
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Const correctness

What is const correctness ?

• It is a semantic constraint, enforced by the
compiler, to avoid modification of a particular
object marked as const

• const can be used in various scopes:

• outside of classes at global/namespace scope: 
 
const double AspectRatio = 1.653;  
// much better than a C style define:  
#define ASPECT_RATIO 1.653

Class constants
• It’s usable for static objects at file, function and

block level

• It’s usable also for class specific constants, e.g. for
static and non-static data members:  
 
class VideoFrame {  
private:  
 static const int PALFrameRate;  
 ...  
};  
const int VideoFrame::PALFrameRate = 25;

Pointers and constancy

• We can specify that a pointer is constant, that
the data pointed to is constant, that both are
constant (or neither):  
 
char greeting[] = “Hello”;  
char* p = greeting; // nothing is constant  
 
const char* p = greeting; //non-const pointer  
 // const data  
char* const p = greeting; // const pointer  
 // non-const data  
const char* const p = greeting; // everything is const

Pointers and constancy - cont.

• If const appears to the left of * then what
is pointed to is constant, if it’s on the right
then the pointer is constant:  
 
const char* const p means that p is
a constant pointer to constant chars

• according to this writing char const*
p is the same of const char* p

References and constancy

• You can not change an alias, i.e. you can’t
reassign a reference to a different object, so:  
 
Fred& const x makes no sense (it’s the
same thing of Fred& x), however:  
 
const Fred& x is OK: you can’t change
the Fred object using the x reference.

Functions and constancy
• The most powerful use of const is its application to

function declarations: we can refer to function return
value, function parameters and (for member functions)
to the function itself

• Helps in reducing errors, e.g. you are passing an object
as parameter using a reference/pointer and do not
want to have it modified:  
 
void foo(const bar& b);  
// b can’t be modified  
// use const params whenever possible

const return value
• Using a const return value reduces errors in client code, e.g.:  
 
class Rational { //...};  
const Rational operator*( 
 const Rational& lhs,  
 const Rational& rhs  
);  
 
Rational a,b,c;  
// let’s say we missed an =  
// to make a comparison...  
(a*b)=c; // it’s now illegal thanks to  
 // const return value !

const return value - cont.

• When returning a reference probably it’s better to
return it as constant or it may be used to modify
the referenced object:  
 
class Person {  
public:  
 string& badGetName() {  
 return name;  
 }  
 //...  
private:  
 string name;  
};  
 
void myCode(Person& p) {  
 p.badGetName() = “Igor”; // can change the name  
 // attribute of Person  
}

const member functions

• The purpose of const member functions is
to identify which functions can be invoked
on const objects.  
These functions inspect and do not mutate
an object.

• NOTE: it’s possible to overload methods
that change only in constancy ! 
It’s useful if you need a method to inspect
and mutate with the same name

const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
 return text[pos];  
 }  
 char& operator[](size_t pos) { // has to be reference  
 return text[pos]; // to be modifiable:  
 } // C++ returns by value !  
private:  
 string text;  
};

• this is useful when dealing with objects that are
passed as const references: 
 

void print(const TextBlock& ctb, size_t pos) {  
 cout << ctb[pos]; // calls the const version of []  
};

const member functions - cont.

• C++ compilers implement bitwise constancy, but
we are interested in logical constancy, e.g. the
const reference return value seen before or we
may need to modify some data member within a
const method (declared mutable):  

class TextBlock {  
public:  
 size_t length() const;  
private:  
 string text;  
 mutable size_t _length;  
 mutable bool isValidLenght;  
};  
 

size_t TextBlock::length()
const {  
 if(!isValidLengt) {  
 _length=text.size();  
 isValidLength=true;  
 }  
 return _length;  
}  

const member functions - cont.

• To avoid code duplication between const
and non-const member functions that have
the same behaviour can be solved:

• putting common tasks in private methods
called by the two versions of the const/
non-const methods

• casting away constancy, with the non-const
method calling the const method (see
later)

C++ and casting

C++ casting

• C++ casts are more restricted than C style
casts

• In general the lesser we cast the better: C++
is a type safe language and casts subvert this
behaviour

• e.g. const_cast can be used to eliminate
code duplication: the benefits are worth the
risk

C and C++ casts
• C style casts, to cast an expression to be of type T:

• (T) expression

• T(expression)

• C++ style casts:

• static_cast<T>(expression)

• dynamic_cast<T>(expression)

• const_cast<T>(expression)

• reinterpret_cast<T>(expression)

static_cast
• static_cast forces implicit conversions,

such as non-const objects to const objects (as
seen in const/non-const methods), int to double,
void* to typed pointers, pointer-to-base to
pointer-to-derived (but no runtime check).

• it’s the most useful C++ style cast  
 

int j = 41;  
int v = 4;  
float m = j/v; // m = 10  
float d = static_cast<float>(j)/v; // d = 10.25  
 

BaseClass* a = new DerivedClass();  
static_cast<DerivedClass*>(a)->derivedClassMethod();

static_cast - cont.

• Prefer static_cast over C style cast, because we get the type safe conversion of C++:  
 
class MyClass : public MyBase {...};  
class MyOtherStuff {...} ;  
MyBase *pSomething; // filled somewhere  
MyClass *pMyObject;  
pMyObject = static_cast<MyClass*>(pSomething);  
// Safe, as long as we checked  
pMyObject = (MyClass*)(pSomething); // Same as static_cast<>  
// Safe; as long as we checked but harder to read  
MyOtherStuff *pOther;  
pOther = static_cast<MyOtherStuff*>(pSomething);  
// Compiler error: Can't convert  
pOther = (MyOtherStuff*)(pSomething); // No compiler error.
 // Same as reiterpret_cast<> and it's wrong!!!

dynamic_cast
• dynamic_cast performs safe (runtime check)

downcasting: i.e. determines if an object is of a
particular type in an inheritance hierarchy.

• it has a runtime cost depending on the
compiler implementation

 
class Window { //... };  
class SpecialWindow :
public Window {  
public:  
 void blink();  
};  
 

Window* pW;  
//...pW may point to whatever object  
// in Window hierarchy  
 
if(SpecialWindow*
pSW=dynamic_cast<SpecialWindow*>pw)  
 pSW->blink();

const_cast

• const_cast is used to cast away the
constness of an object

• It’s the only cast that can do it

const member functions

• Let’s review again how to avoid code
duplication between const and non-const
member functions...

• the non-const method calls the const
method and then cast away its constancy
with const_cast

const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
 //... checks over boundaries, etc.  
 //...  
 return text[pos];  
 }  
 char& operator[](size_t pos) {  
 return  
 const_cast<char&>(// take away constancy  
 static_cast<const TextBlock&>(*this)[pos] // add constancy  
);  
 }  
 //...  
};

const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
 //... checks over boundaries, etc.  
 //...  
 return text[pos];  
 }  
 char& operator[](size_t pos) {  
 return  
 const_cast<char&>(// take away constancy  
 static_cast<const TextBlock&>(*this)[pos] // add constancy  
);  
 }  
 //...  
};

Don’t panic: first cast to const, to call
the const method, then remove const-
ness

reinterpret_cast
• reinterpret_cast is used for low-level

casts, e.g. to perform conversions between
unrelated types, like conversion between
unrelated pointers and references or
conversion between an integer and a pointer.

• It produces a value of a new type that has the
same bit pattern as its argument. It is useful to
cast pointers of a particular type into a void*
and subsequently back to the original type.

• may be perilous: we are asking the compiler
to trust us...

Reading material

• L.J. Aguilar, “Fondamenti di programmazione in
C++. Algoritmi, strutture dati e oggetti” - pp.
84, pp. 125-128

• D.S. Malik, "Programmazione in C++” - pp.
43-45, 47-48

• Thinking in C++, 2nd ed. Volume 1, pp.
165-167, 181-186

Credits

• These slides are based on the material of:

• Marshall Cline, C++ FAQ Lite

• Scott Meyers, “Effective C++”, 3rd edition,
Addison-Wesley

