#pragma omp parallel  
. . .  
#pragma omp critical [name]  
{  
  S1;  
  S2;  
  . . .  
  Sm;  
} 



         

      
         

      

barrier synchronization
• The barrier construct synchronizes the current 

team of threads  

#pragma omp parallel 

... 

#pragma omp barrier



         

      
         

      

atomic execution
• The atomic construct executes an expression 

atomically (expressions are restricted to simple 
updates)  

#pragma omp parallel  
...  
#pragma omp atomic  
expression; 



         

      
         

      

Locking
• Mutex locks, with additional “nestable” versions of locks that 

can be locked multiple times by the same thread  

omp_lock_t lck;  
 
omp_init_lock(&lck);  
omp_set_lock(&lck);  
...  
... critical section ...  
...  
omp_unset_lock(&lck);  
omp_destroy_lock(&lck);



         

      
         

      

Credits

• These slides report material from: 

• Prof. Robert van Engelen (Florida State 
University) 

• Prof. Jan Lemeire (Vrjie Universiteit Brussel) 

• Prof. Robert M. Keller (Harvey Mudd College)



         

      
         

      

Books
• The Art of Concurrency, Clay Breshears, O’Reilly - 

Chapt. 5 

• Principles of Parallel Programming, Calvin Lyn and 
Lawrence Snyder, Pearson - Chapt. 6 

• Parallel Programming for Multicore and Cluster 
Systems, Thomas Dauber and Gudula Rünger, 
Springer - Chapt. 6 

• An introduction to parallel programming, Peter S. 
Pacheco, Morgan Kaufman - Chapt. 5


