

Two-phase CFD models for the simulation of bubbles dynamics and gas introduction in alkaline electrolyzers

Author: Marco Dreoni, Cycle XXXVII

Department of Industrial Engineering, REASE Group

BACKGROUND AND SCOPE OF THE PHD STUDY

To improve on design and efficiency of **green-hydrogen** electrolysis, **multiphysics CFD** simulations are needed. CFD **results validation** with experimental measurements **is rare** and the reliability of the adopted models not assessed yet.

In this context, a numerical study is being conducted with the aim to provide a sensitivity analysis on the models of **ANSYS® Fluent® 2023 R1.** A literature **test-case** with PIV-method results is considered for validation.

CASE STUDY CFD MODEL

- Electrochemical cell, No Net Flow Configuration
- Two-phase Eulerian model
- Laminar and steady-state simulations
- Diameter change with height (UDF): $d=60\div100 \ \mu m$
- Current density: 130 A/m²

GAS INTRODUCTION CASES

- 1. Mass source term inside thin layers (0.45 mm)
- 2. Gas mass-flow inlet at electrodes
- 3. Electrochemical module: reaction at wall boundaries

$$20H^{-}_{(aq)} \rightarrow \frac{1}{2}O_{2(g)} + H_{2}O_{(l)} + 2e^{-1}$$

SOME OF THE LATEST RESULTS

Below are shown the results of vertical velocity of the bubbles, for the three different approaches of gas introduction. CFD solution is compared to case-study PIV output with agreement in maximum values of velocity. The case relative to the electrochemical module has a better behaviour in allowing the gas to diffuse towards the inner part of the cell.

CONCLUSIONS AND FUTURE WORKS

Three different models for simulating the gas generation in alkaline electrolysis are to date applied to a literature test-case with the use of Faraday's law.

The electrochemical model is ready to be applied for the CFD simulations on a real electrolyzer cell. An optimization of the geometries and a thermal analysis will also be performed during next year.

For collaborations contact: marco.dreoni@unifi.it

PhD program in Industrial Engineering

