
Hardware-software Implementation of quantised
Siamese Neural Networks for Energy Efficient

Real-Time Object Tracking – a demo
Dominika Przewlocka-Rus
AGH University of Science

and Technology Krakow, Poland
E-mail: dprze@agh.edu.pl

Daniel Gacek
AGH University of Science

and Technology Krakow, Poland
E-mail: danielgacek97@gmail.com

Tomasz Kryjak, Senior Member IEEE
AGH University of Science

and Technology Krakow, Poland
E-mail: tomasz.kryjak@agh.edu.pl

Abstract—This demo presents a hardware-software object
tracking system based on a Siamese neural network. With the
use of Brevitas and FINN tools, the selected neural network
was quantised and then deployed on the ZCU 104 board,
with the Zynq UltraScale+ MPSoC device from Xilinx. The
obtained results indicate that appropriate quantisation allows to
significantly reduce the size and computational complexity of the
model, with a relatively small impact on tracking effectiveness.

I. INTRODUCTION

Object tracking is one of the basic functionalities in modern
vision systems. The aim is to determine the trajectory of
an object, or objects, moving on the scene, usually after
providing the algorithm with information about its features
– e.g. by selecting a bounding box in the first frame. Tracking
algorithms performance has improved significantly in recent
years – mainly due to the use of deep convolutional neural
networks. Nevertheless, it is still one of the most complex
vision problems, especially if the system needs to run on an
embedded platform with a limited energy budget.

II. SIAM-BASED TRACKING

A Siamese neural network is a concept of building a model
that ”specialises” in comparing two images. This model con-
sists of two branches with identical, in terms of architecture,
networks – hence the name Siamese. For tracking, these
networks can be fully convolutional (without fully connected
layers) [1] so that (1) it is possible to compare images of
different sizes; (2) the output from the network is a three-
dimensional representation of the input. During tracking, two
images are presented to the network: the template and a
search window. The template is obtained during the mentioned
initialisation (in the simplest variant). The second is a region
of interest (ROI) in the current image where we expect to
find the object. It is selected based on the previous location
of the object. The feature maps obtained for the ROI and the
tracked object are finally cross-correlated. As a result, a heat-
map is formed, the maximum of which indicates the probable
new location of the tracked object. In the proposed solution,
it was decided to develop a network based on the AlexNet
architecture as in [1].

Fig. 1. Hardware-software implementation of tracking using Siamese neural
networks. The green arrows indicate the initialisation stage.

III. THE PROPOSED OBJECT TRACKING SYSTEM

An overview of the proposed hardware-software system
is presented in Figure. 1. The choice of architecture was
determined by the characteristics of the target computing
platform – ZCU 104 with the Zynq UltraScale+ MPSoC device
from Xilinx – and the capabilities of the FINN quantised
neural network implementation tool.

In the current version, the input images are saved on an SD
card, ultimately their source should be a camera. At first, the
sequences are loaded into the memory of the processor system
(PS). Next the appropriate image fragment – the selected
object in case of initialisation or the search window – is sent
to the programmable logic (PL) via DMA. In the PL part,
the forward pass of the network is computed and the feature
map for a given image returned to the PS where correlation
is performed. Finally a similarity map is computed, and the
new object location is determined. In the presented hardware-
software system, the PYNQ framework was used. It provides
an appropriate abstraction of operations enabling easy read
and write access from memory and supports the FINN tool.

A. Optimisation of the SIAM network

Deep neural networks are complex algorithms, both compu-
tationally and memory-wise. Their use in embedded devices
with limited resources and energy budget is challenging. Apart



TABLE I
TRACKING PERFORMANCE OF THE QUANTISED NETWORK

Exp FL HL LL AF Pr mIoU mCE
X1 1 FP32 FP32 FP32 FP32 0.491 0.369 95.331
X1 2 INT8 INT16 INT8 INT32 0.474 0.361 98.812
X1 3 INT8 INT8 INT8 INT32 0.486 0.368 96.016
X1 4 INT8 INT4 INT8 INT32 0.482 0.369 98.651
X1 5 INT8 INT2 INT8 INT32 0.491 0.373 96.446
X1 6 INT8 BINARY INT8 INT32 0.457 0.346 103.604

TABLE II
TRACKING PERFORMANCE OF THE QUANTISED NETWORK

ARCHITECTURES SUPPORTED BY FINN

Exp HL AF Pr mIoU mCE
X2 1 INT2 INT8 0.485 0.364 100.272
X2 2 INT2 INT4 0.476 0.360 93.953
X2 3 INT2 INT2 0.431 0.323 101.109

from the obvious solution of limiting the size of the model,
quantisation is now often used. It assumes changing the
used numeric representation from floating point to fixed point
with limited precision. For quantisation, weights, activation
functions and sometimes input data can be chosen.

Network quantisation can be done in two ways. The first
assumes that the model is trained on single or double precision
floating point numbers and only then quantised. This usually
results in a loss of precision, but can significantly reduce
computational and memory complexity. The second option
is to train a model with quantised weights. This is a more
time-consuming option (selecting the appropriate precision,
sometimes individually for each layer), but it allows for better
effectiveness. As an additional advantage of quantisation, the
overfitting prevention should be mentioned. For the conducted
experiments the Xilinx Brevitas tool was used [3].

Table I shows the tracking performance after quantisation
of the Siamese network. The model was trained on data from
the ILSVRC15 dataset, same as in [1]. The evaluation was
performed on data from TempleColor, VOT14, and VOT16
datasets (without the OTB sequence). The subsequent rows
of the table show the results of experiments with varying
precision in the following layers: input (FL), hidden (HL), last
(LL) and activation (AF). The effectiveness of the tracker was
measured by precision (PR – location error below a preset
pixel threshold), average IoU (mIoU) and average Centre
Error (mCE). Experiment X1 1 is the reference (without
quantisation). For other networks, the number of bits in the
first and last layer remained unchanged and was equal to 8
bits. For the activation layer, the output precision was set to
32 bits. Analysing the results, only a slight decrease in the
effectiveness of the algorithm can be noticed, even in the case
of firm quantisation of the network weights.

B. Implementation of the SIAM network

The FINN [2] tool was used to implement the Siamese
convolutional network in the programmable logic of the Zynq

device. This tool, in its current version (October 2020) imposes
some limitations on hardware-realisable networks: (1) network
weights must be quantised to INT2 or binary, (2) the activation
function can be of the following type: INT16, INT8, INT4,
INT2. Table II presents the results for selected architectures
supported by FINN. In addition, the first layer must be an
activation layer – however, when the input is represented by
non-negative values, the ReLU activation can be treated as
”null”, i.e. it does not affect the input data. It is also important
to note that there is no need to realise the Siamese network
as actually a two-branch network. After initialisation, it is
only needed to store the network representation of the object
(template), and then, using only one branch, process the ROI.

C. Tracking

The first step is initialisation, i.e. determining the repre-
sentation of the tracked object. Using the manually selected
bounding box, the object is cropped from the first frame,
square-padded (if needed), and scaled to 127x127. The object
in this form is presented to the network, and then its represen-
tation in the form of a feature map is stored in the memory.
In subsequent frames, based on the previous location of the
object, the ROI is cropped. Its basic size is set to 255x255.
Nevertheless, if one wants to take into account a possible
change in the size of the object, one needs to analyse several
ROIs of different sizes (i.e. different scales). After computing
the feature map for the ROI, the cross-correlation is computed.
Then, the obtained heat-maps are analysed and the one for
which the object indication was the best (the probability was
the highest) is selected. Depending on the best scale value, the
width and height of the new bounding box is updated.

IV. CONCLUSIONS

In this demonstration, a hardware-software tracking system
using a Siamese network, implemented on the ZCU 104 board
with the Zynq UltraScale+ MPSoC device was presented. The
neural network was quantised, which allowed for the accelera-
tion of calculations and the deployment in programmable logic
of the used platform. A slight decrease in efficiency compared
to the reference solution, with a simultaneous significant
reduction in model size and energy consumption, indicates
the validity and usefulness of the applied approach. During
the demo we will present the tracking system running on the
ZCU 104 board.

ACKNOWLEDGEMENT

The work presented in this paper was supported by the
National Science Center project no. 2016/23/D/ST6/01389.

REFERENCES

[1] Luca Bertinneto et al. Fully-Convolutional Siamese Networks for Object
Tracking, 2016.

[2] FINN homepage, https://xilinx.github.io/finn/. Last accessed 2nd Novem-
ber 2020

[3] Brevitas homepage, https://xilinx.github.io/brevitas/. Last accessed 2nd
November 2020


