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Pan–tilt–zoom (PTZ) camera networks have an important role in surveillance systems. They have the
ability to direct the attention to interesting events that occur in the scene. One method to achieve such
behavior is to use a process known as sensor slaving: one (or more) master camera monitors a wide area
and tracks moving targets so as to provide the positional information to one (or more) slave camera. The
slave camera can thus point towards the targets in high resolution.

In this paper we describe a novel framework exploiting a PTZ camera network to achieve high accuracy
in the task of relating the feet position of a person in the image of the master camera, to his head position
in the image of the slave camera. Each camera in the network can act as a master or slave camera, thus
allowing the coverage of wide and geometrically complex areas with a relatively small number of sen-
sors.

The proposed framework does not require any 3D known location to be specified, and allows to take
into account both zooming and target uncertainties. Quantitative results show good performance in tar-
get head localization, independently from the zooming factor in the slave camera. An example of coop-
erative tracking approach exploiting with the proposed framework is also presented.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction cooperative way. The two cameras are typically settled in a mas-
In realistic surveillance scenarios, it is impossible for a single
camera sensor either fixed or with pan–tilt–zoom (PTZ) capabili-
ties to monitor outdoor wide areas entirely so as to be able to de-
tect and track moving entities and discover interesting events. In
fact, small changes of the viewpoint can determine large differ-
ences in the appearance of the moving entities due to illumination,
cast shadows and (self-)occlusions and therefore drastically impact
the performance of object detection and tracking as well as of rec-
ognition. To solve this problem, camera networks are employed to
acquire multiple views of the entities from different viewing angles
and therefore recover the information that might be missing if ob-
served from a single viewing direction. Fixed cameras are generally
adopted, being sufficiently simple to compute their relative spatial
relationships [24]. Although fixed camera networks has been suc-
cessfully applied in real application contexts, nevertheless they
still suffer from the inherent problem of sensor quantization. In
fact, fixed optics and fixed sensor resolution can make the struc-
ture of far-away entities similar to the texture of near-field entities.
Super-resolution algorithms [30] applied to low resolution video
frames do little to improve video quality.

Instead, effective solution to this problem can be obtained from
the combination of a fixed camera with a PTZ camera working in a
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ter–slave configuration [49]: the master camera is kept stationary
and set to have a global view of the scene so as to permit to track
several entities simultaneously. The slave camera is used to follow
the target trajectory and generate close-up imagery of the entities
driven by the transformed trajectory coordinates, moving from tar-
get to target and zooming in and out as necessary. In the most gen-
eral case, this master–slave configuration can be exploited in a PTZ
camera network, where several slave PTZ cameras can be con-
trolled from one or several master PTZ camera(s) to follow the tra-
jectory of some entities and generate multi-view close-up imagery
in high resolution. In this framework, each master camera operates
as if it was a reconfigurable fixed camera. An important capability
of PTZ camera networks, particularly useful in biometric recogni-
tion in wide areas, is that of focusing on interesting human body
parts such as head [38].

However, the working implementation of PTZ camera networks
poses much more complex problems to solve than classical sta-
tionary camera networks. Assuming that all the cameras observe
a planar scene, the image relationships between the camera image
planes undergo a planar time-variant homography. But back-
ground appearance is not stationary and camera parameters
change through time as the PTZ cameras pan, tilt and zoom, so
making it difficult to compute their relative spatial positions. Esti-
mating the time-variant image-to-image homography between a
fixed master and a slave PTZ camera in real-time is also challeng-
ing. Occlusions, sensor quantization and foreshortening effects
significantly limit the area of the PTZ camera view where to search
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Fig. 1. Principal problems to solve with PTZ camera networks: (a) failure of SIFT matching; image sensor quantization and occlusions significantly impair the search for
correspondences. (b) Estimation of the time-variant transformation Mt that maps feet to head from the master to the slave view. Left: Wide angle master camera view in
which a person is detected. Right: Close up view from the slave camera.
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for feature matches with the view of the master camera, making
therefore difficult to compute the corresponding homography. In
addition, the magnification factor achieved by zooming cameras
can determine a large variation of the image structure, so limiting
the matching performance. Fig. 1 exemplifies the principal prob-
lems to be solved in this framework.

In this paper, we discuss a novel solution for the effective imple-
mentation and real-time operation of PTZ camera networks. The
approach that is proposed exploits a prebuilt map of visual 2D
landmarks of the wide area to support multi-view image matching.
The landmarks are extracted from a finite number of images taken
from a non calibrated PTZ camera, in order to cover the entire field
of regard.1 Each image in the map also keeps the camera parameters
at which the image has been taken. At run-time, features that are de-
tected in the current PTZ camera view are matched to those of the
base set in the map. The matches are used to localize the camera
with respect to the scene and hence estimate the position of the tar-
get body parts. Fig. 2 shows the main components of our system. A
discussion of the motivations and basic ideas underlying the ap-
proach followed has been presented in some detail in [16].

We provide several new contributions in this research:

� A novel uncalibrated method to compute the time-variant
homography, exploiting the multi-view geometry of PTZ camera
networks. Our approach avoids drifting and does not require cal-
ibration marks [23] or manually established pan–tilt correspon-
dences [49].

� The target body part (namely the head) is localized from the
background appearance motion of the slave zooming camera.
Head or face detection and segmentation are not required. Dif-
ferently from [38] our solution explicitly takes into account
camera calibration parameters and their uncertainty.
1 The camera field of regard is defined as the union of all fields of view over the
entire range of pan and tilt rotation angles and zoom values.
� Differently from [1,49], where a PTZ camera and a fixed camera
are set with a short baseline so as to ease feature matching
between the two fields of view, in our solution we define a gen-
eral framework for arbitrary camera network topology. In this
framework, any node of the network sharing a common field
of view can exploit the master–slave relationship between
cameras.

In the following we first provide an overview of the related
work in Section 2. Hence, in Section 3, PTZ camera networks with
master–slave configuration are defined in terms of their relative
geometry and functionality. The details of map building process
are presented in Section 4. Camera pose tracking and sensor slav-
ing are presented in Section 5. System performance is discussed
in Section 6, followed by final remarks.
2. Related work

Sensor slaving is a relatively simple practice provided that both
the master and the slave camera are calibrated with respect to a lo-
cal 3D terrain model [9]. Camera calibration allows to transfer 3D
object locations onto the camera image plane and therefore use
this information to steer the pan tilt and zoom of the slave sensor
in the appropriate direction.

Several methods have been published in the literature to per-
form calibration of PTZ cameras. Early works have concentrated
the attention on internal camera parameters estimation, with no
support for on-line dynamic calibration. A first significant work
for active zoom lens calibration was published by Willson et. al.
[47]. They considered indoor scenes and controlled environments
and used calibration targets. In this framework, they exploited
the fact that active zooming cameras, if stationary, play the same
role of fixed cameras and therefore standard methods for fixed
cameras still apply for their calibration. However their method
lacks the needed flexibility to be used in outdoor wide areas with
moving PTZ cameras.



Fig. 2. Left: Off the shelf PTZ cameras. Right: Components of our system and their connections, executed on-line for each frame of the video stream.
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Other researchers have proposed methods for self-calibration
with no use of calibration marks. The method proposed in [19] per-
mits self-calibration of a PTZ camera calculating the homographies
induced by the rotation and zooming of the PTZ camera. In [15], the
authors followed the same approach and analyzed the effects of
imposing simplifying constraints on the intrinsic parameters of
the camera. They reported that best results are obtained when
the principal point is assumed to be constant throughout the se-
quence, although it is varying in reality. In [39], a complete evalu-
ation of the method of [19] was performed using a large set of
images. The 3D scene under observation was reconstructed from
the internal calibrations of two PTZ cameras using the mosaic
images as a stereo pair.

Objects moving around in the observed scene have also been
used for PTZ camera self-calibration. In [13,44] LEDs have been em-
ployed to this end. As the LED is moved around and visits several
points, these positions make up the projection of a virtual object
modeled as 3D point cloud, with unknown position. This approach
is nevertheless too cumbersome and needs too accurate synchroni-
zation to be used in generic outdoor environments.

Of more general application is instead the use of walking people
to perform weak camera calibration [40]. In [6,27,32] camera cali-
bration is obtained exploiting single view geometry and the van-
ishing point derived from image features of the moving objects.
Although the method is appropriate for PTZ camera (self-)calibra-
tion in outdoor environments the parallel lines used to compute
the vanishing points must be viewed under strong perspective,
that is a condition that does not apply at moderate zooming. More-
over the measured features are computed by blob segmentation
and are too noisy to permit reliable estimation of the geometric
models.

After the VSAM project [9], new methods have been proposed
for calibrating PTZ cameras with simpler and more flexible ap-
proaches with less intensive off-line processing. These methods
are more suitable for outdoor environments and explicitly address
high resolution zooming of targets at a distance. The master–slave
configuration includes two cameras [49,1,38,11,3,34,17] or several
cameras [29,42,18,10].

Among them, the solutions proposed in [49,1] do not require di-
rect calibration but impose some restrictions in the setup of the
cameras. The viewpoints between the master and slave camera
are assumed to be nearly identical so as to ease feature matching.
In [49], a linear mapping is used that is computed from a look-up
table of manually established pan and tilt correspondences. In
[1], a look-up table is employed that also takes into account cam-
era zooming. In [38], it is proposed a method to link the foot posi-
tion of a moving person in the master camera sequence with the
same position in the slave camera view. The methods proposed
by [21,23,18,42] require instead direct camera calibration, with a
moving person and calibration marks.

Real-time estimation of camera’s position and orientation rela-
tive to some geometric representation of its surroundings using vi-
sual landmarks has been proposed by other authors, following the
Monocular Simultaneous Localization and Mapping (monoSLAM)
approach. Similar in principle to Structure from Motion Techniques
(SfM), the SLAM approach performs on-line recursive recovery of
the scene, while exploiting the correlations between the observa-
tions of the camera and the scene entities. Typically internal cam-
era parameters are known in advance [14], while in SfM they are
estimated jointly with 3D structure [20]. Scale-invariant feature
transform (SIFT) and matching based on best-bin first k-d tree
search [31] were used in [37] for robot localization and mapping
to find the visual landmarks and establish their correspondences.
However, due to the complexity of the SIFT descriptor the number
of feature points that can be handled simultaneously is low, thus
limiting the reliability of the method. Improvements in the scala-
bility and robustness of data association with SIFT were suggested
in [7].

Recent research achievements of effective local image descrip-
tors [48,43,33,22,4,36] have nevertheless offered the opportunity
of new improvements for this approach and its operation in full
real-time: commercial SIFT implementations run even at frame
rate using careful coding and processor extensions; SURF descrip-
tors [4] achieve one order of magnitude of performance improve-
ment, by exploiting integral images; FAST corner detection [36]
achieves frame rate operation, although it is less robust to motion
blur. Real-time global optimization with on-line SLAM applied over
a number of frames has been implemented in several systems
[8,25,41] considering cameras with pre-calculated internal calibra-
tion. However all these systems only consider the case of camera
panning and tilting with smooth motion. No zooming camera oper-
ation is considered so that their applicability is restricted to simple
and special cases.
3. Geometric relationships and camera model

3.1. Basic geometric relationships

If all the cameras in a network have an overlapping field of view
(i.e. they are in a fully connected topology), they can be set in a
master–slave relationship pairwise. According to this, given a net-
work of M PTZ cameras Ci viewing a planar scene, N ¼ fCs

ig
M
i¼1, at

any given time instant each camera can be in one of two states
si 2 fmaster; slaveg. The network can be therefore in one of
2M � 2 possible state configurations. All cameras in MASTER, or all
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cameras in SLAVE state cannot be defined. Several cameras can in-
stead be either in the MASTER or in the SLAVE state. If several master
cameras are defined, they permit multiple observations of the
same target from different viewpoints and therefore more accurate
measurements and increased tracking accuracy. In this case, one
slave camera can be sufficient to observe the area with accurate
foveation. One single master camera and several slave cameras
permit instead to capture high resolution images of moving targets
from several viewpoints.

Fig. 3 shows the basic geometry of a PTZ camera network with
the pairwise relationships to perform sensor slaving. The homogra-
phies H 12; H13; H23 put in pairwise relationship the reference
planes P1; P2; P3 of camera C1; C2 and C3. The homographies
H1

t ; H
2
t and H3

t relate instead the reference image planes
P1; P2; P3 with the current image plane at time t. If the target
X is tracked by C1 (acting as MASTER) and followed in high resolution
by C2 (acting as zooming SLAVE), the imaged coordinates of the tar-
get are first transferred from P1 to P2 through H12 and hence from
P2 to the current zoomed view of C2 through H2

t . Referring to the
Fig. 3. The pairwise relationships between PTZ cameras in master–sl

Fig. 4. SURF keypoints detection and matching between PTZ camera views and pre-stor
build the map. (b) Results of on-line SURF keypoints detection and matching (consecutiv
image (central row); nearest neighbor image found in the map for each PTZ frame (bot
according to the homography estimated (top row). Lines indicate the matches of SURF k
general case of M distinct cameras, once Hk
t and Hkl; k 2 1; . . . ;

M; l 2 1; . . . ;M with l – k are known, the imaged location of a mov-
ing target tracked by a master camera Ck can be transferred to the
zoomed view of a slave camera Cl according to:

T
kl
t ¼ H

l
t � Hkl ð1Þ
3.2. PTZ camera geometry model

When cameras are used outdoor or in very large environments,
the deviation of the camera optical center (the nodal point) is neg-
ligible compared to the average distance of the observed features
[35]. According to this, we consider the pin-hole camera model
projecting the three-dimensional world onto a two-dimensional
image, with fixed principal point without modeling the radial dis-
tortion; we also assume that the camera rotates around its optical
center with no translation and the pan and tilt axes intersect each
other.
ave configuration for a sample network with three PTZ cameras.

ed scene map built from reference images. (a) The grid of reference images used to
e frames taken at 15 frame per second shown): current frames from the PTZ camera
tom row); current frame warped to the nearest neighbor image found in the map
eypoints used to estimate the homographic warping.



A.D. Bimbo et al. / Computer Vision and Image Understanding 114 (2010) 611–623 615
For a generic image i generated by a camera C, projection can be
therefore modelled as Pi ¼ ½KiRi 0�, where Ki is the 3� 3 matrix that
contains the intrinsic parameters of the camera, and Ri is the 3 � 3
matrix that defines the camera orientation; the equal sign denotes
equality up to a scale factor. As in [20], it is possible to derive the
inter-image homography, between image i and image j generated
by the same camera, as: Hji ¼ KjRjiK

�1
i .

For PTZ cameras, due to their mechanics, it is possible to assume
that there is no rotation around the optical axis, i.e. h ¼ 0. We will
also assume with good approximation that the principal point lies
at the image center, the pan–tilt angles between spatially overlap-
ping images are small and the focal length does not change too
much between two overlapping images fi ¼ fj ¼ f . Under these
assumptions, the image-to-image homography can be approxi-
mated by:

Hji ¼
1 0 f wji

0 1 �f /ji

�wji

f
/ji

f 1

0
BB@

1
CCA ¼

1 0 h1

0 1 h2

h3 h4 1

0
B@

1
CA ð2Þ

where wji and /ji are respectively the pan and tilt angles from image
j to image i, [2]. Each point match contributes with two rows in the
measurement matrix. Since there are only four unknowns,
ðh1 h2 h3 h4Þ, two point matches suffice to estimate the homogra-
phy. Estimates for w, / and f can be calculated from the entries of Hji.

Using the image-to-image homography of Eq. (2) makes run-
time matching and minimization in PTZ camera networks much
simpler than with the full 8 DOF homography. Even if the calibra-
tion parameters are not accurate, it is nevertheless possible to cre-
Fig. 5. Once the current view It of the PTZ camera matches an image Im in the map th
current view It into the camera reference plane P. Image Ij is used as a reference image
processing steps for tracking PTZ camera parameters (on-line).

Fig. 6. (a) An example of vanishing line l1 in the camera reference plane computed from
mosaic. (b) The vanishing line is computed once in one camera (r1 in C1), and transferr
ate a wide single view of the entire scene (i.e. a planar mosaic)
from a finite number of reference images taken with one PTZ cam-
era at different pan, tilt and zoom settings so as to cover the entire
field of regard, still maintaining the projective properties of image
formation (i.e. straight lines are still straight lines in the mosaic).
This new view, provided that a moderate radial distortion is pres-
ent, can be considered as a novel wide angle single perspective im-
age and used to localize the PTZ camera views at run-time.
4. Building a global map of the scene

In our approach, images of the scene taken from a non cali-
brated PTZ camera at different values of pan, tilt and zoom are col-
lected off-line to build up a global map of the scene under
observation, keeping memory of the geometric information at
which each image was taken. The construction of the global map
of the scene is decoupled from frame-to-frame tracking of the cam-
era pose and focal length so that data association errors are not
integrated into the map and more precise tracking is obtained.
Scale and rotation invariant keypoints are extracted from each im-
age and used at run-time to match the keypoints extracted from
the current frame of the PTZ camera. Finding the right correspon-
dence between the current view and the scene permits to evaluate
the homographies in Eq. (1) and localize the camera with respect to
the scene. The approach is similar to [26,28], with a few key differ-
ences. On one hand we have two parameters for camera pose (i.e.
pan and tilt angles) instead of six; on the other hand we have vary-
ing internal camera parameters (i.e. focal length).
rough the homography Gt , the inter-image homography Hmj is used to transfer the
to build the mosaic map; (a) scene map and its components (off-line) and (b) main

two pairs of imaged 3D parallel lines, here shown superimposed in a low resolution
ed to the other camera ðl1 in C2) through H12.
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Fig. 4 shows an example of this approach. Even if few distinc-
tive keypoints are present, the images in the map taken at differ-
ent resolution and pan/tilt angles still allow to find the necessary
correspondences to localize the camera. SURF keypoints are used
as visual landmarks of the scene. The use of SURF features to
match the current view of the camera is motivated by the fact
that, in the case of outdoor PTZ camera operation, they permit
a more precise definition of scale and shape than corners, despite
of the fact that blob-like structures are less accurately localized
than corners in the image plane. SURF keypoints are in fact
invariant to the similarity transformation that small image
patches undergo when the PTZ camera rotates about its optical
centre. The boundaries of a blob, even if irregular, provide a good
estimate of the size (and therefore of the scale) of the blob, so
significantly improving the repeatability of detection under scale
change. In addition, SURF keypoints do not require that the scene
is well-textured, and are robust to motion blur (keypoints are de-
tected in scale–space). However, since image blobs are not accu-
rately localized they cannot be used to estimate the focal length
from the homography between two overlapping frames, espe-
cially when the focal length increases. According to these consid-
erations, inter-image homographies of Eq. (2) are estimated from
the extracted keypoints using bundle adjustment optimization on
the reference images as in [45,15]. All the estimated homogra-
phies are related back to a reference image (i.e. to the reference
Fig. 7. Six intermediate frames generated by our method for the first sequence: (a) seque
particles. (b) Associated nearest neighbor images retrieved from the map. (c) The slave ca
image Ij . The solid and the dashed polygons show respectively the transformed boundar
transformed boundary of image Im with Hmj . Fifth row: A better featured image is autom
plane). In order to support tracking at frame rate of the camera
pose and focal length, all the keypoints of the global map and
their camera geometry information are stored in a k-d tree. Each
keypoint in the k-d tree is associated with the image it comes
from, and in its turn, each image is associated with the
homography that relates it back to the reference plane, so that
quick matching and camera geometry retrieval can be performed
on-line with the keypoints observed in the current PTZ camera
view.

5. Online master–slave relationship estimation

Matching of current frame keypoints with those in the global
map is made according to nearest neighbour search in the feature
descriptor space. We followed the Lowe’s technique [31] that as-
sumes the 1-NN in some image is a potential correct match, while
the 2-NN in the same image is an incorrect match. The final image
Im is the one that has the highest number of feature matches with
respect to the current image It . Once the image Im is found, the cor-
rect homography Gt relating It to Im is computed at run-time using
RANSAC (see Fig. 4), exploiting only the features of Im.

The homography Hmj that relates the image Im with the image Ij

in the reference plane P that is retrieved in the k-d tree hence is
used to compute the likelihood to estimate Ht in Eq. (1). Details
are given in Section 5.1. In Section 5.2 we further exploit the refer-
nce frames (from top to bottom) as taken from the slave camera with superimposed
mera reference plane with superimposed mosaic. The rectangle shows the reference
y of the current image It with bHt (i.e. the averaged filter state homography) and the

atically selected as the camera zooms in.
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ence plane image-to-image homography and the vanishing line to
transfer the target position from the master camera to the slave
camera and to locate the target’s head.

5.1. Slave camera tracking using SURF visual landmarks

In order to track the movements of a slave PTZ camera, we have
to track the parameters that define the homography Ht between
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Fig. 8. Head localization accuracy using (a) SURF (b) SIFT keypoint matching for the first
plane to plane homography. Bottom: Errors in vanishing line and in reference plane to
the reference plane and the frame grabbed at time t. Under the
assumptions made, this homography is completely defined once
the parameters wt ; /t , and ft are known. To this end we use particle
filtering to perform the estimate of the state vector:

xt ¼ ðwt;/t; ftÞ ð3Þ

that defines the homography Ht . Given a certain observation zt of
the state vector at time step t, the particle filter builds an approxi-
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sequence (shown in Fig. 7). Top: Errors in vanishing line. Middle: Errors in reference
plane homography.
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mated representation of the posterior pdf pðxtjztÞ through a set of
weighted samples fðxi

t ;w
i
tÞg

Np

i¼1. Each particle is thus an hypothesis
on the state vector value, with a probability associated to it and
the estimated value of the state vector is obtained as the weighted
sum of all the particles.

The particle filter algorithm requires a probabilistic model for
the state evolution and an observation model, from which a
prior pdf pðxt jxt�1Þ and a likelihood pðzt jxtÞ can be derived. Since
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Fig. 9. Head localization standard deviation errors using (a) SURF (b) SIFT keypoint match
errors with noisy reference plane to plane homography. Bottom: Both noisy vanishing lin
RANSAC fails to find a consistent homography.
there is no prior knowledge about the controls that steer the
camera, we adopt a simple random walk model as a state
evolution model. This is equivalent to assume that the actual va-
lue of the state vector keeps constant through time and relies on
the stochastic noise vt�1 to compensate for unmodeled varia-
tions, i.e.: xt ¼ xt�1 þ vt�1, where vt�1 is a zero mean Gaussian
process noise with covariance matrix accounting for camera
maneuvers.
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ing for the test sequence #1. Top: STD errors with noisy vanishing line. Middle: STD
e and noisy plane to plane homography. Error plot discontinuities in (b) indicate that
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The particle filter uses as observations the correspondences be-
tween the SURF keypoints of the current PTZ view and the global
map, after that the outliers have been removed. To define the like-
lihood pðztjxi

tÞ of the observation zt generated by the actual camera
state given the hypothesis xi

t for the PTZ camera parameters we
take into account the distance between the backprojections of
the corresponding keypoints in Im and It in the camera reference
plane P. The keypoint correspondences implicitly suggest the exis-
tence of an homography between the camera reference plane and
the frame It at time t, and therefore of a triple ð~wt ; ~/t ;

~f tÞ which un-
iquely describes it. This is performed by estimating the homogra-
phy Gt relating It to Im using RANSAC. The recovered inliers, the
homography Gt and the homography Hmj associated to the nearest
image retrieved Im (as registered in the off-line phase, when the
scene map was built) are then used to evaluate the likelihood as:

pðzt jxi
tÞ / exp

�1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1

Hi
t
�1 �qk�Hmj �Gt �qk

� �2
r

ð4Þ

where Hi
t
�1 � qk and Hmj � Gt � qk; k ¼ 1::n, are respectively the projec-

tion of the predicted and matched keypoints in the camera refer-
ence plane P and k is a normalization constant. Fig. 5 summarizes
this process.

5.2. Sensor slaving: head localization while zooming

Without loss of generality and in order to keep a simple nota-
tion, we assume a network with two cameras where H12 is the
homography relating the two cameras reference planes. Eq. (1) is
now exploited to cooperatively track a target moving in a wide
area. According to Eq. (1), the homography Tt to transfer the im-
aged target position from the master to the slave camera reduces
to:

Tt ¼ Ht � H12: ð5Þ

Under the assumption of vertical stick-like targets moving on a pla-
nar scene the target head can be estimated directly without detect-
ing the target framed by the slave camera. This can be easily done
by exploiting the vanishing line in one camera reference plane
avoiding the difficulty of detecting the target’s head in the images
of a moving camera.

For people closely vertical in the scene plane, the position of
feet and head can be related by a planar homology [46,12]. Accord-
ing to this, at each time step t, the probability density function of
the planar homology Wt should be computed once the probability
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Fig. 10. Estimated camera focal length advancement (in pixel) for the sequence shown in
discontinuities in (b) indicates that RANSAC fails to find a consistent homography.
density function of respectively the vanishing point v1;t and the
vanishing line l1;t in the slave camera view at time t are known.

Once the vanishing line l1 is located in the slave camera refer-
ence plane (see Fig. 6), sampling from pðxt jztÞ allows to estimate
pðv1;tjztÞ and pðl1;t jztÞ. For each particle i in the set of the weighted

samples fðxi
t ;w

i
tÞg

Np

i¼1 that model Ht we calculate:

li
1;t ¼ ½Ti

t�
�T � r1 ð6Þ

vi
1;t ¼ xi

t � l
i
1;t ð7Þ

where xi
t in Eq. (7) is the dual image of the absolute conic [20] com-

puted as:

xi
t ¼ K

i
t � Ki

t
T ð8Þ

where the intrinsic camera parameters matrix:

K
i
t ¼

f i
t 0 px

0 f i
t py

0 0 1

2
64

3
75

is computed with reference to the i-th particle, being f i
t its esti-

mated focal length component of Eq. (3) and px; py the coordinates
of the principal point located at the image center. From the samples
of Eqs. (6)–(8) the pdf pðWt jztÞ ¼ 1

N

PN
i¼1dðWt � Wi

tÞ is computed as:

W
i
t ¼ Iþ ðl� 1Þ

vi
1;t � l

i
1;t

T

vi
1;t

T � li
1;t

: ð9Þ

The cross-ratio l, being a projective invariant, is the same in any
image obtained with the slave camera, while only the vanishing line
l1;t and the vanishing point v1;t vary as the camera moves. Thus,
the cross-ratio l can be evaluated accurately by selecting the target
feet location a and the target head location b in one of the frames,
i.e. at time �t as:

l ¼ Crossðv; a;b; v̂1;�tÞ ð10Þ

where v is computed as the intersection of the mean vanishing line
l̂1;t (averaged over the particles) with the line passing from the
mean vanishing point v̂1;t to the feet location a. Using the homoge-
neous vector representation and the cross product operator, v can
be estimated as: v ¼ l̂1;�t � ðv̂1;�t � aÞ.

The pdf pðMt jztÞ of the final transformation Mt that maps the tar-
get feet observed in the image of the master camera to the target
head in the current image of the slave camera is computed from
Eqs. (5) and (9) as:
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Fig. 7. (a) Using SURF keypoints (b) Using SIFT keypoints. Focal length advancement
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M
i
t ¼ W

i
t � Ti

t ¼ W
i
t � Hi

t � H12 ð11Þ
where Mi
t represents a whole family of transformations. Given the

estimated pðxt jztÞ of the slave camera and the imaged position of
the target as tracked from the master camera, the distribution of
the possible head locations bi

t as viewed from the slave camera is
estimated. We sample L homographies from pðxtjztÞ, and the same
Fig. 11. The pan–tilt–zoom parameters as estimated by the filter for a sample set of
sequence; the last three columns show the pan tilt and zoom distributions. In this sequ
number of samples from the set of particles tracking the feet posi-
tion in the master camera view ai

t , to obtain:

bi
t ¼ M

i
t � ai

t i ¼ 1::L ð12Þ

It is worth to note that Eq. (12) jointly takes into account both
zooming camera calibration uncertainty (through each homography
in Mi

t – see Eq. (11)) and target tracking uncertainty.
frames of the second sequence. The first column shows the sample frames of the
ence it is possible to appreciate a high variation for the zoom parameter.
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6. Experimental results

The validity of the framework has been evaluated on a special
test setup in a wide outdoor parking area of 80x15 meters. Two
IP PTZ Sony SNC-RZ30 cameras were placed in proximity of the
long side extremes, at about 60 meters far from each other, operat-
ing in a master–slave configuration. Images from both cameras
were taken at 320 � 240 pixels of resolution. We used two scene
maps of visual landmarks of the observed scene, one from each
camera. Each map was built at three zoom factors (wide view,
1.5 times, 2 times) so as to provide a much larger number of fea-
ture points at each camera location and to support higher zooming
at run-time. The covered field of view is about 180 degrees wide
horizontally and 45� wide vertically.

Two different long sequences were used for test. The first was
planned to verify the accuracy of the estimation of target’s head
position in the view of the slave camera that is an important goal
in surveillance applications (this permits to drive the camera to
appropriately zoom-in on the target’s face, for example). In the se-
quence, the target changes his direction of motion at random, stops
and restarts walking. The camera was steered to follow the target,
as much as possible, progressively zooming in. After 200 frames
the target’s head occupies a region of about 20 � 30 pixels. Because
of the sudden changes of motion direction, speed and the trivial
camera controller used, a shaking blurred video sequence is ob-
tained. The central position of the head region was manually anno-
tated as the target’s head position ground truth for each frame. The
second sequence was planned to obtain a qualitative evaluation of
Fig. 12. Filter convergence. The solid polygon indicates the boundary of the current fram
dashed polygon indicates the boundary of the matched image Im projected onto the refe
registration error).
the method proposed. In this sequence a person is walking approx-
imatively in a straight path, but the sequence is recorded making
panning and zooming continuously in order to follow the trajec-
tory of the target while increasing its scale and keeping it in sight.

In the first test experiment, the accuracy of the method was
analyzed with reference to the principal factors influencing the
accuracy of target’s head estimation: the homography relating
the reference planes of the master and the slave camera, the van-
ishing line in one of the reference planes, the estimated homogra-
phy Ht (i.e. the camera parameters and measurements).

Two pairs of parallel lines needed to estimate the vanishing line
(see Fig. 6a) and four points needed to estimate the homography
relating the two camera reference planes were drawn manually
and hence corrupted by a white, zero mean, Gaussian noise with
standard deviation between 0.1 and 9 pixel. The influence of this
noise over the three factors of influence for the accuracy of head
estimation was tested by running a Monte Carlo simulation. The
procedure was repeated 1,000 times with different seed for the
random noise generator, though with the same noise variance,
and averaged over trials. Fig. 7 shows a few frames generated by
the method.

Plots of the mean error and standard deviation in head localiza-
tion as measured when the target feet position in the master cam-
era view is transferred to the head position in the slave camera
view are reported respectively in Figs. 8 and 9 for different values
of the noise, separately considering: a noisy vanishing line (first
row), a noisy master–slave homography (second row) and a noisy
vanishing line and master–slave homography (third row). The ef-
e It projected onto the reference image plane, through the filtered homography. The
rence image plane. The line segments indicate matches (length proportional to the
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fect SURF of keypoints (column (a)) was compared with SIFT (col-
umn (b)).

In all the cases, after an initial transient due to the guessed initial
conditions of the pan–tilt angles and focal length, the mean error
falls to small values and grows almost linearly as the focal length in-
creases. From Fig. 8-(middle row) it appears that head localization is
much more sensitive to errors in the master–slave homography
rather than the vanishing line. Fig. 9 shows that the standard devia-
tion grows almost proportionally with the noise in the case of errors
in the vanishing line, while grows more in the case of noisy homog-
raphy. Two quick changes of direction of the camera (around frame
250 and 370) to follow the maneuvering target strongly contribute
to the uncertainty in target’s head localization. In this case it can
be appreciated that SURF performs much better than SIFT mostly be-
cause it detects more keypoints and makes RANSAC less likely to fail.
When the vanishing line and the homography are noisy, both mean
errors and standard deviation are smaller than in the other cases.
This is due to the fact that the two errors tend to cancel out mainly
because they are correlated. Indeed the homographyHlm doubly par-
ticipates in the final computation of the head coordinates using Eq.
(11). The planar homology Wi

t is in fact parameterized by the vanish-
ing line which is transformed by H12.

The estimated increase of focal length is shown in Fig. 10. It can
be observed that error grows also almost linearly as the noise in-
Fig. 13. Twelve frames of the sequence #2 analyzed with the proposed technique. (a) Ma
view: the particles show the uncertainty of the head and feet position of the target. Altho
target’s head.
creases. Focal length estimation (that is the most critical factor to
achieve head localization accuracy) has a reasonable uncertainty
as shown by its time varying distribution. As one might expect, it
exhibits a graceful degradation in accuracy under large zoom
levels.

Concerning the second experiment, in Fig. 11 are shown the dis-
tributions of pan–tilt–zoom camera parameters. From the figure it
is possible to observe that the zoom factor has large variations. In
Fig. 12 we show a number of frames, including the reference slave
camera view (that defines the reference image plane) together
with two warped image boundaries superimposed. The solid poly-
gon indicates the boundary of the current frame It projected onto
the reference image plane through the estimated homography.
The dashed polygon indicates instead the boundary of the matched
image Im as projected onto the reference image plane. It can be ob-
served that the estimation is initially inaccurate and is hence cor-
rected in a few frames, until the feature points in the current slave
view It and the matched feature points in the nearest image Im in
the map are coincident (circles and dots). Fig. 13 shows an example
of the system at work.

The use of a prebuilt map with images taken at multiple zoom
levels for each PTZ camera greatly improves the overall perfor-
mance of the approach with respect to a simpler solution in which
a single wide reference view is used, as in [5].
ster camera view: the target is detected by background subtraction. (b) Slave camera
ugh the target is partially occluded the proposed method is still able to localize the
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7. Conclusion

In this paper we have shown how to combine distinctive visual
landmarks maps and PTZ camera geometry in order to define and
compute the basic building blocks of PTZ camera networks. The
proposed approach can be generalized to networks with any arbi-
trary number of cameras, each of which can act either as master or
as slave. The proposed framework does not require any 3D known
location to be specified, and allows to take into account both zoom-
ing camera and target uncertainties. Results are very encouraging
to develop automated biometric identification technologies to
identify humans at a distance.

The main limitation of the proposed approach is that the master–
slave relationship is estimated using stationary visual landmarks. In-
stead, most of the available landmarks in the scene are non station-
ary, especially when observing crowded scenes, or when moving
objects determine changes in the scene appearance. Due to this, as
time progresses the number of feature matches in the map consider-
ably decreases, until the point at which RANSAC fails to find a consis-
tent homography. Future research will consider the possibility of
landmarks maintenance in a continuous changing background.
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