#### A study on the Classification of Layout Components for Newspapers

#### Stefano Ferilli<sup>1</sup> Floriana Esposito<sup>1</sup> Domenico Redavid<sup>2</sup>

<sup>1</sup> Dipartimento di Informatica – Università di Bari name.surname@uniba.it

<sup>2</sup> Artificial Brain S.r.l. redavid@abrain.it



12th Italian Research Conference on Digital Libraries - IRCDL 2016 Firenze, Italy, 4-5 February, 2016

### Summary

- Introduction & Motivation
- Layout Analysis of Newspapers
- Proposed Modifications
- Experimental results
- Conclusions & Future Work

#### Introduction

- Legacy newspapers available in printed form
  - Digitization  $\rightarrow$  no explicit organization into meaningful higher-level components
    - Needed for automatically extracting useful information indexing
  - Approaches for automatic layout analysis often ineffective on newspapers
    - Much more complex layout
  - Objective: classification of layout blocks according to their content type.
    - adaptation of an existing approach, working on the description features and set of classes

### Objectives



- Tackling
  - use of colors
  - text blocks written on background different than the main background
  - frequent interleaving of very different text font sizes

#### Document Processing and Management

- Steps
  - Document Image Understanding (layout structure, logical structure)
    - Layout Analysis
      - Segmentation
      - Component Classification
  - Document Understanding
- Layout Analysis fundamental for the quality and feasibility of Document Understanding

#### Layout Analysis Procedure in DoMInUS

- pre-processing:
  - binarization
  - chromatic component separation  $\rightarrow$  peculiarity #1
  - skew correction
- classification of layout components in each color layer
  - text
  - lines
  - **non-standard background**  $\rightarrow$  peculiarity #2
  - images
- text blocks identification
  - removal of non-textual components
  - extraction of text from non-standard background
  - *text blocks aggregation* using RLSO  $\rightarrow$  peculiarity #3

**Bold**: steps specifically introduced for dealing with newspapers *Italics*: steps already present but changed for dealing with newspapers

#### Layout Analysis Procedure in DoMInUS

- 1.b: artificially colored parts of the page (ignore saturation)
  - Sequence of filtered versions of the page: background (white); graylevel; other colors
  - Reversed background layer = color-independent binarization of the page
- 2.c: reverse all 'Image' connected components in each layer; run again the classifier: is the inverted block classified as Text?
- 3.a: remove all non-text components in the various color layers
- 3.b turn the original non-standard background into standard background; represent the text as standard foreground
  - Binarized image: only textual components on standard background
- 3.c: obtain aggregate text blocks using RLSO (non-Manhattan layout), *but*: applied as a last step; applied on a filtered image containing only text; applied iteratively

#### **Partial Processing Steps**





#### Component Type Classification Features

- block height (h)
- block width (w)
- block area ( $a = w \times h$ )
- block eccentricity (w/h)
- number of black pixels in the block (*b*)
- number of black-white transitions in the block rows (*t*)
- percentage of black pixels in the block (*b*/*a*)
- average number of black pixels per black-white transition (*b*/*t*)
- short run emphasis (*F1*): blocks containing many short runs
  - small-sized characters (e.g., newspaper articles)
- long run emphasis (F2): blocks containing many runs having medium length
  - quite large characters (e.g., newspaper subtitles)
- extra long run emphasis (F3): blocks containing few runs, all of which very long
  - text of very large size (e.g., main titles of newspaper pages).
    - Requires two parameters, *T1* and *T2*

#### Component Type Classification Classes

- **Text**: a group of alphanumeric characters or symbols
  - even just one character or symbol
- Horizontal Line
- Vertical Line
- Graphic: an artificial image
  - (e.g., produced using vector graphics tools)
- Image: a (possibly halftone) raster image
- **Mixed**: a combination of text and image(s), but clearly disjoint (text within images would fall in the Image class)
- Undefined: none of the above
  - A portion of an image, a particularly eroded line, ...

#### Component Type Classification Additional Features

- Spread:  $s = n/b \times min(w,h)^2$ 
  - spatial distribution of black pixels in a pattern
    - b = # black pixels (raising the density reduces the distance among pixels),
    - n = # black runs (the more the runs, the more fragmented the black zones),
    - Area of square sections:
      - $a \times sq = w \times h \times min(w,h) / max(w,h) = min(w,h)^2$
- # components
  - blocks having large area and many components ~ text
  - blocks having small area and 1 component ~ character
- # black-white transitions in the block columns
  - complementary perspective with respect to feature #6

$$-$$
 F3 (T<sub>1</sub> = 30, T<sub>2</sub> = 5)

$$-$$
 F3 (T<sub>1</sub> = 5, T<sub>2</sub> = 5)

#### Component Type Classification Additional Classes

- splitting the class Text
  - Text
  - Character
  - Reverse Text
  - Reverse Character

#### Experiments Baseline

- Dataset
  - 30 images of newspapers' first pages
    - some in color, some in black and white
  - 789 connected components
    - No graphic or diagonal line
      - However, these classes are meaningful

- Learning setting
  - 10-fold crossvalidation
  - Decision tree learner J48 (WEKA)
  - Worst accuracy: Mixed
    - Very subtle (and mostly semantic) differences compared to Image, especially when they include text
    - Some newspapers superimpose text to images

#### Baseline experimental results for component type classification

| Class           | TP rate | FP rate | Precision | Recall | F-measure | Instances |
|-----------------|---------|---------|-----------|--------|-----------|-----------|
| Text            | 0.757   | 0.172   | 0.748     | 0.757  | 0.752     | 317       |
| Horizontal line | 0.916   | 0.013   | 0.906     | 0.916  | 0.911     | 95        |
| Vertical line   | 0.857   | 0.004   | 0.923     | 0.857  | 0.889     | 42        |
| Image           | 0.655   | 0.112   | 0.607     | 0.655  | 0.63      | 165       |
| Mixed           | 0.368   | 0.04    | 0.42      | 0.368  | 0.393     | 57        |
| Undefined       | 0.646   | 0.047   | 0.695     | 0.646  | 0.67      | 113       |
| Overall         | 0.716   | 0.104   | 0.715     | 0.716  | 0.715     | 789       |

- Last row = weighted average for performance columns, total for the number of components
- Layout Analysis performance on 45 additional newspapers:

| Precision | Recall | F-measure | Accuracy |
|-----------|--------|-----------|----------|
| 0.885     | 0.909  | 0.897     | 0.784    |

#### Experiments

- New dataset made up of 10 newspapers
  - Previous dataset unavailable
- Always used the extended set of features

-  $F3(T_1 = 30, T_2 = 5)$  never considered

- Different set of classes
  - same classes as the baseline
  - separate class for reversed text only
  - specific classes for text/characters, normal/reversed
- All settings much better than the baseline
  - Some better on some classes, some better on others

## Experimental results with additional features and classes

| Class            | TP rate   | FP rate  | Precision | n Recall | F-measure  | Instances |
|------------------|-----------|----------|-----------|----------|------------|-----------|
| Text             | 0.875     | 0.103    | 0.848     | 0.875    | 0.861      | 376       |
| Horizontal line  | 0.958     | 0.004    | 0.968     | 0.958    | 0.963      | 96        |
| Vertical line    | 0.974     | 0.001    | 0.974     | 0.974    | 0.974      | 39        |
| Image            | 0.845     | 0.056    | 0.801     | 0.845    | 0.822      | 200       |
| Mixed            | 0.238     | 0.014    | 0.278     | 0.238    | 0.256      | 21        |
| Undefined        | 0.741     | 0.033    | 0.748     | 0.741    | 0.744      | 112       |
| Reverse Text     | 0.432     | 0.022    | 0.487     | 0.432    | 0.458      | 44        |
| Character        | 0.680     | 0.011    | 0.773     | 0.680    | 0.723      | 50        |
| Reverse Characte | r 0.143   | 0.002    | 0.333     | 0.143    | 0.200      | 7         |
| Overall          | 0.812     | 0.059    | 0.804     | 0.812    | 0.807      | 945       |
| Class            | TP rate F | P rate I | Precision | Recall F | -measure I | nstances  |
| Text             | 0.862     | 0.130    | 0.844     | 0.862    | 0.852      | 426       |
| Horizontal line  | 0.958     | 0.004    | 0.968     | 0.958    | 0.963      | 96        |
| Vertical line    | 0.949     | 0.002    | 0.949     | 0.949    | 0.949      | 39        |
| Image            | 0.850     | 0.066    | 0.776     | 0.850    | 0.811      | 200       |
| Mixed            | 0.238     | 0.011    | 0.333     | 0.238    | 0.278      | 21        |
| Undefined        | 0.714     | 0.024    | 0.800     | 0.714    | 0.755      | 112       |
| Reverse Text     | 0.333     | 0.031    | 0.387     | 0.333    | 0.354      | 51        |
| Overall          | 0.810     | 0.078    | 0.802     | 0.810    | 0.805      | 945       |

# Experimental results with additional features only

- Overall weighted averaged F-measure significantly better than the other settings
  - Real improvement due to the extension to the set of features

| Class           | TP rate | FP rate | Precision | Recall | F-measure | Instances |
|-----------------|---------|---------|-----------|--------|-----------|-----------|
| Text            | 0.876   | 0.121   | 0.880     | 0.876  | 0.878     | 477       |
| Horizontal line | 0.948   | 0.004   | 0.968     | 0.948  | 0.958     | 96        |
| Vertical line   | 0.974   | 0.006   | 0.884     | 0.974  | 0.927     | 39        |
| Image           | 0.830   | 0.051   | 0.814     | 0.830  | 0.822     | 200       |
| Mixed           | 0.286   | 0.015   | 0.300     | 0.286  | 0.293     | 21        |
| Undefined       | 0.768   | 0.031   | 0.768     | 0.768  | 0.768     | 112       |
| Overall         | 0.849   | 0.076   | 0.846     | 0.849  | 0.848     | 945       |

#### Conclusions

- Adaptation of existing approach to block type classification of digitized newspapers
  - colors, text on non-standard background, frequent interleaving of very different font sizes
  - Implemented and embedded in DoMInUS
  - Experimental results showed that using additional features may be beneficial
- Future work
  - Larger dataset
  - Effect on the final layout analysis performance