DeepFake Cracker: a novel tool
for deepfake video detection

Irene Amerini, Luca Maiano

Abstract—Recently, visual media technology has achieved
impressive results; new tools for processing and, above all,
generating multi-media contents have been developed. In par-
ticular, modern Al-based technologies have provided easy-to-use
instruments to create extremely realistic manipulated videos.
Such synthetic videos, named Deep Fakes, may constitute a
serious threat to attack the reputation of public people or to
address the public opinion on a certain event. According to this,
being able to individuate such fake information becomes crucial.
In this demo, the DeepFake Cracker is presented: a novel forensic
tool able to discern between fake and original video sequences.
Unlike other state-of-the-art methods which resort to single video
frames to perform detection, we propose the adoption of optical
flow fields to exploit possible inter-frame dissimilarities. Such a
clue is then used as feature to be learned by CNN classifiers.

I. INTRODUCTION

Deep learning techniques are escalating technology so-
phistication regarding creation and processing of multimedia
contents. A new phenomenon, known as Deep Fakes (DF), has
recently emerged: it permits to quite simply create realistic
videos. In particular, people faces, or sometimes only lips and
eyes movements, are substituted or modified in order to likely
simulate the presence of another subject in a certain context
or to make someone speak coherently with a different and,
probably compromising, speech. The effects can be straight-
forwardly imagined when this fake information is deliberately
used to harm a person such a public figure or a politician, or
even an organization like a political party. The impact of Deep
Fakes can also be amplified by the action of social networks
that deliver information quickly and worldwide. According to
this, machine learning community has dedicated a particular
and twofold attention to this phenomenon. From one side,
an effort has been spent to develop new kinds of effective
synthesized video generation techniques such as Face2Face
[1], Deep Video Portraits [2], StarGAN [3] and Deep Fake'
among others. From another side, various studies have lastly
focused on the problem to detect deepfake-like videos; most of
them by analyzing possible inconsistencies within RGB frames
of the video [4], [5], [6]. Usually, well established and pre-
trained CNN techniques are directly applied to learn distinctive
features from each single frame of the sequence. In [7], a
recurrent convolutional strategy is used for face manipulation
detection where a group of frames is evaluated as an ensemble.
Other approaches consider physical characteristics, like eye
blinking, [8] or biological signal [9].

! Deepfakes: github.https:/github.com/deepfakes/faceswap.

Roberto Caldelli

Sapienza University of Rome, Italy Universitas Mercatorum and CNIT, Italy

Leonardo Galteri, Alberto del Bimbo
University of Florence, Italy

In this demo, the DeepFake Cracker tool is presented exploit-
ing a new technique able to detect deepfake-like videos from
original ones. In particular, unlike state-of-the-art methods
which usually act in a frame-based fashion, we employ a
sequence-based approach dedicated to investigate possible
dissimilarities in the temporal structure of a video. Specifically,
optical flow fields have been extracted to exploit inter-frame
correlations to be analyzed by a CNN classifier.

II. THE REFERENCE METHOD

The proposed approach [10] is based on optical flow fields
and it exploits their capacity to distinguish a deepfake from an
original video. Optical flow [11], [12] is a vector field which
is computed on two consecutive frame f(¢) and f(t + 1) to
extract apparent motion between the observer and the scene
itself. In particular, the hypothesis behind such a method is
that the optical flow is able to grab motion discrepancies
across synthetically created frames with respect to those
naturally generated by a video camera. It should be more
appreciable in the optical flow matrices, the introduction of
fake and unusual movements of the lips, eyes and in general
of the whole face. So, for this reason, for each frame of
a video sequence f(t), at a certain time t, a forward flow
OF(f(t), f(t+ 1)) is computed and passed, as input feature
to be learnt, to a pre-trained CNN. In our experiments, we
have tested VGG16 [13], ResNet50 [14] and XceptionNet [15]
as backbones.

III. THE DEMONSTRATION TOOL

The DeepFake Cracker tool presented here, relies on our
approach [10], based on optical flow, and drafted in the
previous section. Such a tool is built on top of a trained
model and will allow the users to put their hands on an actual
detection phase of deepfake videos. In particular, in this case
the convolutional neural network that has been selected is
ResNet50 which has been fine-tuned on the Forensic++ dataset
[5]. The demo is structured onto three main phases: the upload
phase, the processing phase and the verification phase; all of
them are described in the following subsections.

A. The upload phase

DeepFake Cracker presents an interface (see Figure 1) that
basically permits, by means of a double button, to simply



switch between the video upload phase and the succes-
sive deepfake detection. Videos can be uploaded either by
drag&drop or by browsing and then selecting a file. It is
also possible to choose to upload multiple videos; this is
particularly interesting when two videos that appear to be
similar are to be compared and could constitute, for instance,
the original source video and the deepfake one.

Load Videos

Drag here some files

or
click to upload

Fake

Fig. 1. The DeepFake Cracker interface: the upload phase

B. The processing phase

By switching to the processing phase (see Figure 2) by
clicking on the button check on the top of the interface, it
is possible to run the detection operation which starts with
the optic flow extraction from the videos to be checked and
proceeds by passing these features to the trained model which
performs prediction. Detection results (frame-by-frame) are
saved and can be downloaded for a more in-depth analysis.
The optical flow computation is inevitably quite cumbersome

Load Videos

Download Results

Fig. 2. The DeepFake Cracker interface: the processing phase

with respect to the rest, so to grant execution times, compatible
with the demo, such data can be calculated once for all and
then charged according to the selected video to be analyzed.

C. The verification phase

The verification phase, reported in Figure 3, is the final step
of the procedure. A pop-up window appears when the whole
computation is completed; the frames that have been checked
are now available and can be analyzed. The area around the

face is highlighted by means of a squared bounding-box whose
colour (red for fake and green for original) permits to visually
understand what the system has predicted. In addition to this,
a numerical predicted value (between 0 and 1) is also pictured.
If the predicted value is close to zero the frame is labeled as
fake, on the contrary is labeled as real. Finally the interface
(see Figure 4) is able to provide the visualization of the results
playing simultaneously the two videos (e.g. the deepfake one
and the original one when it is possibly available) to better
appreciate the visual differences between the two.

Preview

Fig. 3. The DeepFake Cracker interface: the verification phase

Fig. 4. The DeepFake Cracker interface: playing the result

IV. IMPLEMENTATION DETAILS

The overall detector consists of three main parts: the Flask?
component, the front-end (website) component and a Docker?.
The flask folder contains the back-end code, written in Flask.
Since an official Docker image of Flask does not exist, we
created a specific one. So, inside the flask folder, there is a
Dockerfile that is responsible for setting up our Flask image.
The website folder contains the front-end code. Unlike Flask,
for this purpose there is a pre-tested Docker image available
on Docker Hub called httpd, so we do not need to set up
our own custom Dockerfile. The docker file is in charge of
merging the two above-described parts together, making them
runnable from one single file. Inside this file, we declare our
two services, namely the flask-service and the website. In other
words, this file is responsible for building, on the one hand,
the Flask image and, on the other hand, the httpd image.

2 https:/flask.palletsprojects.com/ 3 https://www.docker.com/



(1]

(2]

(3]

[4]

(51

(6]

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Niessner,
“Demo of Face2Face: Real-time face capture and reenactment of
RGB videos,” in ACM SIGGRAPH 2016 Emerging Technologies, ser.
SIGGRAPH ’16. New York, NY, USA: ACM, 2016, pp. 5:1-5:2.
[Online]. Available: http://doi.acm.org/10.1145/2929464.2929475

H. Kim, P. Garrido, A. Tewari, W. Xu, J. Thies, M. Niessner, P. Pérez,
C. Richardt, M. Zollhofer, and C. Theobalt, “Deep video portraits,”
ACM Trans. Graph., vol. 37, no. 4, pp. 163:1-163:14, Jul. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3197517.3201283

Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo, “StarGAN:
Unified generative adversarial networks for multi-domain image-
to-image translation,” CoRR, vol. abs/1711.09020, 2017. [Online].
Available: http://arxiv.org/abs/1711.09020

A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. NieBner, “Faceforensics: A large-scale video dataset for forgery
detection in human faces,” CoRR, vol. abs/1803.09179, 2018. [Online].
Available: http://arxiv.org/abs/1803.09179

——, “Faceforensics++: Learning to detect manipulated facial
images,” CoRR, vol. abs/1901.08971, 2019. [Online]. Available:
http://arxiv.org/abs/1901.08971

D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact
facial video forgery detection network,” in 2018 IEEE International
Workshop on Information Forensics and Security (WIFS), 12 2018, pp.
1-7.

E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natara-
jan, “Recurrent convolutional strategies for face manipulation detection
in videos,” 05 2019.

Y. Li, M. Chang, and S. Lyu, “In ictu oculi: Exposing Al generated fake
face videos by detecting eye blinking,” CoRR, vol. abs/1806.02877,
2018. [Online]. Available: http://arxiv.org/abs/1806.02877

U. A. Ciftci, I. Demir, and L. Yin, “Fakecatcher: Detection of synthetic
portrait videos using biological signals,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, p. 1-1, 2020. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2020.3009287

I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo, “Deepfake
video detection through optical flow based cnn,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, Oct 2019.

S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Comput. Surv., vol. 27, no. 3, pp. 433-466, Sep. 1995. [Online].
Available: http://doi.acm.org/10.1145/212094.212141

L. Alparone, M. Barni, F. Bartolini, and R. Caldelli, “Regularization
of optic flow estimates by means of weighted vector median filtering,”
IEEE Transactions on Image Processing, vol. 8, no. 10, pp. 1462-1467,
Oct 1999.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv 1409.1556, 09 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” CoRR, vol. abs/1610.02357, 2016. [Online]. Available:
http://arxiv.org/abs/1610.02357



