
TimeAtlas - a Time Series
Data Manipulation Tool for Python

1st Frédéric Montet
iCoSys Institute

HEIA-FR
Fribourg, Switzerland

frederic.montet@hefr.ch

1st Lorenz Rychener
iCoSys Institute

HEIA-FR
Fribourg, Switzerland

lorenz.rychener@hefr.ch

2nd Jean Hennebert
iCoSys Institute

HEIA-FR
Fribourg, Switzerland
jean.hennebert@hefr.ch

3rd Jean-Philippe Bacher
Energy Institute

HEIA-FR
Fribourg, Switzerland

jean-philippe.bacher@hefr.ch

Abstract—With the development of TimeAtlas, a tool for time-
series specific data handling, we reduce the time from research
idea to prototype. In this demo, we introduce our aim and the
library, showcase real-world use cases and present the roadmap
of the project.

I. INTRODUCTION

In many sectors, data collection has been an important
process during the last decade. In the latter topic, the field of
time series storage has seen a tremendous evolution as seen
in the DB-engine ranking[1]. This is no surprise since time-
indexed values are at the core of scheduling tasks, industrial
processes, and many more.

Now that many industrial actors have acquired a vast amount
of time series, all are eager to use this data with the latest
advances in machine learning and statistical modelling. This
would help to better plan and provide more economical offers
to their customers and for them.

The currently available toolset in the field of time series
manipulation allows for the handling of such data but is a
slow and costly process. The acquisition of datasets from
heterogeneous sources is always implying an unknown amount
of processing time until the data is ready for modelling.
Furthermore, if the task goes up to the deployment of a model
in a prototyping environment, the costs are further increased.

TimeAtlas aims at providing a comprehensive toolset to go
from unknown time series data loading to prototyping, includ-
ing the implementation of state-of-the-art machine learning
models. Such a tool would allow the industrial and research
sector to quickly follow intuitions and go through trial and
error phases before making the choice of a custom software
development.

This demonstration introduces TimeAtlas with its aim, a
presentation of the website (https://timeatlas.dev), a few sce-
narios inspired by real use cases and finally, a presentation of
the roadmap.

II. DEMONSTRATION

A. Aim

TimeAtlas is an open source library for time series data
analysis and more. It aims at providing a comprehensive
API for time series analysis, prediction, as well as anomaly
detection.

With such a tool, researchers and industrial actors have the
possibility to follow their intuitions without spending too much
time on technical intricacies.

The library is accessible for all developers levels. It is de-
signed for researchers, data scientists and software developers.

Fig. 1. Screenshot of the TimeAtlas website

B. Getting Started
As usual with Python packages, the library can be installed

via the Python Package Index with the following command in
1.

pip install timeatlas

Listing 1: Installation command with Python pip

As with all time series handling library, the data can be
loaded from various files such as CSV, etc. Once loaded, it is
possible to get simple statistics like its minimum, maximum,
different percentiles and mean.

Also, it is possible to plot the time series in various ways.
TimeAtlas provides different plotting functions so that the
reader’s interpretation of the data can be as good as possible
as seen in 3.



Fig. 2. Two graphical representation of the same time series

C. Use Cases

During the demonstration, three use cases will showcase
real-world scenarios where TimeAtlas shines.

1) Loading data from heterogeneous sources: It often
happens that data given by research partners or clients are
messy and need some preprocessing before considering any
other tasks. Through a step by step explanation, this use case
explains the process from initial data loading of multiple time
series with different indexes to the creation of a single archive
containing the aggregation of the data.

2) Predict in a few lines of code: This second use case
highlights the simplicity of the chosen API for model creation,
fitting and prediction of a univariate and multivariate time
series. It will also show how prediction results can be stored
and plotted, including their confidence intervals.

Fig. 3. Example of a time series prediction

3) Computing a Deviation from the Norm with an Unsuper-
vised Anomaly Detector: The third use case will demonstrate,
on the base of the previously obtained prediction, how to
detect anomalous sections of data. For that, a method similar
to MULDER[2] is used together with quantile thresholds to
define three levels of warnings. The task is presented on two
objects: an ice rink with temperature sensors and in an office
environment with many available sensors.

D. API Reference

This part of the demonstration focuses on the structure of
the different elements of the library. An introduction of the
concepts of each object present in the library is given.

E. Current state and roadmap

The published package of TimeAtlas is in version 1.1. It
includes the stable support of base functionalities, together
with documentation and unit-tested codebase.

In the following sections are an explanation of the future
releases.

1) v0.2 - Consolidation: On the base of the initial feature
set established in v0.1, this second minor release focuses on
the stabilisation of the overall library. It includes:

v0.1.1 [done] Documentation and test suite from v0.1
v0.1.2 [in progress] Multivariate Time Series support
v0.1.3 [to do] Better Visualisations
v0.1.4 [to do] Initial Models (LSTM, Facebook Prophet and

linear regressions)
v0.1.5 [to do] Initial anomaly detector (Surprise based de-

tector)
v0.2 [to do] Documentation and Tests from v0.1.2 to latest
2) v0.3 - Modelling, Validation and Detection: The goal

of this version is to implement state-of-the-art models and
detectors implementations as well as validation methods. This
includes models like Temporal Convolutional Networks [3] or
Transformers for time series[4].

The validation module will be implemented to evaluate the
quality of the trained model and envision its possible usage in
real-life scenarios. It will be inspired by the method used in
the M Competitions[5]

Finally, this version includes also the definition of a generic
anomaly detection API and its base implementation on the
currently implemented detectors.

3) Plan for 2021: Next year, we will add two main features.
The first is a time series editor. It will allow operations on
time series such as the addition of trends, anomalies, clipped
values and more. The goal of this feature is to accelerate
research in anomaly detection and make trials with synthetic
data mimicking real data features as close as possible.

The second feature is the publication feature. The latter will
add the option to publish models and detectors online in the
form of a REST API. The target of this feature is to allow the
sharing of a predictor or anomaly detector with other actors
in a very short time and cost-effective way.

III. ADDITIONAL RESSOURCES

The documentation of the project can be found at https:
//timeatlas.dev and its code repository at https://github.com/
timeatlas-dev/timeatlas.

REFERENCES

[1] solid IT GmbH. Db-engines ranking - trend of time series dbms
popularity, 2020.

[2] L. von Werra, L. Tunstall, and S. Hofer. Unsupervised anomaly detection
for seasonal time series. In 2019 6th Swiss Conference on Data Science
(SDS), pages 136–137, 2019.

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling,
2018.

[4] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep trans-
former models for time series forecasting: The influenza prevalence case,
2020.

[5] MOFC. The m5 competition, 2020.


