Server Side development with PHP

MICC / University of Florence
Daniele Pezzatini

Outline

Introduction

PHP installation

Variables, Loops and Functions

Passing data through pages: GET and POST method
Cookies and Sessions

PHP and MySQL database

Security best practices

© N O U bk W N e

Resources

Example: Create a simple CRUD application - The shopping list

* slide inspired by http://www.w3schools.com/php/

Introduction

What is PHP?

e PHP stands for PHP: Hypertext Preprocessor

e PHPis a server-side scripting language, like ASP

e PHP scripts are executed on the server

e PHP supports many databases (MySQL, Informix, Oracle, Sybase, Solid, PostgreSQL, Generic ODBC, etc.)
e PHP is an open source software

e PHP is free to download and use

http://www.php.net/

php

http://www.php.net/

Structure of PHP file

PHP pages contain HTML with embedded code that does "something" (in this case, output "Hi, I'm a PHP
script!"). The PHP code is enclosed in special start and end processing instructions <?php and ?> that allow you

to jump into and out of "PHP mode."

PHP files have a file extension of .php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Example</title>

</head>
<body>

<?php
echo "Hi, I'm a PHP script!"”;
?>

</body>
</html>

Server Side developing

What distinguishes PHP from something like client-side JavaScript is that the code is executed on the server,
generating HTML which is then sent to the client.

1) The server receive from a client a request of a PHP file

2) The PHP file is executed by a web server (e.g. Apache).

3) If needed, data from a database are read.

4) The results, typically an HTML document, is then send to the client.

2
e 1 y
L
<< 4
Client {- Server 3

Database

Installation

For developing and testing purpose, download and install on of this free all-in-one packages

WAMP (WIN)
EasyPHP (WIN)
MAMP (Mac)
xampp (WIN)

Linux users: search online for “LAMP install”. LAMP stands for Linux Apache MySQL and PHP

Basic PHP Syntax

A PHP script always starts with <?php and ends with ?>. A PHP script can be placed anywhere in the document.
On servers with shorthand-support, you can start a PHP script with <? and end with ?>.
For maximum compatibility, it’s recommend to use the standard form (<?php) rather than the shorthand form.

Below, we have an example of a simple PHP script that sends the text "Hello World" back to the browser:

<html>
<body>

<?php
echo "Hello World";
?>

</body>
</html>

Each code line in PHP must end with a semicolon. The semicolon is a separator and is used to distinguish one set of
instructions from another.

Comments in PHP

In PHP, we use // to make a one-line comment or /* and */ to make a comment block:

<html>
<body>

<?php
//This is a comment

/*

This 1is

a comment
block

*/

7>

</body>
</html>

PHP Variables

Rules for PHP variable names:

e Variables in PHP starts with a S sign, followed by the name of the variable

e The variable name must begin with a letter or the underscore character

e Avariable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
e Avariable name should not contain spaces

e Variable names are case sensitive (y and Y are two different variables)

<?php

Stxt="Hello World!";
Sx=16;

?>

In PHP, a variable does not need to be declared before adding a value to it.

In the example above, notice that we did not have to tell PHP which data type the variable is.

PHP automatically converts the variable to the correct data type, depending on its value.

In a strongly typed programming language, you have to declare (define) the type and name of the variable before using it.

String Variables in PHP

String variables are used for values that contain characters.
Below, the PHP script assigns the text "Hello World" to a string variable called Stxt:

<?php

Stxt="Hello World";
echo S$txt;

?2>

The output of the code above will be:

Hello World

The Concatenation Operator

The concatenation operator (.) is used to put two string values together.
To concatenate two string variables together, use the concatenation operator:

<?php
Stxtl="Hello World!";
Stxt2="What a nice day!";

echo $txtl . " " . Stxt2;
?>

The output of the code above will be:

Hello World! What a nice day!

Using quotes

Choosing whether to use double quotes or single quotes is not just a personal preference. There is an important difference in
the way that PHP handles them:

e Anything between single quotes is treated literaly as text;
® Double quotes act as a signal to process variables and special characters.

$Sname = 'Dolly ';
echo 'Hello, S$name';

The example above will output: Hello, $name

Sname = 'Dolly ';
echo “Hello, S$name”;

The example above will output. Hello,Dolly

String functions in PHP

The strlen() function is used to return the length of a string.
Let's find the length of a string:

<?php
echo strlen("Hello world!");
?2>

The output of the code above will be 12

The join() function returns a string from the elements of an array.

<?php

Sarr = array('Hello',6 'World!', 'Beautiful’', 'Day!');
echo join(" ",Sarr);

?>

The output of the code above will be: Hello World! Beautiful Day!

For a complete reference of all string functions: http://php.net/manual/en/ref.strings.php.

http://php.net/manual/en/ref.strings.php

IF/ELSE statements

Conditional statements are used to perform different actions based on different conditions.

<html>
<body>

<?php
Sd=date("D");
if ($d=="Fri") {
echo "Have a nice weekend!";

}

else {
echo "Have a nice day!";

}

?2>

</body>
</html>

SWITCH statements

Use the switch statement to select one of many blocks of code to be executed.

<?php

$x=1;

switch ($x)

{

case 1:
echo "Number 1";
break;

case 2:
echo "Number 2";
break;

case 3:
echo
break;

default:
echo "No number between 1 and 3";

Number 3";

}

?2>

PHP Arrays

An array can hold all your variable values under a single name. And you can access the values by referring to the
array name.

Each element in the array has its own index so that it can be easily accessed.
In PHP, there are three kind of arrays:

e Numeric array - An array with a numeric index
e Associative array - An array where each ID key is associated with a value
e Multidimensional array - An array containing one or more arrays

Numeric Arrays

A numeric array stores each array element with a numeric index.
There are two methods to create a numeric array.

In the following example the index are automatically assigned (the index starts at 0):

Scars=array ("Saab", "Volvo", "BMW", "Toyota") ;

In the following example we assign the index manually:

Scars[0]="Saab";
Scars[1l]="Volvo";
Scars[2]="BMW";
Scars[3]="Toyota";

In the following example you access the variable values by referring to the array name and index:

<?php

Scars[0]="Saab";

Scars[1l]="Volvo";

Scars[2]="BMW";

Scars[3]="Toyota";

echo Scars[0] . " and " . Scars[l] . " are Swedish cars.";
>

The code above will output: saab and Volvo are Swedish cars.

Associative Arrays

An associative array, each ID key is associated with a value.
When storing data about specific named values, a numerical array is not always the best way to do it.

With associative arrays we can use the values as keys and assign values to them.

In this example we use an array to assign ages to the different persons:

Sages = array("Peter"=>32, "Quagmire"=>30, "Joe"=>34);

This example shows a different way of creating the same array:

$ageS['Peter'] — "32";
$ageS['Quagmirev] _ "30";
Sages(['Joe'] = "34";

The ID keys can be used in a script:

<?php

Sages|['Peter'] = "32";

Sages|['Quagmire'] = "30";

Sages['Joe'] = "34";

echo "Peter is " . $Sages|['Peter'] . " years old.";
?>

The code above will output: Peter is 32 years old.

Multidimensional Arrays

In a multidimensional array, each element in the main array can also be an array. And each element in the sub-array
can be an array, and so on.

In this example we create a multidimensional array, with automatically assigned ID keys. On the right it’s shown
how the array would look like this if written to the output using print_r():

Sfamilies = array ?rray
(.
"Griffin"=>array [Griffin] => Array
((

"Peter", [O] => Peter
"LOiS", [1] => Loils
"Megan" [2] => Megan
)) |
"Quagmire"=>array [Quagmire] => Array
((
"Glenn" [O] => (Glenn
))
"Brown"=>array [Brown] => Array

((

"Cleveland", [O] => Cleveland
"Loretta", [;] => Loretta
[

"Junior"] => Junior

))
) ;)

Lets try displaying a single value from the array above:

echo "Is " . $families['Griffin'][2] . " a part of the Griffin family?";

The code above will output: Is Megan a part of the Griffin family?

PHP Loops

Often when you write code, you want the same block of code to run over and over again in a row. Instead of adding
several almost equal lines in a script we can use loops to perform a task like this.

In PHP, we have the following looping statements:

e while - loops through a block of code while a specified condition is true
e do...while - loops through a block of code once, and then repeats the loop as long as a specified condition is

true
e for - loops through a block of code a specified number of times
e foreach - loops through a block of code for each element in an array

Example: This for loop will starts with i=1 and will continue to run as long as i is less than, or equal to 5. i will
increase by 1 each time the loop runs:

<?php
for ($i=1; $i<=5; S$i++)
{

echo "The number is " . $i . "
";

}

?>

Output:

The number is
The number is
The number is
The number is
The number is

O s W DN

Passing data - GET method

The predefined $_GET variable is used to collect values in a form with method="get"

Information sent from a form with the GET method is visible to everyone (it will be displayed in the browser's
address bar) and has limits on the amount of information to send.

<form action="welcome.php" method="get">
Name: <input type="text" name="fname" />
Age: <input type="text" name="age" />
<input type="submit" />

</form>

When the user clicks the "Submit" button, the URL sent to the server could look something like this:

http://www.example.com/welcome.php?fname=Peter&age=37

The "welcome.php" file can now use the S_GET variable to collect form data (the names of the form fields will
automatically be the keys in the S_GET array):

Welcome <?php echo $ GET["fname"]; ?>.

You are <?php echo $§ GET["age"]; ?> years old!

When using method="get" in HTML forms, all variable names and values are displayed in the URL.

This method should not be used when sending passwords or other sensitive information.
However, because the variables are displayed in the URL, it is possible to bookmark the page. This can be useful in
some cases.

The get method is not suitable for very large variable values. It should not be used with values exceeding 2000
characters.

http://www.example.com/welcome.php?fname=Peter&age=37

Passing data - POST method

The predefined $_POST variable is used to collect values from a form sent with method="post".

Information sent from a form with the POST method is invisible to others and has no limits on the amount of
information to send.

Note: However, there is an 8 Mb max size for the POST method, by default (can be changed by setting the
post_max_size in the php.ini file).
<form action="welcome.php" method="post">
Name: <input type="text" name="fname" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

When the user clicks the "Submit" button, the URL will look like this:

http://www.example.com/welcome.php

The "welcome.php" file can now use the S_POST variable to collect form data (the names of the form fields will
automatically be the keys in the S_POST array):

Welcome <?php echo $ POST["fname"]; ?>!

You are <?php echo $ POST["age"]; ?> years old.

However, because the variables are not displayed in the URL, it is not possible to bookmark the page.

Cookies

A cookie is a small file that the server embeds on the user's computer. Each time the same computer requests a
page with a browser, it will send the cookie too.

A cookie is often used to identify a user.

With PHP, you can both create and retrieve cookie values.

The setcookie() function is used to set a cookie. The function must appear BEFORE the <html> tag.

<?php
setcookie("user", "Jhon Doe", time()+3600);
2>

Cookies

The PHP $_COOKIE variable is used to retrieve a cookie value.

In the example below, we retrieve the value of the cookie named "user" and display it on a page:
<?php

// Print a cookie
echo $§ COOKIE["user"];

?2>

In the following example we use the isset() function to find out if a cookie has been set:

<?php
if (isset($ COOKIE["user"]))
echo "Welcome " . $§ COOKIE["user"] . "l!
";
else
echo "Welcome guest!
";
2>

When deleting a cookie you should assure that the expiration date is in the past.

<?php
// set the expiration date to one hour ago
setcookie("user", "", time()-3600);

?2>

PHP Sessions

When you are working with an application, you open it, do some changes and then you close it. This is much like a
Session. The computer knows who you are. It knows when you start the application and when you end. But on the
internet there is one problem: the web server does not know who you are and what you do because the HTTP
protocol doesn't maintain state.

A PHP session solves this problem by allowing you to store user information on the server for later use (i.e.
username, shopping items, etc). However, session information is temporary and will be deleted after the user has
left the website. If you need a permanent storage you may want to store the data in a database.

Sessions work by creating a unique id (UID) for each visitor and store variables based on this UID. The UID is either
stored in a cookie or is propagated in the URL.

Starting a PHP Session

Before you can store user information in your PHP session, you must first start up the session. The session_start()
function must appear BEFORE the <html> tag:

<?php session start(); ?>

<html>
<body>

PHP Sessions

The correct way to store and retrieve session variables is to use the PHP $_SESSION variable:

<?php
session_start();

// store session data
$_SESSION|['views']++;
?>

<html>
<body>

<?php

//retrieve session data

echo "Pageviews=". § SESSION['views'];
?>

</body>
</html>

PHP Sessions

If you wish to delete some session data, you can use the unset() or the session_destroy() function.

The unset() function is used to free the specified session variable:

<?php
unset ($ SESSION|['views']);
?>

You can also completely destroy the session by calling the session_destroy() function. It will reset your session and
you will lose all your stored session data.

<?php
session_destroy();
2>

PHP and MySQL

MySQL is the world's most used relational database management system (RDBMS) that runs as a server providing
multi-user access to a number of databases.

The MySQL development project has made its source code available under the terms of the GNU General Public
License, as well as under a variety of proprietary agreements.

SQL (Structured Query Language) is a language designed for interacting with RDBMS like MySQL, Oracle, Sqlite etc.

My official website http://mysql.com/

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Proprietary_software

PHP and MySQL - Connection

Before you can access data in a database, you must create a connection to the database.

In PHP, this is done with the mysql_connect() function.

The mysql_select_db() function sets the active MySQL database.

Scon = mysql connect($servername, $username, S$password);
$db selected = mysql select db("test db", $con);

PHP and MySQL - Read records

To get PHP to execute the statement above we must use the mysql_query() function. This function is used to send a
guery or command to a MySQL connection.

We use the mysgl_fetch_array() function to return the first row from the recordset as an array. Each call to
mysql_fetch_array() returns the next row in the recordset. The while loop loops through all the records in the result
set.

<?php
Scon = mysql connect("localhost", "peter","abcl23") or die('Could not connect');

mysql select _db("my db", $con);
Sresult = mysql query("SELECT * FROM Persons");
while(Srow = mysql fetch array(Sresult))

{

echo Srow['FirstName']

}

Srow['LastName'];

?2>

PHP and MySQL - Writing records

The INSERT INTO statement is used to add new records to a database table.

The mysql_affected_rows() function returns the number of affected rows in the previous MySQL operation. It can
be useful to check if the operation ware concluded successfully.

$con = mysqgl connect("localhost","root","root") or die('Could not connect’);

mysgl select db("my db", S$con);

$sql="INSERT INTO Persons (FirstName, LastName, Age)
VALUES('”.$ POST[firstname].”','”.$ POST[lastname].”','”.$ POST[age].”')";

mysql_query($sql);
if (mysql_affected_rows())
echo "OK";

else
echo "Error";

A full list of MySQL functions can be found here: http://php.net/manual/en/ref.mysql.php

http://php.net/manual/en/ref.mysql.php

PHP Security

There are some very simple measures you can take to protect your application from potential abuse. It’s very
important to sanitize external data (user inputs, cookies,external web servers etc.) before processing them or
using as database inputs.

Assume everything is dirty until proven clean. Filtering all data from external sources is probably the most
important security measure you can take. This can be as easy as running some simple built-in functions on your

variables.
HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME | | N A W AY Robert'); DROP T HOPE YOURE HAPPY.
COMPUTER TROUBLE. TABLE Students; -~ 7 \,1
R ! AND T HOPE
j ~OH.YES. LITTLE = YOUVE LEARNED
ROBBY TARLES, L TOSANTIZE YOUR
WE CALL HIM. DATARASE INPUT,

PHP Security

EXAMPLE

The school apparently stores the names of their students in a table called Students. When a new student arrives,
the school inserts his/her name into this table. The code doing the insertion might look as follows:

$sgql = " INSERT INTO Students (Name) VALUES ('" . $studentName . "'); ";
mysqgl query($sql);

The first line creates a string containing an SQL INSERT statement. The content of the SstudentName variable is
glued into the SQL statement. The second line sends the resulting SQL statement to the database. The pitfall of this
code is that outside data, in this case the content of SstudentName, becomes part of the SQL statement.

First let's see what the SQL statement looks like if we insert a student named John:

INSERT INTO Students (Name) VALUES ('John');

This does exactly what we want: it inserts John into the Students table.

Now we insert little Bobby Tables, by setting SstudentName to Robert'); DROP TABLE Students;--. The SQL
statement becomes:

INSERT INTO Students (Name) VALUES ('Robert'); DROP TABLE Students;--');

This inserts Robert into the Students table. However, the INSERT statement is now followed by a DROP TABLE
statement which removes the entire Students table.

PHP Security - Filters

A PHP filter is used to validate and filter data coming from insecure sources.
The PHP filter extension is designed to make data filtering easier and quicker.

Input filtering is one of the most important application security issues.

To filter a variable, use the following filter functions:

filter var(var, filter, options)

PHP Security - Filters

A PHP filter is used to validate and filter data coming from insecure sources.

Input filtering is one of the most important application security issues.

To filter a variable, use the following filter functions:

filter var(var, filter, options)

There are two kinds of filters:

Validating filters:

® Are used to validate user input

e Strict format rules (like URL or E-Mail validating)

® Returns the expected type on success or FALSE on failure
Sanitizing filters:

e Are used to allow or disallow specified characters in a string
® No data format rules

® Always return the string

PHP Security - Sanitize Input

First we confirm that the input data we are looking for exists.
Then we sanitize the input data using the filter_var() function.

In the example below, the input variable "email" is sent to the PHP page:

<?php
if(isset ($_GET["email"]) {

Semail = filter var($ GET["email"],FILTER_SANITIZE EMAIL);
}

else {

echo("Input type does not exist");

2>

The FILTER_SANITIZE_EMAIL filter removes all illegal e-mail characters from a string.

This filter allows all letters, digits and S-_.+!*'{}| A~[] #%/? @ &=

E.G. Filtering some (one)@exa\\mple.com Wwill output someone@Rexample.com

PHP Security - Validate Input

After sanitizing, we have to verify that the value is in a correct format.
In the example we use the filter_var() function for validating an email.
<?php

if (filter_var (Semail, FILTER VALIDATE EMAIL)) {
echo "Email is wvalid";

}
else{
echo "Email is not wvalid";
}
}
?>

The FILTER _VALIDATE_EMAIL filter validates value as an e-mail address.

E.G. Filtering someone@example com will produce the output “Email is not valid”

Filtering someone@example.com will produce the output “Email is valid”

PHP Security - SQL escaping

The mysql_real_escape_string() function escapes special characters in a string for use in an SQL statement

This function returns the escaped string on success, or FALSE on failure.

<?php
Suser = mysql real escape string(Suser);

Spwd = mysql real escape string(Spwd);

$sql = "SELECT * FROM users WHERE user='" . Suser . "' AND password='" . $Spwd . "'"
?>
If you don’t execute the mysql_real_escape_string() function, using ' or ''='as password value will produce the

following SQL statement:

SELECT * FROM users WHERE user='john' AND password='' OR ''="'

This means that anyone could log in without a valid password!

Resources

Officials

http://php.net
http://www.mysal.com/
http://www.w3schools.com/php/

Video tutorial
http://blog.themeforest.net/screencasts/diving-into-php-video-series/

Security

http://us3.php.net/manual/en/security.php
http://www.ultramegatech.com/2009/08/5-basic-php-security-tips/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/

Object Oriented Programming
http://php.net/manual/en/language.oop5.php
http://net.tutsplus.com/tutorials/php/object-oriented-php-for-beginners/

http://php.net/
http://www.mysql.com/
http://www.w3schools.com/php/
http://blog.themeforest.net/screencasts/diving-into-php-video-series/
http://us3.php.net/manual/en/security.php
http://www.ultramegatech.com/2009/08/5-basic-php-security-tips/
http://coding.smashingmagazine.com/2010/10/18/common-security-mistakes-in-web-applications/
http://php.net/manual/en/language.oop5.php
http://net.tutsplus.com/tutorials/php/object-oriented-php-for-beginners/

Create a simple CRUD application - The shopping list

CRUD application

In computer programming create, read, update and delete (CRUD) are the four basic functions of persistent
storage.

We are going to implement a simple shopping list application in order to show some simple best practices in PHP
programming

Full code available here: http://www.micc.unifi.it/pezzatini/downloads/crud ppm.zip

http://www.micc.unifi.it/pezzatini/downloads/crud_ppm.zip

Page structure

All the code that is common to all the pages could be
moved in external files.

In our case we will create an header.php and a

footer.php files that must be included in all our pages.

All our pages will have the following structure:

<?php
include('header.php');

// insert all the page code here

include('footer.php');

?2>

page
content

footer.php

Header and footer

In header.php we open the HTML head and body tags.
This file will be included at the beginning of every file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html>
<head>

<title>Shopping list</title>

<link rel="stylesheet" type="text/css" href="style.css" />
</head>

<body>
<div id="main">
<h2> Shopping List </h2>

In footer.php we close the HTML body tag and add some copyrights information.
This file will be included at the end of every file.

<div id="credits">
<p> © <?= date('Y') ?> - MICC </p>
</div>
</div>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Define the data model

We create a new database and a new table, called shopping_list.

The table has three field: an id, an item name and a quantity.

CREATE TABLE IF NOT EXISTS “shopping list"
“id® int(11) NOT NULL AUTO INCREMENT,
“item text NOT NULL,

“quantity” int(11l) NOT NULL,
PRIMARY KEY (~id")
)i

(

~ Campo Tipo Collation Attributi Null
0 int(11) No
| item text latin1_swedish_ci No
] quantity int(11) No

Predefinito Extra Azione

None AUTO_INCREMENT 7S X FA
None X G ol A
None B » X [B

H 4

Configure database connection

Create a configuration file (config.php) where the database connection will be established.
We are going to include this file in every page of our application

<?php

$db _host = 'localhost';
$db_user = 'root';

$db pass = 'root';

$db name = 'crud ppm';

$db connect = mysql_connect($db_host,$db_user , $db_pass);
if (!$db _connect) {
die('Not connected :

. mysql error());

}
if (! mysql_select_db($db_name)) {

die ('Can\'t use foo : ' . mysql error());
}

?2>

Listing items

In our index.php we will select from the DB all the values and display them in a table, using mysql_query and
mysql fetch_array.

For each item, we add links for the the edit and delete page passing the id of the item.

<?php
include('config.php');
?2>
<table>
<tr>
<td>Id</td>

<td>Item</td>
<td>Quantity</td>

</tr>
<?php
Sresult = mysql query("SELECT * FROM “shopping list ") or trigger error(mysqgl error());
while($Srow = mysql fetch array(Sresult))
?
.><tr>

<td ><?= strip tags($row['id']) ?></td>
<td ><?= strip tags($row['item']) ?></td>
<td ><?= strip tags($row['quantity']) ?></td>
<td ><a href='edit.php?id=<?= S$row['id'] ?> '>Edit</td>
<td><a href='delete.php?id=<?= $row['id'] ?> '>Delete</td>
</tr>
<?php
} //end of while
?2>
</table>

Adding items

We create a page for adding new items (new.php). The HTML of the page will display an input form.
At the beginning of the page, we check if form data have been send. If so, we prepare them for be insert in a SQL

statement.

<?php
include('config.php');

if (isset($_POST['submitted'])) {
foreach($ POST AS S$key => S$value) {
S POST[Skey] = mysql real escape_string($value);

}
if (filter var($ POST['quantity'], FILTER VALIDATE INT)){
$sgql = "INSERT INTO shopping list(item,quantity)
VALUES ('".$_POST[item']."','".$ POST['quantity']."') ";

mysql query(S$sqgl) or die(mysgl error());
?2>
Added row.

Back To Listing

<?php
}
else{
echo "Quantity must be an integer number";

}
}

?2>
<form action='"' method='POST'>
Item: <textarea name='item'></textarea>
Quantity: <input type='text' name='quantity'/>
<input type='submit' value='Add Row' />
<input type='hidden' value='l' name='submitted' />
</form>

Edit items

We create a page for editing existing items (edit.php). The HTML of the page will display an input form already filled
with current values.

The id of the item is retrieved form the url of the page (S_GET value)

if (isset($_GET['id'])) {
$id = (int) $ _GET['id'];
if (isset($_POST['submitted'])) {
foreach($ POST AS $key => S$value) {

S POST[Skey] = mysql real escape_string($Svalue);
}
if (filter var($_POST['quantity'], FILTER VALIDATE INT)){
$sgql = "UPDATE shopping list
SET item ='".$ POST['item']."', quantity = '".$ POST['quantity']."'
WHERE id = ".$id."'";

mysqgl query($sqgl) or die(mysgl error());
echo (mysqgl affected rows()) ? "Edited row" : "Nothing changed";
echo "Back To Listing";

}
else{
echo "Quantity must be an integer number";
}
}
Srow = mysql fetch array (mysqgl query("SELECT * FROM shopping list"
WHERE \id\ - lll.$id.lll ll));
?2>
<form action='' method='POST'>

Ttem:<textarea name='item'><?= strip tags(Srow['item']) ?></textarea>
Quantity:<input type='text' name='quantity' value='<?= strip tags(Srow['quantity']) ?>'/>
<input type='submit' wvalue='Edit Row' />
<input type='hidden' value='l' name='submitted' />
</form>

Delete items

We create a page for deleting existing items (delete.php).

The id of the item is retrieved form the url of the page (S_GET value)

$id = (int) $_GET['id'];

mysqgl query("DELETE FROM shopping list WHERE id = '$id' ") ;
echo (mysql_affected_rows()) ? "Row deleted." : "Nothing deleted.";
?2>

Back To Listing

Results

a2 Vala

Shopping list

& Shopping list |+

Shopping List

Id Item Quantity

8 Milk 10 Edit
9 Apple 20 Edit
10 Bread 5 Edit
New Row

Delete
Delete
Delete

© 2012 - MICC

Shopping List

Edited row.

Item:
Milk

Quantity:

12

© 2012 - MICC

