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Abstract—The XplainIT demonstrator is about enabling users
to understand and visualise the decisions of deep learning
models. The novelty of our work is the application of deep
learning networks (1-D CNN) to structured data - and the
subsequent use of Layer-Wise Relevance Propagation (LRP)
as an explainability approach for structured data input. LRP
is a highly visual technique typically used for image input.
Our XplainIT demonstrator shows it is applicable, useful, and
intuitive for structured data input - thus widening its scope to
many modeling scenarios. In addition to LRP, XPlainIT applies
established explainability techniques, SHAP and LIME, to allow
users to understand and compare the capabilities across multiple
explainability techniques. XPlainIT provides trained models for
two business case scenarios - fraud detection and customer churn.
Users of the demonstrator can interact with local instance level
and global dataset level explanations, across three explanation
approaches.

1. BACKGROUND

The Explainability of neural networks has grown in par-
allel with the growth in complexity and depth of networks.
With the re-emergence of neural networks for deep learning
(DL) networks, explainability approaches such as the work of
Zeiler and Fergus [1], [2], [3] focused on the visualisation
and understanding of mid and high-level features learned
by a network for computer vision. Since then, several ex-
plainability techniques have been introduced, such as Local
interpretable model-agnostic explanations (LIME) [4], Shapley
additive explanation (SHAP) [5] (for other types of data e.g.
structured data) and class activation map (CAM), gradient
weighted-CAM (Grad-CAM) [6], layer-wise relevance prop-
agation (LRP) [7] (input as image).

LIME and SHAP have been widely applied to explain
predictions from traditional ML algorithms, for all types of
data. Both techniques use an algorithm that trains over the
output layer of the neural network to explain network learning.
For DL models that process image input, Gradient-Weighted
CAM (Grad-CAM) [6] is a generalization of CAM that can
target any layer and introduces gradient information to CAM.
Gradient information is combined with class activation maps
to visualize the importance of each input. The majority of
explainability approaches that explore DL networks with input
as an image, however, focus on the high-level layers in the
process, resulting in coarser visualization. The explainability
techniques used in vision are sometimes used for other appli-
cation areas. Assaf and Schumann [8], for example, presented
a demonstrator to explain a deep CNN and MLP with Grad-
Cam for Multivariate Time Series Predictions.

LRP works similar to back-propagation, propagating the
relevance/likelihood from output to input pixel of the input
layer. The relevance values are either positive (in favor) or
negative (against) the decision. LRP is mainly applied to the
explanation of DL based vision or text systems. In our system,
we apply LRP to the explanation of deep models trained
over structured data. Many real-world datasets are in the form
of structured data (such as customer loan applications, or
survey form data) and there are no known research works or
implementations that use 1-D CNN and LRP with structured
data. The proposed 1DCNN learns discriminative features
for our two model scenarios: prediction of whether telecoms
customer churn and classification of credit card transactions
as fraudulent or not. LRP is applied to highlight the discrim-
inative features for each model in the form of a heatmap. In
addition, we apply SHAP and LIME to our models to enable
users to use and compare multiple explainability approaches.

II. XPLAINIT ARCHITECTURE

The XPlainIT demonstrator contains two architectural
stages. The first stage is the off-line stage of creating the
trained models: data pre-processing and training of the 1-D
CNN. Pre-processing involves converting categorical features
to binary, normalization, augmentation of data using SMOTE
[9] to balance minority classes, and stratified partitioning of
data into training and testing sets of 80% and 20%, respec-
tively. The proposed 1-D CNN with 8 layers (input (1x28),
convolution (25 kernels), activation (ReLu), convolution (50
kernels), convolution (100 kernels), fully connected (2200
kernels), fully-connected (2 Neurons), and softmax layer) is
trained over two structured datasets (Telecom Customer Churn
Detection (TCCD') and Credit-card fraud detection (CCFD?)
datasets). The second stage of the XPlainIT demonstrator
is the interactive demo stage, where XAl techniques (LRP,
SHAP, and LIME) are used to visualize the important features
from the two trained models produced in the first stage. Our
principal focus is on LRP, with SHAP and LIME explainability
techniques also implemented to give alternative features lists
for comparison and a basis for comparing model explanations
and generation speed. The user can view statistical information
about the underlying datasets, such as class balance and types
of features. Global (over the whole dataset) and local (single

Uhttps://www.kaggle.com/bandiatindra/telecom-churn-prediction
Zhttps://www.kaggle.com/mlg-ulb/creditcardfraud
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Fig. 1. Visualizing LRP heatmaps for Local (15* Heatmap) and global (2% Heatmap) in Telecom Churn testing set.

record) LRP-based interpretable heatmaps are provided. The
demonstrator enables the user to interactively explore and
switch between global/local models, classes, and explainability
techniques for the two business scenarios. The user can also
interact to enter in new fraud/ churn examples, view the real-
time decision and associated local explanation using the three
explainability techniques. The following section explains each
explanation type.

III. EXPERIMENTS, VISUALIZATION, & EXPLANATION

We used the TCCD and CCFD datasets as datasets well-
known in the data science field and representative of two
common real-world problems. The TCCD dataset contains
19 named features, expanded to 28 after categorical feature
conversion. There are 73.42% not-churn and 26.58% customer
churn instances. The CCFD dataset contains 32 anonymous
features (for privacy). The dataset is highly imbalanced with
99.83% non-fraud vs 0.17% fraudulent samples. We show
sample diagrams from the Telecom Churn model in the next
sections.

A. Local Interpretation

With local interpretation, XPlainlt visualizes features rele-
vant to the model decision for an individual record level. The
user selects a specific record from the test set and a heatmap
is generated, showing the relative weighting of features for
that decision. In addition, a textual explanation of the model
decision is provided, as shown in Figure 1 1! row. The
confidence level for each decision is also shown. In Figure
1 27 row, you can see an example that shows that the top
three features contributing most to a predicted customer churn
are MonthlyCharges, contract m-t-m (month-to-month), and
IS_Fiber_Optic (internet service Fiber optic). Based on domain
knowledge, it is evident that if the contract is monthly, with
high charges, and the customer is of not appropriate age (e.g.
elderly) with fiber optic, are indeed liable to churn.

B. Global Interpretation

A global analysis heatmap explains the behaviour of the
model over the whole or subset of the testing set, such as

considering and analysing only true positives (TP), or true
negatives (TN) samples. Figure 1 3"¢ row shows a clear
pattern of features that have high relevance and impact on the
decision of the classifier. Equivalent interactive visualisations
are provided for LIME and SHAP in XPlainIT.

C. New Record Analysis

In addition to the existing testing sets, we apply an inter-
active function in XPlainIT to enable the user to enter in a
new fraud or customer churn case. XPlainIT generates the
classification decision and important features in the form of
a heatmap, in real-time, for the sample customer/ transaction
entered.

D. Visualization of LRP vs SHAP vs LIME

SHAP and LIME are two established XAI techniques, which
we use for comparison and demonstration in our demon-
strator. We provide appropriate visualisation types to support
these, such as BoxPlot visualisations for SHAP. The features
highlighted by SHAP and LIME for our two models are
largely similar to LRP. An important advantage that emerges
in our demonstrator is that LRP has a far lower real-time
computational cost i.e. LRP (2s) vs LIME (more than 20s)
and SHAP (around 60s) on a CPU.

IV. CONCLUSION

The XPlainIT demonstrator is relevant to any organisation
who wants to understand how explainability techniques can be
used to explain the decision making of a deep neural network
(e.g. 1-D CNN). The use of LRP for structured data has
provided intuitive visual explanations, at a significantly faster
speed than SHAP or LIME. Such explanations support the
identification of features that are critical to a decision versus
features that are irrelevant to the model and slow down pro-
cessing. It can also address the issue of decision transparency
at the customer level and the associated GDPR concerns, for
example explaining why a customer loan application has been
rejected by a DL based system. In the future, it can be applied
to other bigger datasets and deeper models.
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