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I. CURRENT SIZE OF NEURAL NETWORKS AND
DEPLOYMENT ON MOBILE DEVICES

Deep Neural Networks (DNNs) can solve extremely chal-
lenging tasks thanks to complex stacks of (convolutional)
layers with thousands of neurons [1], [2], [3].

We can define the complexity of a neural network as
both the number of its learnable parameters and number of
operations performed at inference time: architectures such as
AlexNet and VGG have a complexity in the order of 60 and
130 million parameters and approximately 1 and 15 GFLOPs
respectively. These cmplex neural architectures are challenging
to deploy in scenarios where resources such as the memory
available for deployment or storage are limited.
In order to cope with neural networks memory requirements,
inference time and energy consumption, several (comple-
mentary) approaches have been proposed, like changing the
network topology and enhancing weight sharing [3], [4],
quantization strategies [5] and, very recently, pruning.
Pruning is a popular approach aiming to reduce the deep neural
networks’ number of required parameters. In particular, all the
pruning-based techniques aim at detecting redundant or less
relevant parameters to remove them [6], [7], [8]. On this topic,
a very large amount of strategies have been proposed [9], [10],
[11] from which we can identify two main classes:

• un-structured strategies, where parameters are greedily
pruned, regardless the final model’s efficiency;

• structured strategies, where parameters are removed in
a structured way, with a beneficial effect to the final
computational complexity and memory footprint.

Typically, un-structured approaches are able to remove a larger
number of parameters than the structured ones [9] and, for
this reason, these are currently very popular. Will they bring
advantages on edge devices regarding memory footprint and
inference time?
The main purpose of the proposed demo is to show the
benefits of the structured pruning over un-structured pruning.
In particular, we have designed an Android demo app to
measure real-time inference time on some trained and pruned
architectures, which will also made available to the demo’s
attendees.

II. ARCHITECTURES TO TEST

In our demo we will test some architectures trained on
image classification tasks. In particular, we will test differences
between:

• full baseline model;
• model with UN-structured pruning;
• model with structured pruning.
Please notice that training a smaller architecture from

scratch leads to lower generalization capability. Given the

state-of-the-art optimizers and loss functions, training a larger
model and then pruning it to reduce its size is currently
the most promising approach towards having small, well-
generalizing models [12].

III. OUR ANDROID DEMO APP

Our demo will be centered to the use of NNinference, our
customized android app (branched from PyTorch Mobile1)
aiming at running neural networks directly on the mobile
device and to measure efficiency in terms of inference time
and memory footprint. The main purpose of the demo is
to practically observe differences between neural networks
having structured and non-structured sparsity, besides baseline
models. Towards this end, no weight/activation quantization
strategies are employed, since their use is beyond the main
scope of the demo.
We plan to share the following trained and pruned architec-
tures:

• ResNet-32, trained on CIFAR-10;
• VGG-16, trained on CIFAR-10;
• AlexNet, trained on CIFAR-100;
• ResNet-101, trained on ImageNet.

Results on inference results are reported in Table I. Some
models are currently being pruned (N/A) and all the results
reported with “*” are partial results: the final numbers might
further improve the FPS / reduce the inference time. Please
also notice that for CIFAR-100 and ImageNet the Top-5
error is reported, while for the other architectures the Top-
1 error is the error metrics. The inference time and FPS
reported are obtained averaging 1k inferences on a Huawei P20
smartphone, equipped with 4x2.36 GHz Cortex-A73 + 4x1.84
GHz Cortex-A53 processors and 4GB RAM, running Android
8.1 “Oreo”. For each of the above-mentioned architectures, we
are going to provide three different models:

• none, which is the baseline model (where available, it
will be used the pre-trained model made available within
torchvision2);

• UNstructured, where the number of parameters pruned in
the network is maximized;

• structured, where the number of neurons pruned in the
network is maximized.

An overview describing the app’s usage steps is provided in
Fig. 1. Along with the demo, we will share a link to directly
download the .apk: in this way we would grant everyone
the possibility to download and test the efficiency of deep
models with structured pruning with their own android device.
Currently, our app (under development) is open source and
available at https://github.com/EIDOSlab/EIDOS-app.

1https://github.com/pytorch/android-demo-app.git
2https://pytorch.org/docs/stable/torchvision/models.html?highlight=

torchvision%20pretrained

https://github.com/EIDOSlab/EIDOS-app
https://github.com/pytorch/android-demo-app.git
https://pytorch.org/docs/stable/torchvision/ models.html?highlight=torchvision%20pretrained
https://pytorch.org/docs/stable/torchvision/ models.html?highlight=torchvision%20pretrained


TABLE I: Tested architectures. All the models and the app to locally test those will be made available for the demo.

Architecture Dataset Pruning
Inference

FPS
Memory Storage

Error [%]
time [ms] footprint [MB] Size [MB]

None 204.21 4.9 57.57 51.51 7.36
VGG-16 CIFAR-10 UNstructured N/A

Structured 98.67 10.13 11.56 0.97 7.80

None 32.12 31.13 1.84 1.63 7.36
ResNet-32 CIFAR-10 UNstructured 31.67 31.57 1.83 0.48 7.33

Structured 24.83 40.27 0.87 0.37 8.09

None 131.41 7.61 92.31 79.27 20.09
AlexNet CIFAR-100 UNstructured N/A

Structured 75.27 13.29 43.80 2.47 17.88

None 957.58 1.04 174.49 156.67 6.44
ResNet-101 ImageNet UNstructured 956.35 1.05 173.54 35.66 8.24

Structured 929.77* 1.08* 172.15* 27.84* 9.45*

(a) (b) (c) (d) (e)

Fig. 1: App usage example. Opening the app (a), it is given as a possibility to set a “Models path”, where all the deep models
are or will be stored. After tapping “Go”, you enter the models selection frame (b). It is possible to select a deep network
from a drop-down menu (c): all the locally saved models will automatically appear. In such a menu it will also be given the
possibility to download more models tapping “Download models..” which redirects to an online shared folder (d). Finally, the
model is used at inference time (e), reading the classification results (the bottom displays the top-three results) from the camera
input as well as inference time and real-time FPS (mid-right of the screen).
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