

Searching and Classifying Affinities in a Web Music Collection

> Nicola Orio Department of Cultural Heritage University of Padua

Introduction

• Duplicate detection plays an important role in management of large collections

• Text

- Similar (or copied) web pages
- Patents
- Multimedia
 - Copyright issues
 - Double acquisitions

Fingerprinting

• For multimedia documents a typical approach is based on **fingerprinting**

• A fingerprint

- Is much **smaller** than the original document
- Subsumes relevant **perceptual** features
- Is **robust** to typical modifications
 - Lossy compression
 - Added signals (noise, mix, edits)

Approaches in Music

- Acoustic fingerprint
 - Exploited as a service
 - Shazam!
 - Gracenote
 - MusicBrainz
 - Used for internal management of online collections
 - Spotify
 - Last.fm

Affinities in a Music DL

- We define as **affinities** the following cases
 - **Exact** duplicates
 - Same recordings, inaudible compression
 - **Near** duplicates
 - Audible lossy compression, remasters, alternate takes
 - **Far** duplicates
 - Mashups, montages, loops

Applications

- Saving storage space
- Metadata cleanup
- Interactive metadata creation
 - Especially for crowdsourcing
- Improvement of search engines
- Aid for musicologists
- Tool for collaborative compositions

Methodology

- Two-step approach
 - First Step: **Pruning** Candidate Affinities
 - Compute a coarse index of similarity
 - Do not take account temporal features
 - Second Step: **Pairwise Match** between Affinities
 - Find the best temporal match
 - Align the potential affinities
 - Provide a graphical representation

First Step

• A track is represented by a set of its fingerprints

$$s^k = \{h_1^k, \cdots, h_D^k\}$$
 with $h_i^k \neq h_j^k \quad \forall \neq j$

 the affinity between two tracks can be approximated by

$$af(t^{h}, t^{k}) = \frac{\|s^{h} \cap s^{k}\|}{min(\|s^{h}\|, \|s^{k}\|)}$$

that is computed efficiently from fingerprint indexes

Second Step

• A track is represented by a sequence of fingerprints

$$l^k = (h_1^k, h_2^k, \cdots, h_L^k)$$
 with $h \in \mathbb{N}$

• the affinity and the alignment are computed with $m_j(l^1, l^2) = \max_i \sum_{k=1}^N d(h_{i+k}^1, h_{j+k}^2)$

$$p_j(l^1, l^2) = \arg\max_i \sum_{k=1}^N d(h_{i+k}^1, h_{j+k}^2)$$

The Test Collection

- Collection of commercial MP3s
 - 350,000 audio tracks
 - 20,000 hours of music
 - Effort more than 20 years long
 - Experts inserted metadata from CD covers
 - Fingerprint already available
 - Indexes routinely used to track TV broadcasts

Results: First Step

• Fingerprint overlaps after first step

Overlap	# song pairs	% song pairs
Complete (<i>af</i> =1)	1057	0.3%
High (<i>af</i> >0.9)	104	0.03%
Partial (<i>af</i> >0.5)	712	0.2%
Low (<i>af</i> >0.25)	2098	0.6%
Minimal (<i>af</i> >0.1)	1041	0.3%
Total	5012	1.43%

thresholds have been selected by personnel of the music DL

Results: Second Step

- The goal was to highlight the characteristics of different kind of affinities
 - Graphical tool for the personnel of music DL to:
 - Quickly browse the relevant portions of the audio
 - Possibly identify the kind of affinity without having to listen to the two songs
 - Prioritize the kind of intervention

Exact Duplicates

• Different compression algorithms

Near Duplicates – 1

Remasters

Near Duplicates – 2

Alternate takes

IRCDL - Florence, 4-5 February 2016

Far Duplicates – 1

Mashups

IRCDL - Florence, 4-5 February 2016

Far Duplicates – 2

Montages

IRCDL - Florence, 4-5 February 2016

Far Duplicates – 3

Loops

IRCDL - Florence, 4-5 February 2016

18

False positives

• Usage of common sound libraries

Conclusions

- Affinities express tight or loose relationships between audio recordings
 - It is possible to
 - Compute affinities efficiently
 - Represent graphically the kind of affinity
- Future work
 - Analyze the graph trends to extract relevant features for automatic classification
 - Extensive tests also below the 10% threshold

Thanks!

