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ABSTRACT

In this paper a real-time anomaly detection system for video
streams is proposed. Spatio-temporal features are exploited
to capture scene dynamic statistics together with appear-
ance. Anomaly detection is performed in a non-parametric
fashion, evaluating directly local descriptor statistics. A
method to update scene statistics, to cope with scene changes
that typically happen in real world settings, is also pro-
vided. The proposed method is tested on publicly available
datasets.

Categories and Subject Descriptors

H.3.1 [Information Systems]: Content Analysis and In-
dexing; H.5.1 [Multimedia Information Systems]: Video

General Terms

Algorithms, Experimentation

Keywords

Anomaly detection, surveillance, local descriptors, action
recognition, spatio-temporal interest points

1. INTRODUCTION
Video surveillance is becoming one of the most active do-

mains in automatic video analysis and understanding. The
video surveillance systems currently deployed rely primar-
ily on human operators that have to watch the streams of
several cameras, usually simultaneously. One of the basic
tasks of these operators is to understand if some unusual
behaviour is happening in the scene and then react appro-
priately. The growing number of CCTV cameras being de-
ployed makes the systems based on human operators un-
scalable: monitoring is expensive, tiring (the attention of an
operator degenerates after 20 minutes [7]) and thus ineffec-
tive. A practical solution is the deployment of automatic
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methods that analyze the video streams and warn, in real
time, the operators when some unusual activity is taking
place. Once an anomaly has been detected it is possible to
perform higher level video analysis, such as behaviour and
human action recognition, or exploit pan-tilt-zoom cameras
to capture higher resolution images, e.g. to perform face log-
ging and recognition.

Anomaly detection approaches require to build a model
of normal data and then to attempt to detect deviations
from this model in the observed data. The creation of this
model can be based on supervised [1,3,5,8] or unsupervised
approaches [2, 4, 9, 10, 17, 19]. Given the fact that anoma-
lies are rare and, by their very nature, have unpredictable
variations, in this work we follow an unsupervised approach.

The model can be learned off-line as in [3, 5, 8, 12] or in-
crementally updated (as in [10]) to cope with the changes
that happen over time within the visual context of a scene.
Our approach continuously updates the model, to deal with
changes in lighting and setting of a scene.

Most of the methods for identifying unusual events in
video sequences use trajectories [1, 5, 8, 9, 12, 19] to repre-
sent the activities shown in a video. In these approaches
objects and persons are tracked and their motion is de-
scribed by their spatial location; only spatial deviations are
considered anomalies, thus the abnormal behaviour related
to the appearance or the motion of a target that follows a
“normal” track is not detected. Optic flow has been used
to model typical motion patterns in [10, 17] but, as noted
in [12], this measure may become unreliable in presence
of extremely crowded scenes. Local spatio-temporal de-
scriptors have been successfully proposed in [6, 13] to rec-
ognize human actions, while more simple descriptors based
on spatio-temporal gradients have been used to model mo-
tion in [2,12] for anomaly detection.

In this work we propose a non-parametric approach that
detects and localize anomalies in real-time, using local spatio-
temporal features that model both appearance and motion
of persons and objects, to deal with different types of anoma-
lies. This approach addresses both the problem of high vari-
ability in unusual events and the need of dealing with scene
changes that happen in real world settings. The paper is
structured as follows: in Sect. 2 is presented the anomaly
detection method; the local spatio-temporal descriptor is
described in Sect. 3; finally experimental results, obtained
using standard datasets, and conclusions are discussed in
Sect. 4.
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2. NON-PARAMETRICANOMALYDETEC-

TION
Our system is able to learn from a normal data distri-

bution fed as a training set but can also start without any
knowledge of the scene, learning and updating the model
over time. The model can always be updated with a very
simple procedure. Despite the simple formulation of this ap-
proach our system is able to model complex scenes, including
both dynamic and static appearance patterns.

2.1 Semi-supervised detection
In anomaly detection tasks a certain amount of normal

data is usually available; our system can exploit this data as
a training set to bootstrap itself and run in a semi-supervised
fashion. Our system can also be run online with no previous
knowledge of the scene, since a model update procedure is
provided.

To jointly capture scene motion and appearance statistics
we extract pixel cuboids on a regular, slightly overlapped
spatio-temporal grid. Cuboids are represented with a ro-
bust space-time descriptor described in Sect. 3. To decide if
an event is anomalous a way to estimate normal descrip-
tor statistics is needed. Moreover since no assumptions
are made on the scene geometry or topology, it is impor-
tant to describe this normal descriptors distribution locally
w.r.t. the frame. Therefore, given a certain amount of train-
ing frames for each cell in our grid, space-time descriptors
are collected and stored using a structure for fast nearest-
neighbour search, providing local estimates of anomalies; an
overview of this schema is shown in Fig. 1. The training
stage is very straightforward, since we do not use any para-
metric model to learn the local motion and appearance; in-
stead we represent the scene normality directly with descrip-
tor instances.

A simple way to decide if an event happening at a cer-
tain time and in a certain frame location has to be consid-
ered anomalous is to perform a range query on the training
set data structure to look for neighbours. Once an optimal
radius for each image location is learned, all patterns for
which the range query does not return any neighbour are
considered anomalies. The problem with this technique is
the intrinsic impossibility to select a-priori a correct value
for the radius. This happens for two reasons: firstly, each
scene location undergoes different dynamics, for example a
street will mostly contains fast unidirectional motion gener-
ated by cars and other vehicles, while a walkway will have
less intense motion and more directional variation; moreover
a static part of the scene, like the side of a parking lot, will
mostly contain static information. Secondly, we want to be
able to update our model dynamically by adding data which
has to be considered normal given the fact that we observed
that kind of pattern for a sufficient amount of time; there-
fore, since that scene statistics has to evolve over time, the
optimal radius will evolve too. Finally, we also would like
to select a value that encodes the system sensitivity, i.e. the
probability that the observed pattern is not generated from
the underlying scene descriptors distribution.

To estimate the optimal radius for each data structure
we compute CDFi, the empirical cumulative distribution
of nearest-neighbour distances of all interest point in the
structure of cell i. Given a probability pa below which we
consider an event anomalous, we choose the radius r̂i for cell
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Figure 1: System overview. Each cell features
are stored on efficient k-means tree based indexes.
Planes underneath represent a simplified view of the
high dimensional feature space; dashed circles are
plotted at the optimal radius value.

i such that:

r̂i = CDF−1

i (1 − pa) . (1)

The anomaly probability pa can be set to 10−3, 10−4, 10−5 . . .
depending on the user needs to obtain a more or less sen-
sitive system. This optimal radius formulation allows easy
data-driven parameter selection and model update.

2.2 Model update
Since this kind of anomaly detection applications are thought

to be run for a long time, it is very likely that a scene will
change its appearance over time; very simple examples are
the event of a snowstorm, the presence of some material in
a yard for maintenance purposes or the placement of new
temporary structures. It is therefore very urgent to pro-
vide a way to update our model. Again we propose a very
straightforward data-driven technique.

Together with the data-structure for each grid cell, we
keep a list of anomalous patterns. On a regular basis this
list is inspected and new data is incorporated by applying
the following procedure. We exploit the same range query
approach presented in the previous section, to look for nor-
mality in the abnormality list. If some event happens very
frequently it is likely that it will a have certain amount of
neighbours in feature space, while true anomalous event will
still be outliers. After an optimal radius is estimated for the
anomalous pattern list, we discard all outliers in this list
and incorporate all other data in the cell i training set. The
optimal radius r̂i for the updated cell is then recomputed.

Even if it is not required, since they can be used with
default values, two parameters of the system can be tuned
to adapt them to a particular scenario: grid density and
overlap of cuboids. Reducing the cuboids overlap can in-
crease the detection performance, while using a more or less
dense spatio-temporal grid can serve also as a system adap-
tation for a specific camera resolution or frame rate. These
two parameters are directly bound to physical and technical
system properties (e.g. camera resolution and computer pro-
cessing speed) that the user can easily access to figure out
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a proper configuration. Instead, the system automatically
computes the optimal radius parameter, that is a quantity
that is extremely task, scene and time dependent.

3. SPACE-TIME FEATURES
Space-time volumes extracted on the regular grid are rep-

resented as in the following. To compute the representa-
tion of each volume we define a descriptor based on three-
dimensional gradients. Each volume is divided in 18 subre-
gions (three along each spatial direction and two along the
temporal); each subregion is described by spatio-temporal
image gradient represented in polar coordinates as follows

M3D =
q

G2
x + G2

y + G2
t , (2)

φ = tan−1(Gt/
q

G2
x + G2

y), (3)

θ = tan−1(Gy/Gx) (4)

where Gx, Gy and Gt are respectively computed using fi-
nite difference approximations: Lσd

(x + 1, y, t) − Lσd
(x −

1, y, t), Lσd
(x, y + 1, t) − Lσd

(x, y − 1, t) and Lσ(x, y, t +
1) − Lσd

(x, y, t − 1). L is obtained by filtering the signal
I with a Gaussian kernel of bandwidth σd. We compute
two separated orientation histograms quantizing φ and θ,
weighting them by the magnitude M3D. We do not apply
a re-orientation of the 3D neighbourhood, since rotational
invariance,which is invaluable in object detection and recog-
nition, is not desired in a human behavior and scene mod-
elization context. The φ (with range, −π

2
, π

2
) and θ (−π,π)

are quantized in four and eight bins, respectively. The over-
all dimension of the descriptor is thus 3 × 3 × 2 × (8 + 4) =
216. This construction of the three-dimensional histogram
is inspired, in principle, by the approach proposed by Sco-
vanner et al. [21], where they construct a weighted three-
dimensional histogram normalized by the solid angle value
(instead of quantizing separately the two orientations) to
avoid distortions due to the polar coordinate representation.
However, we have found that our method is computation-
ally less expensive, equally effective in describing motion
information given by appearance variation, and showing a
state-of-the-art performance (see Tab. 1).

4. EXPERIMENTAL RESULTS

4.1 Descriptor evaluation
The descriptor is initially tested in an action recognition

problem on two standard dataset. KTH dataset contains
videos of 25 people performing 6 different actions in 4 record-
ing conditions; Weizmann is made of 93 videos of 9 actors
performing 10 different actions. KTH is considered more
challenging because of illumination and scale variation and
for the amount of actors involved in the recording. A bag-of-
words system is used for this test, using k-means clustering
for the dictionary creation and SVM with χ2 kernel as a
classifier. Table 1 compares the average accuracy obtained
by our descriptor with state-of-the-art descriptors: the per-
formance is above or in line with the other approaches, but
without requiring any tuning of descriptor parameters.

Method KTH Weizmann
Our method 90.38 92.30
Rapantzikos et al. [20] 88.3 -
Laptev et al. [14] 91.8 -
Dollár et al. [6] 81.2 -
Wong and Cipolla [24] 86.62 -
Scovanner et al. [21] - 82.6
Niebles et al. [18] 83.33 90
Liu et al. [15] - 90.4
Kläser et al. [11] 91.4 84.3
Willems et al. [23] 84.26 -

Table 1: Comparison of our method to state-of-the-
art.

4.2 System evaluation
We tested our approach on UCSD1 anomaly dataset which

provides a frame-by-frame local anomaly annotation. Videos
are recorded at a resolution of 238 × 158 and 10 fps. A
subset of the dataset has also spatial binary frame masks
to enable spatial accuracy performance evaluation. This
dataset mostly contains sequences of pedestrians in walk-
ways; annotated anomalies, that are not staged, consider
non-pedestrian entities (bikers, skaters, small carts) access-
ing the walkway, pedestrians moving in anomalous motion
patterns or in non walkway regions. The dataset is split
in two sets of sequences, each of which is recorded from a
different camera and corresponds to a different scene. The
first subset contains 34 training video samples and 36 test-
ing video samples, while the latter contains 16 training video
samples and 14 testing video samples for a global amount
of 100. Each sequence lasts around 200 frames, for a to-
tal dataset duration of ∼ 33 minutes. Fig. 2 reports the
precision-recall curve for this dataset created varying the pa

parameter from 10−2 to 10−5, showing a good performance.
Fig. 3 shows a qualitative comparison of anomaly localiza-
tion of our approach with other state-of-the-art approaches,
while Fig. 4 shows other examples of anomaly localization
of our approach. Another test has been performed using a
dataset created by us, recorded in a parking lot with wall-
mounted pan-tilt-zoom cameras. The video has a resolution
of 320 × 240 and 6 fps, and is publicly available on the Vi-
SOR2 site [22]. The video has been recorded during a single
day and is composed by a sequence of more than 5 hours,
without anomalies, and some staged anomalous behaviors
like people fighting, running or waving hands. The perfor-
mance obtained on this dataset is reported in Table 2. We
used 8×8 grids of 5 frames long cuboids; in our experiments
we have seen that increasing the grid density (e.g. 16 × 16)
improves performances and reduces noise at the cost of a
heavier computation thus compromising partially the real-
time behavior of our system; cuboids longer than 5 frames
instead have a worst performance, probably due to the fact
that events span a very little time frame, considering also
the low frame rate.

Conclusions
In this paper we have presented a non-parametric anomaly
detection approach that can be executed in real-time in a
completely unsupervised manner. Spatio-temporal features

1http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
2http://www.openvisor.org
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Figure 2: Precision-Recall curve for the UCSD
dataset.

Figure 3: Qualitative comparison with methods pre-
sented in [16, 17]: our method, mixture of dynamic
textures, social force and mixture of principal com-
ponents analyzers, social force only.

True Pos. False Pos. False Neg. Precision Recall
218 38 86 .85 .72

Table 2: Precision and recall on MICC Dataset.

that capture appearance and motion information have been
used to capture the scene dynamics. Our future work will
deal with the expansion of the system to include appearance
context.
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