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ABSTRACT
Video compression algorithms result in a reduction of image quality,
because of their lossy approach to reduce the required bandwidth.
This affects commercial streaming services such as Netflix, or Ama-
zon Prime Video, but affects also video conferencing and video
surveillance systems. In all these cases it is possible to improve
the video quality, both for human view and for automatic video
analysis, without changing the compression pipeline, through a
post-processing that eliminates the visual artifacts created by the
compression algorithms.

Generative Adversarial Networks have obtained extremely high
quality results in image enhancement tasks; however, to obtain
such results large generators are usually employed, resulting in
high computational costs and processing time. In this work we
present an architecture that can be used to reduce the computational
cost and that has been implemented on mobile devices. A possible
application is to improve video conferencing, or live streaming. In
these cases there is no original uncompressed video stream available.
Therefore, we report results using no-reference video quality metric
showing high naturalness and quality even for efficient networks.
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1 INTRODUCTION AND PREVIOUS WORKS
Every day a huge number of videos are created, shared and streamed
on the web, within video conferencing and in video surveillance
systems. It is necessary to compress these video streams, to reduce
the required bandwidth and storage.
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The effect of the lossy algorithms typically used is a loss of
content fidelity with respect to the original visual data to various
degrees of magnitude. An approach to improve the perceived video
quality, while maintaining a high compression rate, is to perform
filtering on the reconstructed frames, to reduce the effect of the
various artifacts. For example, the most recent codecs, such as H.265
and AV1 envisage standardized deblocking filtering.

Improving image quality is a topic that has been thoroughly stud-
ied, especially in the case of compression artifact removal. Many
approaches are based on image processing techniques [4, 6, 10, 13,
14, 20, 21, 23, 24]. Recently, several learning based methods have
been proposed [2, 5, 7, 8, 11, 15, 18, 19, 22], using Deep Convolu-
tional Neural Networks (DCNN), trained to restore image quality;
the most recent works [2, 8, 22] use increasingly deep architectures,
often employing residual blocks. In [8] we have proposed to use a
GAN ensemble and a quality predictor that allows them to restore
images of unknown quality.

In this work, we propose a solution to artifact removal based
on CNNs trained on large sets of frame patches compressed with
different quality factors. Our approach is independent with respect
to the compression algorithm used to encode a video; it can be used
as a post-processing step on decompressed frames and therefore
it can be applied on many lossy compression algorithms such as
WebM, AV1, H.264/AVC, and H.265/HEVC. This allows avoiding any
modification to the existing compression pipelines, that are often
optimized e.g. using dedicated hardware such as GPUs or SoCs.
Another advantage is that it can be used with dynamic adaptive
streaming approaches, (e.g. DASH), where streams are encoded at
different bit rates (and thus at different qualities).

A typical use case in which a high compression is desirable is that
of video conferencing, in which video streams must be kept small to
reduce communication latency and thus improve user experience.
Also in the case of entertainment video streaming, there is a need
to reduce as much as possible the required bandwidth, to reduce
network congestion and operational costs.

2 METHODOLOGY
We apply adversarial training [9], that recently has shown remark-
able performances in image processing and image generation tasks
[3, 8, 12], optimizing two networks: a generator (G) and a discrim-
inator (D), where the generator is fed some noisy input and has
the goal to create realistic images (restored) that can misguide the
discriminator. On the other hand, the discriminator optimizes a
classification loss rewarding solutions that correctly distinguish
generated images (restored) from real ones (uncompressed). We
consider a frame from a compressed video as an image that has
been distorted by some known process. Our goal is to learn some
functionG (·) (i.e. the generator) able to invert the compression pro-
cess so that restored images are more similar to uncompressed ones.
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Model # Filters # Blocks # Params
GAN baseline [8] 64 16 5.1M
Fast 32 12 1.8M
Very Fast 8 16 145k

Table 1: Parameters of the different GANs used. Compared
to the previous work [8], the new “Fast" and “Very Fast" net-
works have amuch smaller number of parameters, resulting
in a reduced computation time.

We define the functionG (·) as a fully convolutional neural network
so to avoiding to have to stick to a precise input resolution for
frames and most importantly to allow us to train the network over
smaller frame crops and larger batches, speeding up the training.
Considering the fact that the noise process induced by compres-
sion is local, our strategy does not compromise performance. The
weights are learned using a Generative Adversarial Framework.

Generative Network. The architecture of our generator is based
on MobileNetV2 [17], which is a very efficient network designed for
mobile devices to perform classification tasks. Differently from [8],
we replace standard residual blockswith bottleneck depth-separable
convolutions blocks to reduce the overall amount of parameters.

After a first standard convolutional layer, featuremaps are halved
twice with strided convolutions and then we apply a chain of B
bottleneck residual blocks. The number of convolution filters dou-
bles each time the feature map dimensions are halved. We use two
combinations of nearest-neighbor up-sampling and standard con-
volution layer to restore the original dimensions of feature maps.
Finally, we generate the RGB image with a 1 × 1 convolution fol-
lowed by a tanh activation, to keep the output values between the
[−1,1] range. In all our trained models we employed Batch Normal-
ization to stabilize the training process. Table 1 reports the number
of filters, blocks, and weights of the GAN used in our previous work
[8], and two variations of the proposed network, called “Fast" and
“Very Fast" since they are designed to attain real-time performance.
It can be observed that the new GAN architectures have a much
smaller number of parameters, resulting in reduced computational
costs, that allow reaching the required real-time performance.

Discriminative Network. This network comprises mostly convolu-
tional layers followed by LeakyReLU activation, with a final dense
layer and a sigmoid activation. Since the complexity of this network
does not affect the execution time during the test phase, we have
chosen for all our experiments a discriminator with a very large
number of parameters, thus increasing its ability to discriminate
fake patches from real ones. As in [7, 8], sub-patches are fed to this
network rather than whole images, because image compression
operates at the sub-patch level and those artifacts we aim to remove
are generated inside them.

3 THE SYSTEM
All models are trained on the DIV2K dataset [1], that comprises
800 high resolution uncompressed images, which we compress
using H.264 to generate degraded frames. As an augmentation
strategy, considering the small size of DIV2K, we resize images at
256, 384 and 512 on their shorter side and then we randomly crop
a patch of 224 × 224 pixels with random mirror flipping. Tests on
the following Derf collection1 videos: Mobile Calendar, Park Run,
1https://media.xiph.org/video/derf/

Shields, River Bed, Sunflower, Rush Hour, Tractor Pedestrian Area,
Blue Sky and Station are reported in Tab. 2, using the VIIDEO [16]
no-reference quality metric and frame rates obtained on NVIDIA
Titan X. Qualitative inspection of our frames confirm quantitative
results, showing pleasant highly detailed frames.

Figure 1: Qualitative comparison of (leftmost) compressed
frame with H.264 (CRF 28), (b-d) Very Fast, Fast and Gal-
teri et al. [8] networks with (e) uncompressed frame. Large
frame obtained by Fast network. Note the fine details of the
wings and hairs of the bee obtained by the GAN based ap-
proaches, compared to the standard compressed version.

VIIDEO[16] FPS@720p
H.264 0.520 -
Very Fast 0.388 42
Fast 0.350 20
GAN baseline [8] 0.387 4
Uncompressed 0.276 -

Table 2: No reference quality assessment of our compression
artifact removal networks. (lower VIIDEO figure is better,
higher FPS is better).

The network has been ported to iOS to perform real-time video
enhancement on mobile devices like the iPhone. The light computa-
tional cost of the network combined with the recent improvements
in deep learning inference hardware i.e. the Apple Neural Engine
(APE), was essential to obtain near real-time performance. To en-
able the use of the APE, the conversion required the removal of
padding layers which were integrated into convolutional layers and
the choice of fixed input size. For the latter issue, we just converted
the network with multiple standard video sizes. The final system
works at a frame rate of 12 FPS on an iPhone XS Max.
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